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Abstract—In this paper, we study the interference exploitation
precoding in the presence of distortion from nonlinear power
amplifiers (PAs) in multi-user multiple-input single-output (MU-
MISO) downlink communication systems. We consider the mem-
oryless polynomial model of nonlinear PAs, which is incorporated
into the symbol-level precoding (SLP) design to allow the PA
nonlinearities in the constructive interference (CI) exploitation.
The optimization problem that aims to enhance the signal-to-
interference-plus-noise ratio (SINR) without investing additional
transmit signal power is formulated for both PSK and QAM
signaling. Since the original optimization problem is nonconvex,
we first introduce auxiliary variables to transform the optimiza-
tion problem and adopt the alternating optimization framework
for the new optimization problem. For non-convex subproblems,
additional auxiliary variables are introduced and several ap-
proximations are employed to transform the problem into a
semidefinite programming (SDP) form, where the semidefinite
relaxation (SDR) method is adopted to obtain feasible solutions.
In order to reduce the computational cost of the iterative
algorithm, we further propose a low-complexity algorithm for the
original PA-aware SLP optimization problem. Numerical results
verify the superiority of our proposed PA-aware SLP approach
in the presence of nonlinear PAs in the MU-MISO downlink in
terms of the error-rate performance over the state-of-the-art.

Index Terms—MIMO, symbol-level precoding, constructive
interference, nonlinear power amplifier, optimization.

I. INTRODUCTION

W ITH the rapid expansion of the application field of

wireless communication technology, the wireless com-

munication devices and wireless data services have grown

dramatically during the past decades. According to the global

mobile data traffic forecast by Cisco [1], the global mobile

data traffic will continue to grow at an annual rate of more

than 60% in the coming years. Therefore, the future mobile

communication technology needs to meet this rapid growth

of mobile data traffic. Massive multiple-input multiple-output

(MIMO) technology can significantly improve the spectral

efficiency and the capacity of wireless communication systems

[2], which has attracted considerable attention in both the

academic research and the wireless industry in recent years.

For the ideal fully-digital massive MIMO architecture,

without considering the limited resolution of the digital-to-

analog converters (DACs) and the nonlinearity of the power

amplifiers (PAs), research has shown that a simple frame-level

linear precoding scheme can achieve transmission performance

close to Shannon’s theoretical limit [3]. However, downlink

transmission of MIMO systems requires the base station (BS)

to equip each transmit antenna element with a separate radio

frequency (RF) chain (including a pair of high-resolution

DACs, a linear PA, mixers, and so on). Since massive MIMO

system contains hundreds or thousands of antenna elements,

the fully-digital massive MIMO BS architecture presents high

hardware complexity and power consumption, which have a

significant impact on the performance and power efficiency of

the communication system [4]. Hence, fully-digital massive

MIMO may not be preferable in practical implementation,

and the study for reducing the power consumption of BS in

massive MIMO plays an important role for their widespread

deployment in cellular mobile communication systems.

To provide the trade-off between achievable spectral effi-

cieny and power consumption in massive MIMO architecture,

the hybrid analog/digital architecture, where the MIMO signal

processing is divided into analog and digital domains, can

reduce the number of required RF chains and attracted ex-

tensive attention from both academia and industry [5], [6]. In

addition to the hybrid architecture, employing low-resolution

DACs instead of high-resolution DACs in massive MIMO

architecture can effectively reduce the power consumption

of BS by reducing the power consumption per RF chain

instead of reducing the number of RF chains [7], [8]. However,

low-resolution DAC introduces severe signal distortion to

massive MIMO systems, which is difficult to compensate by

traditional precoding schemes and usually requires symbol-

level processing to achieve satisfactory performance [9]–[11].

Similar to the low-bit DAC architecture, employing power-

efficient nonlinear PAs in massive MIMO system can also

reduce the power consumption of each RF chain, thereby

improving the energy efficiency of massive MIMO commu-

nication systems. However, in the traditional multi-antenna

system, due to the limited linear region of nonlinear PAs,

the transmit signals with a high peak-to-average power ratio

(PAPR) will introduce non-negligible signal distortions, which

has negative effects on the performance of the communication

system. A number of studies have been carried out on PAPR

problem, which can be divided into two directions: a) to

keep the signal power constant by designing the constant

envelope precoding (CEP) scheme [12]–[18], which can be

classified as SLP schemes; b) to reduce the PAPR of the

transmit signal by optimizing the frame-level precoding matrix

[19]–[24]. By limiting the amplitude of the transmit signal

to a constant value, the CEP can completely eliminate the
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performance loss introduced by nonlinear PAs. To be more

specific, [12] first studied the CEP in single-user massive

communication system, while the optimal CEP scheme in the

single-user case is further given in [13]. Based on [12], the

joint design scheme of CEP and antenna selection in single-

user scene was considered in [14], which presented a new idea

to design the precoding scheme from a geometric perspective.

[15] extended the CEP to multiuser communication system

for the first time, where a nonlinear least squares precoding

optimization problem was constructed to minimize the multi-

user interference (MUI), followed by an efficient iterative

solution algorithm. [16] presented the optimization of CEP

based on the cross-entropy algorithm, which further improves

the performance of the scheme in [15].

In addition to the CEP, there exist other low-PAPR trans-

mission schemes which relax the strict CE constraint by

allowing the maximum PAPR to a certain value. For example,

a low-PAPR transmission scheme based on minimizing the

dynamic range of the transmit signals was presented in [19].

In [20], a zero forcing (ZF) scheme was proposed, which

reduced the PAPR by limiting the input power of each antenna.

Based on the nonlinear vector perturbation (VP) precoding

scheme, [21] proposed a method to optimize the transmit

signal norm, which achieved a compromise among transmis-

sion performance, PAPR and computational complexity. [22]

introduced the internal back-off scheme to limit the maximum

input power of the PAs such that they work in the linear

region. [23] proposed symbol-level precoding (SLP) for MU-

MISO systems with nonlinear PAs, which can minimize the

transmit power of each antenna or minimize the spatial PAPR

(SPAPR). By studying the relationship between the PAPR and

the bit-error-rate (BER) at users, [24] introduced PAPR as an

additional constraint into the optimization problem that aimed

for error-rate minimization, where a distributed solution was

proposed. Despite the above precoding schemes for nonlinear

PAs, few of them have taken the response characteristics of

the nonlinear PAs and their specific impact on the wireless

transmission signal into consideration.

Very recently, studies that utilize PA’s response character-

istics for the precoding design in the presence of nonlinear

PAs have appeared in the literature, rather than only reduc-

ing the PAPR of the transmit signal. [25] used a clipping

function to model the response characteristics of nonlinear

PAs, where the precoder was designed to resist the MUI and

the nonlinearities of PA. [26] suggested a distortion-aware

beamforming (DAB) algorithm for MU-MISO communication

system, where an iterative algorithm is proposed for rate

maximization. [27] investigated a PA-aware precoding scheme

in massive MU-MIMO downlink system, and developed an

efficient algorithm to reduce the MUI and PA nonlinearity. In

a single-user MISO communication system with nonlinear PAs

at BS, [28] developed a power control method and a precoding

scheme that maximized the received SINR, where an iterative

precoding algorithm was presented. [29] jointly optimized

the precoding and power allocation strategy to maximize the

achievable sum rate of MU-MIMO systems. [30] investigated

the effect of PA nonlinearity for the downlink MU-MIMO

orthogonal frequency division multiplexing (OFDM) system

in a correlated channel, and derived the analytical signal to

distortion, interference and noise ratio (SINDR).
Although some performance benefits can be observed in

[25]–[30] by considering the nonlinear PA characteristics,

these schemes view the MUI in the communication system

and the signal distortion introduced nonlinear PA as harmful

interference that need to be eliminated. Nevertheless, such

design criterion may be sub-optimal since it has been shown

that known interference can further benefit the system per-

formance, achieved by constructive interference (CI) and SLP

[31]. In [32], the interference in communication system was

categorized into constructive interference (CI) and destructive

interference (DI) from symbol level for the first time. Based

on this concept, [33] proposed a modified zero-forcing (ZF)

precoding, which only forces DI to be zero and exploits CI.

