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Abstract—In this work, we consider the problem of distributed
computing of functions of structured sources, focusing on the
classical setting of two correlated sources and one user that seeks
the outcome of the function while benefiting from low-rate side
information provided by a helper node. Focusing on the case
where the sources are jointly distributed according to a very
general mixture model, we here provide an achievable coding
scheme that manages to substantially reduce the communication
cost of distributed computing by exploiting the nature of the
joint distribution of the sources, the side information, as well
as the symmetry enjoyed by the desired functions. Our scheme
— which can readily apply in a variety of real-life scenarios
including learning, combinatorics, and graph neural network
applications — is here shown to provide substantial reductions
in the communication costs, while simultaneously providing
computational savings by reducing the exponential complexity of
joint decoding techniques to a complexity that is merely linear.

I. INTRODUCTION

The past few years have seen a rising need to speed up
computationally-intensive tasks, as well as have witnessed an
ever increasing necessity for new parallel processing tech-
niques that efficiently distribute computations across groups
of servers. This necessary transition to distributed computing
though, has also introduced a variety of challenges that involve
accuracy [1], computing scalability [2], and straggler mitiga-
tion [3]. Key among these challenges comes in the form of the
crippling communication bottleneck of distributed computing,
brought about by the astronomical communication costs often
required for implementing computing in a distributed manner.
This bottleneck is central to our work here.

Following the seminal work in [4] on the communica-
tion complexity of distributed computing, several works have
sought to minimize the associated communication cost, with
some of these works including the recent breakthroughs in
distributed linearly separable computation [5], distributed ma-
trix multiplication [6], and others that extended the seminal
work in [7] to function computation, including [8] and [9],
that consider function computation over networks, as well as
[10] that study functional rate distortion. This same commu-
nication cost was naturally also affected by the nature of the
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computed function. With this in mind, we studied distributed
computation using structured distributions, see e.g., [11].

The above motivate us to explore the joint effect of having
structure in data and in sources, and to explore how this
structure can help us reduce the aforementioned communi-
cation bottleneck of distributed computing. Toward this, we
here consider a partially distributed computation problem with
two sources of jointly distributed data, with one user that
seeks the outcome of a function of the sources, and with
one low-rate helper that mediates the computation of the
function by providing a small amount of side information on
the instantaneous matching of the sources. The sources are
here modeled by a mixture distribution. From the perspective
of Bayesian inference, such models can accurately capture the
behavior of data distributed according to a mixing distribution.

Our aim will be to exploit the structure of the data and
of the desired functions, in order to reduce communication
(as well as computational/decoding) costs. To do that, while
capturing the structure of the partially distributed sources, we
will seek to decompose the joint source distribution into a
convex combination of integral matchings, and we will do so
by exploiting the well-known Birkhoff-von Neumann Theorem
in [12], as well as Sinkhorn’s Theorem in [13]. We will
here focus on the case where the nonmatched distributions
correspond to low-probability events, and the case where the
side information captures this matching behavior.

We next describe generalizations of the Birkhoff-von Neu-
mann statistical multiplexing approaches that have been suc-
cessful in signal processing, wireless and networking appli-
cations, including switching theory, e.g., the study of the
rate region of flows to compute a switch schedule using
a graph-theoretic formulation [14], and best-effort switching
services [15]. Fast converging algorithms for delay-sensitive