In [34], a correlation rotation scheme was further proposed,

in which it is shown that all interference can become CI

through manipulating and rotating DI. In order to relax the

strict phase rotation constraints in [34] and improve perfor-

mance, an SLP scheme based on CI convex optimization

was presented in [35] and [36], which also introduced the

concept of constructive region. However, optimization-based

CI precoding methods may be computationally inefficient

since the convex optimization problem needs to be solved

symbol by symbol. In [37], optimal and low-complexity solu-

tion for CI precoding based on SINR balancing optimization

was designed, where an iterative precoder was formed to

achieve a compromise between performance and complexity.

In addition, [38] further presented a general form for multi-

level modulation. Because of the performance benefits that

CI can offer, CI-based precoding design has been applied to

massive MIMO systems with limited hardware. For example,

[39] proposed several transmit beamforming schemes for the

massive MIMO downlink with 1-bit DACs based on CI, which

greatly improves the performance of low-resolution massive

MIMO system. [17] introduced a CI-based CEP method

for generic PSK modulations. Furthermore, a low-complexity

manifold algorithm for the CI-based CEP was presented in

[18].
In this paper, we investigate the potential of CI for the

precoder design in the presence of nonlinear PAs. By incor-

porating the response characteristics of the nonlinear PAs, we

study how interference exploitation SLP can help alleviate the

distortion brought from nonlinear PAs, and propose an iterative

algorithm based on alternating optimization and SDR to obtain

a near-optimal solution. A low-complexity algorithm is also

designed to address the performance-complexity tradeoffs.

Moreover, since power-efficient PAs are employed and their

nonlinearity is already taken into account in the precoder

design, there is no need to consider the specific impact of

PAPR in our work. For the sake of clarity, we list this paper’s

contributions as follows:

1) We focus on the interference exploitation SLP design for

the downlink transmission of MU-MISO communication

systems. Specifically, we construct an SINR balancing

SLP optimization problem and introduces the response

characteristics of nonlinear PAs into the precoder design

as elements that can be exploited constructively.
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2) For PSK modulation, the non-convex optimization prob-

lem is firstly transformed by introducing auxiliary vari-

ables, and subsequently the iterative algorithm based on

alternating optimization framework is presented for the

new optimization problem. For subproblems that are still

non-convex, additional auxiliary variables are introduced

and several approximations are employed to transform

the problem into the SDP form, where SDR is adopted

to obtain feasible solutions.

3) For QAM modulation, we show that the non-convex

problem has a similar solution framework as PSK mod-

ulation. The major difference between QAM modulation

and PSK modulation is the mathematical CI condition,

where for QAM modulation only the outer constellation

points can exploit CI while all the interference for the

inner constellation points are seen as destructive. Thanks

to the similar problem structure, the proposed iterative

algorithm can be extended to the PA-aware SLP design

with QAM modulation.

4) We further propose a low-complexity algorithm to

reduce the computational complexity for both PSK-

modulated and QAM-modulated PA-aware SLP. By sub-

stituting the higher-order terms in the PA polynomial

model with the initial CI precoded vector, a relaxed

version of the original non-convex optimization problem

is obtained, thus allowing a flexible iterative procedure.

Simulation results show that the proposed iterative algo-

rithm based on the alternating optimization framework con-

verges within a few iterations, which indicates that the iterative

algorithm can approximate the optimal solution to the original

problem. It is also observed that the proposed low-complexity

algorithm achieves promising performance-complexity trade-

offs in small-scale MU-MISO systems, and offers a near-

optimal performance in large-scale MU-MISO systems in

lower complexity. Moreover, it is shown that both of our

proposed interference exploitation precoding considering the

response characteristics of nonlinear PA are superior to tradi-

tional precoding schemes in terms of error-rate performance.
The remainder of this paper is organized as follows. In

Section II, the system model and nonlinear PA model are

introduced, and the conception of CI is reviewed. Section III

introduces the proposed PA-aware SLP formulation for PSK

and QAM modulation respectively, including mathematical CI

conditions and the original optimization problem formulation.

The iterative algorithm based on alternating optimization,

the problem-dependent Gaussian randomization and the low-

complexity algorithm are presented in Section IV. The com-

plexity analysis of the proposed iterative algorithm and the

low-complexity algorithm are both discussed in Section V.

Numerical results of the proposed algorithms are shown in

Section VI, and Section VII concludes the paper.
Notations: Lowercase, lowercase boldface and uppercase

boldface letters denote scalar, vectors and matrices, respec-

tively. (·)∗, (·)T , (·)H and tr{·} denote conjugate, transposi-

tion, conjugate transposition and trace of a matrix, respectively.

diag(·) is the transformation of a column vector into a

diagonal matrix. ⌈·⌉ represents the ceiling function. ai denotes

the i-th term of vector a. | · | denotes the absolute value of a
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Fig. 1. MU-MISO downlink with nonlinear PA communication system model

real number or the modulus of a complex number, and ‖ · ‖2
denotes the ℓ2-norm. Cn×n and R

n×n represent the sets of

n× n complex- and real-valued matrices, respectively. ℜ{·}
and ℑ{·} respectively denote the real and imaginary part of

a complex scalar, vector or matrix.  denotes the imaginary

unit, IK denotes the K ×K identity matrix, and ei represents

the i-th column of the identity matrix. 0K represents the K-

dimensional zero vector.

II. SYSTEM MODEL AND CONSTRUCTIVE INTERFERENCE

A. System Model

We consider a downlink MU-MISO communication system

as shown in Fig. 1. The BS with Nt transmit antennas

communicates with K single-antenna users on the same time-

frequency resources simultaneously, where K ≤ Nt. We

assume that all the nonlinear PAs at the BS have the same

response characteristics, which is known to the BS.

We express the k-th user’s received signal as

yk = hT
kF(x) + nk, (1)

where, hk ∈ C
Nt×1 represents the flat-fading channel vector

between the BS and user k. Throughout the paper, perfect

CSI is assumed. F(·) : C → C represents the transfer

function of nonlinear PAs. x = W(s) ∈ C
Nt×1 is the

precoded signal, W(·) : C → C represents the precoder and

s = [s1, s2, . . . , sK ]
T ∈ C

K×1 is the data symbol vector. nk

is the standard complex additive Gaussian noise at the k-th

user with zero mean and variance σ2.

B. Nonlinear PA Model

In this paper, we adopt the memoryless polynomial model

to modeling the behavior of nonlinear PAs, which has long

been commonly used to approximate nonlinear PAs [26]–[30].

Specifically, the output signal of the nonlinear PAs can be

expressed as

F(x) =

P
∑

p=1

βpdiag(|x|p−1)x, ∀P ∈ Z
+, (2)
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where βp is the coefficient corresponding to the p-th order

component, |x| represents the modulus of x operated on the

element-wise. The first-order term (p = 1) describes the

linear relationship between the input and output signals, and

the other higher-order terms (p > 1) describe the nonlinear

relationship between input and output signals [40], [41]. The

advantages of the polynomial PA model are twofolds: a) the

response characteristics of arbitrarily memoryless PAs can be

approximated accurately by adjusting the modle parameters

βp [42]; b) the model is simple and mathematically tractable.

In addition, since it has been shown in [41] that the even-

order terms only contributes to the out-of-band distortion and

lead to spectrum regrowth, we omit the even-order terms

in the subsequent derivations. The transfer function of the

memoryless polynomial model can be simplified as

F̂(x) =

P̂
∑

p=1

β2p−1diag(|x|2p−2)x, ∀P̂ ∈ Z
+, (3)

where P and P̂ satisfies P̂ = ⌈P/2⌉. By substituting (3) into

(1), yk can be further written as

yk = hT
k

P̂
∑

p=1

β2p−1diag(|x|2p−2)x+ nk, (4)

C. Constructive Interference

Interference exists in the multi-antenna communication sys-

tem, which makes the received signal deviate from the nominal

constellation points in both amplitude and phase. Observing

the interference from the instantaneous point of view, [32]

shows that interference can be divided into two types: con-

structive interference (CI) and destructive interference (DI).

CI is the interference that push the noiseless received signal

away from all of their corresponding decision boundaries of

the modulated-symbol constellation, which thus contributes to

the useful signal power [31].

The CI condition for the strict phase rotation metric refers

to the case where the interference signals are strictly aligned

to data symbols of interest by controlling and rotating the

phases of the interference [34]. The concept of CI region

has been further introduced in [35], and it is the region in

the complex plane where the received signal falls when CI is

achieved. Based on this, [35] proposed the CI condition for

the non-strict phase rotation metric, under which the phase

of the interference signals may not be necessarily strictly

aligned to that of the data symbols of interest. It should be

noted that the non-strict phase rotation is a relaxed CI metric,

which gains further performance improvements, and the strict

phase rotation is suboptimal. In addition, both the strict phase

rotation and the non-strict phase rotation can only be applied

to PSK modulation, but not to QAM modulation. The reason

is that PSK modulation only modulates phase, whereas QAM

modulation modulates both amplitude and phase, so that only

the real or imaginary part of the outer constellation points can

exploit CI. Consequently, the CI metric of QAM modulation

has been discussed in [36], [43], where the symbol-scaling

metric is introduced.
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Fig. 2. 8PSK, ‘non-strict phase rotation’, [28]

III. PA-AWARE SLP FORMULATION

A. PSK Modulation

1) Non-Strict Phase-Rotation CI Metric: In Fig.2, the CI

condition for non-strict phase rotation metric is shown by

depicting the first quadrant of an 8PSK constellation as an ex-

ample. Without loss of generality, we use point S to represent

the nominal constellation point of the desired data symbol for

user k, then ~OS = sk, and introduce ~OP = t · sk to represent

the desired data symbol satisfying power constraint. Therefore,

t = | ~OP |
| ~OS| is the distance between the detection thresholds and

the CI region, and a larger value of t leads to a better error-rate

performance. Let ~OI represent the noiseless received signal

for user k, i.e., ~OI = hT
k x , then ~PI = ~OI − ~OP is the

interference signal.

We introduce a complex auxiliary variable λk to represent

the scaling effect on both the amplitude and phase of the data

symbol after experiencing the wireless channel, i.e.,

~OI = hT
k x = λksk. (5)

The projection of λk in the direction of ~OS is its real part,

i.e., ~OQ = ℜ(λk), and the projection perpendicular to ~OS is

its imaginary part, i.e., ~IQ = ℑ(λk). In order for ~OI to fall

into the ‘green’ CI region, we need

θ∠POI ≤ θth, (6)

where θth = π
M for M -PSK. (6) can be further expressed as

a function of λk as

[ℜ(λk)− t] tan θth ≥ |ℑ(λk)|, ∀k ∈ K, (7)

where K = {1, 2, . . . ,K}. (7) is therefore the mathematical CI

condition for non-strict phase rotation to be used subsequently

for PSK modulation.

2) Problem Formulation: In this paper, we consider SLP

design based on CI for PA nonlinearity. Specifically, we focus

on the CI-based SINR balancing problem where we aim to

maximize the power scaling parameter t. Accordingly, we

construct the optimization problem of the SLP design for M -
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Fig. 3. 16QAM, ‘symbol-scaling’, [29]

PSK modulation as

P1 : max
x

t

s.t.

C1 : hT
k





P̂
∑

p=1

β2p−1diag(|x|2p−2)x



 = λksk, ∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|, ∀k ∈ K,

C3 :

∥

∥

∥

∥

∥

∥

P̂
∑

p=1

β2p−1diag(|x|2p−2)x

∥

∥

∥

∥

∥

∥

2

2

≤ p0.

(8)

In P1, C1 and C2 jointly represent the CI condition for non-

strict phase rotation, C3 indicates that the maximum transmit

power does not exceed p0. The above optimization problem

P1 is non-convex and difficult to directly handle, owing to the

existence of high-order terms in the memoryless polynomial

PA model.

B. QAM modulation

1) Symbol-scaling CI Metric: Fig.3 depicts a quarter of

16QAM constellation as the example to characterize the CI

condition for the symbol-scaling metric. The constellation

points A, B, C and D respectively represent the four received

signal types in the first quadrant of the 16QAM constellation

and the green area indicates the CI region. With loss of

generality, denoting ~OS = sk as a nominal constellation point

that is the intended data symbol for user k, we decompose the
~OS along the detection thresholds as

~OS = ~OE + ~OF ⇒ sk = sAk + sBk , (9)

where sAk = ℜ(sk) and sBk =  · ℑ(sk) represent a set of

bases derived from the decomposition of the ~OS along the

detection threshold direction. Following the similar approach

to (9), we decompose the noiseless received signal ~OI in the

same direction to yield ~OG and ~OH , given by

~OI = hT
k x = ~OG+ ~OH. (10)

Based on which, we introduce a set of real auxiliary scalars,

αA
k and αB

k , to represent ~OI with the bases sAk and sBk obtained

above as
~OI = αA

k s
A
k + αB

k s
B
k = ΩT

k sk, (11)

where Ωk and sk are given by

ΩT
k =

[

αA
k αB

k

]T
, sk =

[

sAk sBk
]T

. (12)

It is observed that the values of Ωk directly indicate the

effect of the CI. Since only the real or imaginary part of the

outer constellation points can exploit CI, then in Fig.3, the CI

region only includes the real part of constellation point type B,

the imaginary part of type C and the real and imaginary part

of type D. We refer to ~OD = t ·sk as the user k’s desired data

symbol satisfying power constraint, where the power scaling

parameter t is the distance between the detection thresholds

and the CI region, then ~DI = ~OI − ~OD can represent the

interference signal of user k. Similarly, ~OD can be written in

the form of sk as

~OD = t · sk = t · (sAk + sBk ). (13)

Subsequently, for the purpose of forcing the noiseless re-

ceived signal ~OI to fall into the CI region, the CI condition

for symbol-scaling metric to be used for QAM modulation can

be expressed as
t ≤ αO

l , ∀αO

l ∈ O,

t = αI

m, ∀αI

m ∈ I,
(14)

where set O includes the real scalars corresponding to the

real or imaginary part of the constellation points that can be

scaled, and set I includes the real scalars corresponding to the

real or imaginary part of the constellation points that cannot

be scaled. Accordingly, we obtain

card {O}+ card {I} = 2K,

O ∪ I =
{

αA
1 , α

B
1 , α

A
2 , α

B
2 , · · · , αA

K , αB
K

}

.
(15)

2) Problem Formulation: The optimization problem of PA-

aware SLP for QAM modulation that maximizes the CI

effect for the outer constellation points while maintaining

the performance for the inner constellation points, can be

constructed as

P2 : max
x

t

s.t.

C1 : hT
k





P̂
∑

p=1

β2p−1diag(|x|2p−2)x



 = ΩT
k sk, ∀k ∈ K,

C2 : t ≤ αO

l , ∀αO

l ∈ O,

C3 : t = αI

m, ∀αI

m ∈ I,

C4 :

∥

∥

∥

∥

∥

∥

P̂
∑

p=1

β2p−1diag(|x|2p−2)x

∥

∥

∥

∥

∥

∥

2

2

≤ p0.

(16)

In P2, C1, C2, C3 represent the CI condition for QAM

modulation, and C4 indicates the available transmit power of
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antennas. Due to the high-order terms in C1 and C4, P2 is

non-convex. It is observed that P2 and P1 are similar in terms

of problem formulation and all the optimization variables in

P2 are consistent with those in P1, and the only difference

between them is the CI condition, which is convex and thus

will not affect the subsequent problem transformation and

solution.

IV. PROPOSED SOLUTIONS

In order to obtain feasible and near-optimal solutions to

P1(P2), we propose an iterative algorithm which can obtain a

near-optimal solution of P1(P2), as well as a low-complexity

algorithm which can offer a performance-complexity tradeoff

in this section. We consider P1 as an example in the following

problem derivation.

A. The Iterative Algorithm via Alternating Optimization

We begin by introducing xp and performing the following

variable substitution for x in P1:
{

x1 = x ∈ C
Nt×1,

|xp|2p−2 = |x|2p−2 ∈ C
Nt×1, ∀p ∈ P, p>1,

(17)

where P = {1, 2, . . . , P̂}. Inserting (17) into P1 yields

P3 : max
xp

t

s.t.

C1 : hT
k





P̂
∑

p=1

β2p−1diag(|xp|2p−2)x1



 = λksk, ∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|, ∀k ∈ K,

C3 :

∥

∥

∥

∥

∥

∥

P̂
∑

p=1

β2p−1diag(|xp|2p−2)x1

∥

∥

∥

∥

∥

∥

2

2

≤ p0,

C4 : x1 = x2 = . . . = xP̂ .
(18)

With the addition of C4, the solutions to P3 and P1 are

guaranteed to be equivalent, and the variables to be optimized

are changed from x to xp, ∀p ∈ P.

The above optimization problem is still difficult to directly

solve. Therefore, we adopt the following iterative proce-

dure which sequentially updates each xp that corresponds to

|x|2p−2 from lower-order terms to higher-order terms, where in

each iteration, we optimize xp and maintain other xq, (q 6= p)
fixed. We repeat this process until x1 ≈ x2 ≈ . . . ≈ xP̂ .

1) Optimization on x1: Given xp, p = 2, 3, . . . , P̂ , the

optimization for x1 can be expressed as

P4 : max
x1

t

s.t.

C1 : hT
k





P̂
∑

p=1

β2p−1diag(|xp|2p−2)x1



 = λksk, ∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|, ∀k ∈ K,

C3 :

∥

∥

∥

∥

∥

∥

P̂
∑

p=1

β2p−1diag(|xp|2p−2)x1

∥

∥

∥

∥

∥

∥

2

2

≤ p0,

C4 : ‖x1 − xp‖22 ≤ ǫ1, ∀p ∈ P, p 6= 1,
(19)

where ǫ1 is a small nonnegative parameter which provides

a relaxed version of C4. With the above approximations, P4

becomes convex and can be solved efficiently with existing

convex optimization tools. By solving P4, we obtain the

optimal x∗
1, and update the x1 to the obtained x∗

1.

To sequentially update each xp, 1<p<P̂ , we additionally

introduce Qp′ =
∑

∀p∈P,p 6=p′ β2p−1diag(|xp|2p−2)x1 that is

irrelevant to the variable xp′ to be optimized.

2) Optimization on x2: We substitute x1 into P2. Conse-

quently, the optimization for x2 with fixed xp, p 6= 2 can be

expressed as

P5 : max
x2

t

s.t.

C1 : hT
k

[

β3diag(|x2|2)x1 +Q2

]

= λksk, ∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|, ∀k ∈ K,

C3 :
∥

∥β3diag(|x2|2)x1 +Q2

∥

∥

2

2
≤ p0,

C4 : ‖x2 − xp‖22 ≤ ǫ1, ∀p ∈ P, p 6= 2.

(20)

Based on the fact that diag(|x2|2)x1 = diag(x1)|x2|2, P5

can be further expressed as

P6 : max
x2

t

s.t.

C1 : hT
k

[

β3diag(x1)|x2|2 +Q2

]

= λksk, ∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|, ∀k ∈ K,

C3 :
∥

∥β3diag(x1)|x2|2 +Q2

∥

∥

2

2
≤ p0,

C4 : ‖x2 − xp‖22 ≤ ǫ1, ∀p ∈ P, p 6= 2.

(21)

By introducing d1 = |x2|2 ∈ R
Nt×1, P6 can be transformed

as

P7 : max
d1

t

s.t.

C1 : hT
k [β3diag(x1)d1 +Q2] = λksk, ∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|, ∀k ∈ K,

C3 : ‖β3diag(x1)d1 +Q2‖22 ≤ p0,

C4 :
∥

∥d1 − |xp|2
∥

∥

2

2
≤ ǫ2, ∀p ∈ P, p 6= 2,

C5 : d1(i) ≥ 0, i = 1, 2, · · · , Nt,

(22)
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where ǫ2 is another small nonnegative parameter, which leads

to the relaxed version of d1 = |x2|2 ≈ |xp|2, ∀p ∈ P, p 6= 2.

P7 is convex and belongs to the second-order cone pro-

gramming (SOCP) problem, which is equivalent to quadratic

programming quadratic constraints (QCQP) by squaring each

of the constraints [44]. By solving P7 we can obtain the

optimal d∗
1.

With the obtained d∗
1, we need to find a proper x2 that

satisfies d∗
1 = |x2|2 and is closest to xp, ∀p ∈ P, p 6= 2 as

much as possible. To proceed, we expand x2 ∈ C
Nt×1 into

its real form x̃2 ∈ R
2Nt×1, given by

x̃2 =
[

ℜ(x2) ℑ(x2)
]T

, (23)

based on the above, we can express the i-th entry in x2 with

x̃2 as follows:

x2(i) = Aix̃2, i = 1, 2, · · · , Nt, (24)

where Ai is a selection matrix, given by

Ai =

[

eTi 0Nt

0Nt
eTi

]

∈ R
2×2Nt , i = 1, 2, · · · , Nt. (25)

Subsequently, we can further express d1 as

d1 = |x2|2 =











|x2(1)|2
|x2(2)|2

...

|x2(Nt)|2











=











x̃T
2 A

T
1 A1x̃2

x̃T
2 A

T
2 A2x̃2

...

x̃T
2 A

T
Nt

ANt
x̃2











, (26)

by expanding each xp, ∀p ∈ P, p 6= 2 into its real form x̃p ∈
C

2Nt×1, ∀p ∈ P, p 6= 2, and following a similar way, we can

construct a real-valued optimization problem P8 that aims to

find a x̃2 that is close to other x̃p, given by

P8 : min
x̃2

∑

∀p∈P,p 6=2

‖x̃p − x̃2‖22

s.t. x̃T
2 A

T
i Aix̃2 = d∗

1(i), i = 1, 2, · · · , Nt,

(27)

by observing that the matrices AT
i Ai, i = 1, 2, · · · , Nt are

all real symmetric and positive semi-definite, we propose to

reformulate the above problem into its SDP form and adopt

SDR to solve the above problem. To be more specific, we

introduce Ci = AT
i Ai ∈ S

2Nt and transform the constraint

of P8 into

x̃T
2 A

T
i Aix̃2 = d∗

1(i), (28)

⇒Tr
{

x̃T
2 A

T
i Aix̃2

}

= d∗
1(i),

⇒Tr
{

AT
i Aix̃

T
2 x̃2

}

= d∗
1(i),

⇒Tr
{

Cix̃
T
2 x̃2

}

= d∗
1(i), i = 1, 2, · · · , Nt.

Accordingly, we can transform P8 into

P9 : min
x̃2,r

∑

∀p∈P,p 6=2

‖rx̃p − x̃2‖22

s.t.

C1 : r2 = 1

C2 : Tr
{

Cix̃
T
2 x̃2

}

= d∗
1(i), i = 1, 2, · · · , Nt,

(29)

if (x̃∗
2, r

∗) is an optimal solution to P9, then x̃∗
2 is an optimal

solution to P8 when r∗ = 1 and −x̃∗
2 is an optimal solution

when r∗ = −1 [36]. P9 can then be expressed as a separable

QCQP:

P10 : min
x̃2,r

∑

∀p∈P,p 6=2

[

x̃2

r

]T [

I2Nt
−xp

−xT
p ‖x̃p‖22

] [

x̃2

r

]

s.t.

C1 : r2 = 1,

C2 : Tr
{

Cix̃
T
2 x̃2

}

= d∗
1(i), i = 1, 2, · · · , Nt,

(30)

by introducing a column vector x̂2 ∈ R
(2Nt+1)×1, matrices

X̂2 ∈ R
(2Nt+1)×(2Nt+1) and Fp ∈ R

2Nt×2Nt , ∀p ∈ P are

given below

x̂2 =

[

x̃2

r

]

, X̂2 = x̂2x̂
T
2 =

[

x̃2x̃
T
2 rx̃2

rx̃T
2 r2

]

,

Fp =

[

I2Nt
−x̃p

−x̃T
p ‖x̃p‖22

]

, ∀p ∈ P

(31)

therefore, the objective function of P10 can be further ex-

pressed as
∑

∀p∈P,p 6=2

x̂T
2 Fpx̂2

=
∑

∀p∈P,p 6=2

Tr
{

x̂T
2 Fpx̂2

}

=
∑

∀p∈P,p 6=2

Tr
{

FpX̂2

}

,

(32)

it should be noted that X̂2 = x̂2x̂
T
2 is equivalent to x̂2 being a

rank-one symmetric positive semidefinite (PSD) matrix. Here,

we introduce

Di =

[

Ci 0
0 0

]

∈ R
(2Nt+1)×(2Nt+1), i = 1, 2, · · · , Nt,

E =

[

0(2Nt+1)×(2Nt+1) 0
0 1

]

∈ R
(2Nt+1)×(2Nt+1),

(33)

based on the above, we can obtain the constraints of P10, given

by

Tr
{

DiX̂2

}

= d∗
1(i),

T r
{

EX̂2

}

= 1, i = 1, 2, · · · , Nt.
(34)

Therefore, we obtain the following equivalent formulation

of P9:

P11 : min
X̂2∈S(2Nt+1)

∑

∀p∈P,p 6=2

Tr
{

FpX̂2

}

s.t.

C1 : Tr
{

DiX̂2

}

= d∗
1(i), i = 1, 2, · · · , Nt,

C2 : Tr
{

EX̂2

}

= 1,

C3 : X̂2 � 0,

C4 : rank(X̂2) = 1.

(35)

subsequently, SDR can be used to produce an approximate

solution to P11 [45], where we relax the nonconvex rank-one
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constraint C4 in P11, which leads to the SDR form of P11 as

P12 : min
X̂2∈S2Nt+1

∑

∀p∈P,p 6=2

Tr
{

FpX̂2

}

s.t.

C1 : Tr
{

DiX̂2

}

= d∗
1(i), i = 1, 2, · · · , Nt,

C2 : Tr
{

EX̂2

}

= 1,

C3 : X̂2 � 0.

(36)

Denoting X̂∗
2 as the optimal solution to P12 , we can obtain

a feasible solution x̃2 through the Gaussian randomization

method introduced in Section IV-B in the following. With the

obtained x̃2, x2 can be obtained as

x2 = U1x̃2, (37)

where U1 = [INt
; INt

· j] ∈ R
2Nt×Nt is a transformation

matrix that recovers its original complex form. For the opti-

mization on the higher-order terms, i.e., 2P̂ −1 > 3, we adopt

a solution similar to that of the above. In the following, we

discuss the optimization for xp̃ (p̃ > 2).
3) Optimization on xp̃: By updating each xp to the optimal

value of the latest iteration optimization, the optimization for

xp̃ can be expressed as

P13 : max
xp̃

t

s.t.

C1 : hT
k

[

β2p̃−1diag
[

|xp̃|2p̃−2
]

x1 +Qp̃

]

= λksk, ∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|, ∀k ∈ K,

C3 :
∥

∥β2p̃−1diag
[

|xp̃|2p̃−2
]

x1 +Qp̃

∥

∥

2

2
≤ p0,

C4 : ‖xp̃ − xp‖22 ≤ ǫ1, ∀p ∈ P, p 6= p̃.
(38)

By referring to the fact that diag
[

|xp̃|2p̃−2
]

x1 =
diag(X1)|xp̃|2p̃−2, and introducing an auxiliary variable

dp̃−1 = |xp̃|2p̃−2 ∈ C
Nt×1, P13 can be further transformed

as

P14 : max
dp̃−1

t

s.t.

C1 : hT
k [β2p̃−1diag [x1]dp̃−1 +Qp̃] = λksk, ∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|, ∀k ∈ K,

C3 : ‖β2p̃−1diag [x1]dp̃−1 +Qp̃‖22 ≤ p0,

C4 :
∥

∥dp̃−1 − |xp|2p̃−2
∥

∥

2

2
≤ ǫp̃, ∀p ∈ P, p 6= p̃,

C5 : dp̃−1(i) ≥ 0, i = 1, 2, · · · , Nt,
(39)

where ǫp̃ is a small nonnegative parameter to relax the con-

straint dp̃−1 = |xp̃|2p̃−2 ≈ |xp|2p−2, ∀p ∈ P, p 6= p̃. P14

becomes convex and belongs to the SOCP problem, and by

solving it we can obtain the optimal d∗
p̃−1.

With the obtained d∗
p̃−1, we need to find a proper xp̃ that

satisfies dp̃−1 = |xp̃|2p̃−2 and is closest to xp, ∀p ∈ P, p 6= p̃.

To proceed, we introduce a variable gp̃−2, given by

gp̃−2 = p̃−1

√

d∗
p̃−1, (40)

based on the above, we expand xp̃ to its real form x̃p̃, then

gp̃−2 can be further expressed as

gp̃−2 = |xp̃|2 =











x̃T
p̃ A

T
1 A1x̃p̃

x̃T
p̃ A

T
2 A2x̃p̃

...

x̃T
p̃ A

T
Nt

ANt
x̃p̃











∈ C
Nt×1, (41)

subsequently, we can construct a real-value optimization prob-

lem P15 that aims to find a x̃p̃ that is close to other x̃p, given

by

P15 : min
x̃p̃

∑

∀p∈P,p 6=p̃

‖x̃p − x̃p̃‖22

s.t.

x̃T
p̃ A

T
i Aix̃p̃ = gp̃−2(i), i = 1, 2, · · · , Nt,

(42)

similarly, we introduce the real equivalent of xp̃ and a new

variable X̂p̃, given by

x̂p̃ =

[

x̃p̃

r

]

, X̂p̃ = x̂p̃x̂
T
p̃ =

[

x̃p̃x̃
T
p̃ rx̃p̃

rx̃T
p̃ r2

]

, (43)

based on the expression for Fp in (31) and Di, E in (33), we

transform P15 into its SDP form as

P16 : min
x̂p̃∈S2Nt+1

∑

∀p∈P,p 6=p̃

Tr
{

FpX̂p̃

}

s.t.

C1 : Tr
{

DiX̂p̃

}

= gp̃−2(i), i = 1, 2, · · · , Nt,

C2 : Tr
{

EX̂p̃

}

= 1,

C3 : X̂p̃ � 0,

C4 : rank(X̂p̃) = 1,

(44)

by relaxing the rank-one constraint C4, we obtain the SDR

form of P16, given by

P17 : min
X̂p̃∈S2Nt+1

∑

∀p∈P,p 6=p̃

Tr
{

FpX̂p̃

}

s.t.

C1 : Tr
{

DiX̂p̃

}

= gp̃−2(i), i = 1, 2, · · · , Nt,

C2 : Tr
{

EX̂p̃

}

= 1,

C3 : X̂p̃ � 0.

(45)

Denoting the optimal solution to P17 as X̂∗
p̃, the feasible

solution x̃p̃ can be obtained from X̂∗
p̃ through the Gaussian

randomization method introduced in Section IV-B in the

following. x̃p̃ can then be converted to xp̃ by

xp̃ = U1x̃p̃. (46)

By optimizing each xp sequentially until obtaining xP̂ , one

alternating optimization process is completed. Then, we need

to examine whether the results of this iteration satisfy the

convergence condition, given by

η ≤ γ, (47)
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where γ is a small nonnegative value and η is the sum of

norms among optimization variables, given by

η =

P
∑

p=1

P
∑

p′=p

‖xp − xp′‖22 , (48)

subsequently, (47) provides a relaxed version of C4 in P3. If

(47) is valid, x1 is considered as the approximate optimal

solution of x, if (47) is invalid, we need to update each

xp, ∀p ∈ P by substituting the results of the previous alternat-

ing optimization as the initial values of the new optimization,

and repeat the above process (19)-(45) until convergence.

Based on the above problem transformation and the alter-

nating optimization, we present the iterative algorithm for the

PSK-modulated PA-aware SLP, given in Algorithm 1, where

nIter represents the number of iterations. Algorithm 1 can

be extended to the QAM-modulated PA-aware SLP P2 by

replacing the CI condition for PSK modulation with that for

QAM modulation.

Algorithm 1 The proposed iterative PA-aware SLP algorithm

based on alternating optimization

Input: s,H, βp, p0, ǫp, γ, Itermax, P̂ ;
Output: x;
Initialize: xp, η, nIter = 0;
While η ≥ γ and nIter < Itermax do

Solve P4, Obtain x1;
Solve P7 Obtain d1;
Solve P12, Obtain X̂2;
Calculate x2;
While p′ ≤ P̂

Solve P14, Obtain dp′−1;
Calculate gp′−2 with (40);
Solve P17, Obtain X̂p′ ;
Calculate xp′ ;
Update p′ = p′ + 1;

Endwhile

Update nIter = nIter + 1;
Obtain η with (48);

Endwhile

Obtain x = x1.

B. Gaussian Randomization

In this paper, we consider adopting Gaussian randomization

to obtain feasible solutions for P12 and P17, which share a

same problem form. Gaussian randomization is a effective

methods for extracting the solution of the original QCQP prob-

lem from solution of the SDR problem [45]. The procedure is

based on the typical random procedure provided in [45], and

include the problem-dependent design, which is shown below.

Takeing P17 as an example, we start by generating random

vector ξl ∼ N (0, X̂∗
p̃), l = 1, · · · , L, where L is the number

of randomizations. Since the obtained random vectors do not

satisfy the equality constraints of P17, we further construct

the P17-feasible vectors as:

ξ̂l(i) =
ξ(i)

√

(ξTDiξ)
· di, i = 1, 2, · · · , Nt, l = 1, · · · , L

ξ̂l(i+Nt) =
ξ(i+Nt)
√

(ξTDiξ)
· di, i = 1, 2, · · · , Nt, l = 1, · · · , L

ξ̂l(2Nt + 1) = sign {ξ(2Nt + 1)} ,
(49)

Through the above modifications, ξ̂2l (i) + ξ̂2l (i + Nt) = di

and ξ̂2l (2Nt+1) = 1 can be obtained, and the modified vector

used for approximation satisfies the equality constraints. Based

on the above, we choose the modified vector that yields the

best objective as x̂∗
p̃ through

x̂∗
p̃ = arg min

l=1,··· ,L

∑

∀p∈P,P 6=p̃

ξ̂TFpξ̂, (50)

x̃∗
p̃ can then be determined by x̂∗

p̃ can be determine by

x̃∗
p̃ = x̂∗

p̃(2Nt + 1) ·U2x̂
∗
p̃ (51)

where U2 = [I2Nt
,O2Nt

] is a selection matrix.

C. The Low-Complexity Algorithm

While the above iterative algorithm can obtain a near-

optimal solution of P1(P2), the corresponding computational

complexity would be high as the alternating optimization

framework decomposes P1(P2) into (2P̂ − 1)nIter subprob-

lems. Therefore in this subsection, we further propose a low-

complexity algorithm, where we consider only optimizing the

lower-order terms xl, ∀l ∈ P, l ≤ N(N<P̂ ) by substituting

a fixed vector for the higher-order terms xh, ∀h ∈ P, h>N ,

instead of optimizing xp, p ∈ P sequentially. The precoded

signal of the SLP based on CI [37], [38] is adopted for the

fixed vector.

By substitute the higher-order terms xh, ∀h ∈ P, h>N
with the precoded signal vector xSLP−CI in P3, we obtain a

relaxed version of P3, which can be written as (52), where N
represents the number of xl, ∀l ∈ P, l ≤ N to be optimized.

P18 : max
xl

t

s.t.

C1 : hT
k

[

N
∑

l=1

β2l−1diag(|xl|2l−2)+

P̂
∑

h=N+1

β2h−1diag(|xSLP−CI |2h−2)



x1 = λksk, ∀k ∈ K,

C2 : [ℜ(λk)− t] tan θth ≥ |ℑ(λk)|, ∀k ∈ K,

C3 :

∥

∥

∥

∥

∥

[

N
∑

l=1

β2l−1diag(|xl|2l−2)+

P̂
∑

h=N+1

β2h−1diag(|xSLP−CI |2h−2



x1

∥

∥

∥

∥

∥

∥

2

2

≤ p0,

C4 : x1 = x2 = . . . = xN .
(52)
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It can be observed that compared with P3 , P18 omits some

high-order terms that are difficult to handle. When N = 1,

P18 is simplified to a SOCP problem, which can be directly

solved by using standard convex optimization tools or the

IPM without iteration, and when 1<N<P̂ , P18 is nonconvex,

but it can obtain the near optimal solution using the iterative

algorithm provided in the previous subsection by substituting

P̂ with N . The low-complexity algorithm can also be extended

to the QAM-modulated PA-aware SLP by replacing the CI

condition for PSK modulation with that for QAM modulation.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity of

the proposed iterative algorithm. Since both algorithms are

based on optimization, the computational cost is evaluated

based on the worst case complexity via the IPM [45], [46].

Without loss of generality, we focus on the iterative al-

gorithm for PSK modulation, while it is very simple to

extend to QAM modulation, since they have similar problem

formulation.

For the optimization-based iterative algorithm, the complex-

ity is dominated by solving the convex optimization problem

P4, P7 and P14 via the IPM. For P4 and P14, which belong to

the SOCP problem, they have the same problem formulation.

Here, we consider to take P14 as an example and express it

in a standard SOCP form as

P∗
14 : min

z
−cT z

s.t.

C1 : cTk1z+ lk1 = 0, ∀k ∈ K,

C2 : cTk2z ≤ 0, ∀k ∈ K,

C3 : cTk3z ≤ 0, ∀k ∈ K,

C4 : ‖A4z+Qp̃‖2 ≤ √
p0

C5 : ‖A5z− bp5‖2 ≤ √
ǫp̃, ∀p ∈ P, p 6= p̃,

C6 : cTi6z ≤ 0, i = 1, 2, · · · , Nt,

(53)

where we introduce

z =
[

dT
p̃−1, t,ℜ(λk),ℑ(λk)

]T ∈ C
Nt+1+2K , ∀k ∈ K,

c =
[

0T
Nt

, 1,0T
2K

]T ∈ C
Nt+1+2K ,

ck1 =

[

hT
k · β2p̃−1diag[x1]

sk
, 0,−eTk ,−eTk

]

∈ C
Nt+1+2K ,

∀k ∈ K,

lk1 = hT
k ·Qp̃, ∀k ∈ K,

ck2 =

[

0T
Nt

, 1,−eTk ,−
1

tanθth
· eTk

]

∈ C
Nt+1+2K , ∀k ∈ K,

ck3 =

[

0T
Nt

, 1,−eTk ,
1

tanθth
· eTk

]

∈ C
Nt+1+2K , ∀k ∈ K,

A4 =
[

β2p̃−1diag[x1],0Nt×(2K+1)

]

∈ C
Nt×(Nt+1+2K),

A5 =
[

INt
,0Nt×(2K+1)

]

∈ C
Nt×(Nt+1+2K), ∀p ∈ P, p 6= p̃,

bp5 = |xp|2p̃−2 ∈ C
Nt , ∀p ∈ P, p 6= p̃,

ci6 =
[

eTi ,0
T
2K+1

]

∈ C
Nt+1+2K , i = 1, 2, · · · , Nt.

(54)

Based on [46], the complexity of a generic IPM for solving

conic programming consists of two parts: a) the iteration

complexity, which is on the order of
√
kIPM log(1/ǫ), where

kIPM represents the number of cones and ǫ represents the

target accuracy of the solutions; b) per-iterative computation

cost, which dominated by the formation and the factoriza-

tion of the coefficient matrix H, which is used to find the

searching direction. The Cform and Cfact are the order of

the cost of forming H and dominated by the dimensions

of z and all cones. By combining the two parts, it follows

that the complexity of a generic IPM for solving P∗
14 is

on the order of
√
kIPM · (Cform + Cfact) · log(1/ǫ), where

kIPM = Nt + 1 + 2K. The expression of Cform and Cfact
are given by

Cform =(Nt + 2K + 1)(Nt + 2K)+

(Nt + 2K + 1)2(Nt + 2K) + (Nt + 2K + 1)P̂ (N2
t ),

Cfact =(Nt + 1 + 2K)3.
(55)

The overall complexity of P14 is on the order of (56), which

is shown in the bottom of this page.

Following the similar analysis approach, the complexity in

solving P4 can be analyzed. With some inspection, P4 is less

Nt linear cones compared to P14. Therefore, the complexity

of P4 via IPM is on the order of (57), which is shown in the

top of this page.

As for P17, we can obtain the worst-case complexity for

solving the SDR problem via the IPM by referring to [45],

CP14
=O

{

Iter ·
√

Nt + 2K + 1
[

(Nt + 2K + 1)(Nt + 2K) + (Nt + 2K + 1)2(Nt + 2K)+

(Nt + 2K + 1)P̂ (N2
t ) + (Nt + 1 + 2K)3

]

· log(1/ǫ)
}

,
(56)

CP4
=O

{

Iter ·
√

Nt + 2K + 1
[

(Nt + 2K + 1)(2K) + (Nt + 2K + 1)2(2K) + (Nt + 2K + 1)P̂ (N2
t )+

(Nt + 1 + 2K)3
]

· log(1/ǫ)
}

.
(57)
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given by

CP17
= O(max {mSDR, nSDR}4 n1/2

SDRlog(1/ǫ)), (58)

where mSDR is the number of the quadratic constraints and

nSDR represents the dimension of the optimization variable.

Based on the construction of P17, we obtain

mSDR = Nt + 1, nSDR = 2Nt + 1, (59)

which further leads to the expression of CP12
as

CP17
= O

{

(2Nt + 1)9/2log(1/ǫ)
}

, (60)

With the complexity of each optimization problem, we can

obtain the overall complexity of the iterative algorithm based

on the structure of the iterative algorithm, given by

CIter =
{

CP4
+ (P̂ − 1)(CP14

+ CP17
)
}

· Iter, (61)

where Iter is the average number of iterations. In addition, the

complexity of the low-complexity algorithm can be similarly

obtained by replacing ′P̂ ′ with ′N ′ in (61), and is omitted for

brevity.

VI. NUMERICAL SIMULATION

In this section, the numerical results of the proposed

schemes are presented and compared with other conventional

precoding schemes in the presence of PA nonlinearities, using

Monte Carlo simulations. Both PSK and QAM modulation

are considered. In each plot, we assume the total transmit

power available as p0 = 1, the transmit SNR per antenna

as ρ = 1/σ2.We consider to adopt the precoded signal of ZF

precoding as the initial point of xp, ∀p ∈ P
1, and set the value

of ǫp, ∀p ∈ P as follow
{

ǫ1 = αNt

M ,
ǫp = ǫ2p−1, ∀p ∈ P, p 6= 1,

(62)

where α is the scaling factor. To achieve smooth and efficient

convergence, it is always set to 0.8.

The following abbreviations are used throughout this sec-

tion:

1) ‘GR, Iter/LC’: the Gaussian randomization method for

SDR, the iterative algorithm proposed in Section V-A

and the low-complexity algorithm proposed in Section

V-B;

2) ‘R1A, Iter/LC’: the rank-one approximation method for

SDR, the iterative algorithm proposed in Section V-A

and the low-complexity algorithm proposed in Section

V-B;

3) ‘ZF’: traditional ZF precoding with symbol-level

power normalization. The ZF precoding signals are

xZF =
√
p0

fZF
· HH(HHH)−1s, where fZF =

∥

∥HH(HHH)−1s
∥

∥

2
[3];

4) ‘RZF’: traditional regularization zero-forcing precoding

with symbol-level power normalization. The RZF pre-

1The initial point of xp, ∀p ∈ P can be arbitrarily selected as long as
x1 = x2 = · · · = xP is satisfied, and it is verified that this does not change
the final solution of the algorithm when the iteration terminates.

0 20 40 60 80 100

Iterations

0.2

0.4

0.6

0.8

1 GR, Iter

R1A, Iter

GR, LC(N=2)

R1A, LC (N=2)

Fig. 4. Convergence behavior of the proposed algorithm, 8PSK, Nt = K =

8, SNR= 30dB

coded signals are xRZF =
√
p0

fRZF
·HH(HHH+K

σ2 ·I)−1s,

where fRZF =
∥

∥HH(HHH + K
σ2 · I)−1s

∥

∥

2
[3];

5) ‘MRT’: traditional maximum ratio transmission precod-

ing with symbol-level power normalization. The MRT

precoded signals are xMRT =
√
p0

fMRT
· HHs, where

fMRT =
∥

∥HHs
∥

∥

2
[47];

6) ‘CEP-CI’: constant envelope precoding based on CI

using manifold algorithm [18];

7) ‘SLP-CI’: optimization-based CI SLP for non strict

phase rotation based on P5 in [37] and P3 in [38];

8) ‘PA-aware SLP, Iter/LC’: the proposed PA-aware SLP

based on CI, the iterative algorithm proposed in Section

V-A and the low-complexity algorithm proposed in

Section V-B;

Before we present the performance results of the PA-aware

SLP, in Fig.4 we first show the convergence behavior of the

Algorithm 1 by illustrating the number of iterations to achieve

the near-optimality through the GR with that through the R1A

method, where we consider 8PSK modulation, Nt = K = 8,

SNR= 30dB, and set the PAs’ coefficients as β1 = 1.0108 +
0.0858, β3 = 0.0879 − 0.1583, β5 = −1.0992 − 0.8891,

βp = 0 (p > 5) [48]. As can be observed, the GR based

approach is convergent while the R1A based approach is not.

This means that, both the proposed iterative algorithm and the

low-complexity algorithm can obtain a near-optimal solution

by SDR with the GR. In addition, by choosing parameters

γ and ǫp appropriately, the GR method converges within

60 iterations. In subsequent simulation, we employ the GR

method to obtain a feasible solution to SDR problem.

Fig.5 shows the BER performance for the different com-

putational complexity, where we consider the same system

setting as Fig.4. Note that ‘PA-aware SLP’ is solved by

the iterative algorithm proposed in Section V-A when N =
3, (2N − 1 = 5) and solved by the low-complexity algorithm

proposed in Section V-B when N < 3. It is then observed that

when N = 3, the performance of ‘PA-aware SLP’ is consistent

with that when N = 2, (2N−1 = 3). This is because the fifth-
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Fig. 5. Uncoded BER v.s. N , 8PSK, Nt = K = 8, SNR= 30dB
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Fig. 6. Uncoded BER v.s. transmit SNR, 8PSK, Nt = K = 8

order term of the complex coefficient polynomial PA model

used here has negligible impact on the performance of the

communication system. Therefore, for simplicity, we consider

employing the third-order complex coefficient polynomial PA

model at the BS in the subsequent simulation, and assume

that β1 = 1.0108 + 0.0858, β3 = 0.2637 − 0.4749,

βp = 0 (p > 3),which come from fitting the fifth order model

used above.

In Fig.6, we demonstrate the BER performance for different

precoding schemes with 8PSK modulation for the case of

Nt = K = 8, where the BS with nonlinear PAs and ideal

PAs are denoted as solid and dashed lines, respectively. It is

observed that ‘PA-aware SLP, Iter’ with nonlinear PAs in the

BS can achieve almost same performance as that of ‘SLP-

CI’ with ideal PAs in the BS, which indicates that ‘PA-aware

SLP, Iter’ can completely eliminate the impact of nonlinear

distortion of PAs on communication system. Moreover, ‘PA-

aware SLP, LC’ is inferior to ‘PA-aware SLP, Iter’ while

outperforming ‘SLP-CI’ with nonlinear PAs in the BS. Both

0 5 10 15 20 25 30
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100

B
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Solid: Nonlinear PA Dashed: Ideal PA

Fig. 7. Uncoded BER v.s. transmit SNR, 8PSK, Nt = 64, K = 20

of ‘PA-aware SLP, Iter’ and ‘PA-aware SLP, LC’ achieve an

improved performance over ZF precoding, MRT precoding,

‘CEP-CI’, and ‘SLP-CI’ with nonlinear PAs in the BS for

all SNRs, while also outperforming RZF precoding scheme

at high SNR. CEP performs poorly in small-scale MIMO

systems because it cannot handle high residual interference.

For ‘PA-aware SLP, Iter’ at high SNR regime, we observe

that a SNR gain of over 14dB compared to ZF precoding,

over 10dB compared to RZF precoding, over 8dB compared

to ‘SLP-CI’ and near 2dB compared to ‘PA-aware SLP, LC’

under nonlinear PAs architecture.

In Fig.7, we demonstrate the BER performance for different

precoding schemes with 8PSK modulation in large-scale com-

munication system, where Nt = 64, K = 20. As can be ob-

served, with the number of the transmit antennas increasing the

performance gains of the ‘SLP-CI’, ‘PA-aware SLP, Iter’ and

‘PA-aware SLP, LC’ are no longer significant, however, the

performance of ‘CEP-CI’ is significantly improved. Moreover,

‘PA-aware SLP, LC’ achieves exactly the same performance

as ‘PA-aware SLP, Iter’, which indicates that the performance

loss of ‘PA-aware SLP, LC’ can be ignored in large-scale

systems. When BER reaches 10−3, we observe that ‘PA-aware

SLP, Iter’ and ‘PA-aware SLP, LC’ can provide a SNR gain of

about 2dB compared with ZF precoding, RZF precoding and

‘SLP-CI’ and near 4dB compared with ‘CEP-CI’.

We further simulate the BER performance comparison under

16QAM modulation in Fig.8, where K = Nt = 8. It is

observed that our proposed PA-aware SLP still has superi-

ority over the traditional precoding schemes and ‘SLP-CI’. In

addition, ‘PA-aware SLP, Iter’ achieves a better performance

than ‘PA-aware SLP, LC’. Comparing Fig.8 with Fig.6, we

observe that the performance gain of PA-aware SLP and ‘SLP-

CI’ under 16QAM modulation is slightly less than that under

PSK modulation, the loss of the performance gain is due to

only the outer constellation points can exploit CI in QAM

modulation. In the high SNR regime, ‘PA-aware SLP, Iter’

can provide a SNR gain of more than 9dB over ZF precoding,

7dB over RZF precoding, 6dB over ‘SLP-CI’ and 1dB over
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Fig. 9. Uncoded BER v.s. transmit SNR, 16QAM, Nt = 64, K = 20

‘PA-aware SLP, LC’.

Fig.9 shows the BER performance for different precoding

schemes with 16QAM modulation in large-scale communi-

cation system, where Nt = 64, K = 20. Similar to PSK

modulation, we observe that the error-rate performance of ‘PA-

aware SLP, Iter’ and ‘PA-aware SLP, LC’ are exctly the same.

In addition, when BER reaches 10−3 , ‘PA-aware SLP, Iter’

and ‘PA-aware SLP, LC’ can provide a SNR gain of near 2dB

compared with ZF precoding, RZF precoding and ‘SLP-CI’.

In Fig.10, we present the BER performance of different

precoding schemes with respect to the PA nonlinearities by

varying the value of β3. Fig.10 shows that as the absolute

value of β3 becomes larger, the BER performance of the

ZF precoding, RZF precoding and ‘SLP-CI’ increases, which

indicates that the enhancement of nonlinear distortion will

degrade the performance of the precoding schemes designed

under the ideal hardware assumption. In addition, since the

low-complexity algorithm omits the optimization of higher-

order terms of the PA model in the original optimization
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problem, we observe that the BER performance of ‘PA-aware

SLP, LC’ also deteriorates with the increase of PA nonlinearity.

Due to the error-rate performance of ‘CEP-CI’ and MRT

precoding is heavily influenced by other factors, no significant

variation is observed. Meanwhile, the BER of ‘PA-aware

SLP, Iter’ can essentially maintain a constant value when the

absolute value of β3 rises, which shows the superiority of our

proposed iterative algorithm to nonlinear distortion.

In order to demonstrate the potential complexity bene-

fits of the proposed iterative algorithm and low-complexity

algorithm, we evaluate the computational cost of different

precoding schemes with 8PSK modulation in terms of the

execution time per channel realization in Fig.11. It is observed

that ‘PA-aware SLP, Iter’ requires more time to obtain the near

optimal solution because of the larger required subproblems

number than ‘PA-aware SLP, LC’. Moreover, ‘PA-aware SLP,

LC’ exhibits additional over 20dB complexity gain than the

proposed iterative algorithm, i.e., the proposed low-complexity

algorithm is more time-efficient than the proposed iterative
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algorithm, which motivates the use of the PA-aware SLP in

practice.

VII. CONCLUSION

In this paper, we study the interference exploitation SLP for

a downlink MU-MISO communication system with nonlinear

PAs, where both PSK modulation and QAM modulation are

considered. By analyzing the non-convex optimization prob-

lem of PA-aware SLP problem, we first introduce auxiliary

variables to transform the optimization problem into a new

form, then propose an iterative algorithm, which can obtain

a near-optimal solution to the PA-aware SLP by employing

the Gaussian random method to the SDR problem. For the

purpose of addressing the performance-complexity tradeoffs,

we further present a low-complexity algorithm. Numerical

results show that the PA-aware SLP design can well alleviate

the performance loss of non-ideal PAs due to nonlinearity,

and achieves an improved performance over the benchmark

schemes. It is also observed that the performance loss of

the low-complexity algorithm becomes marginal in large-scale

systems.
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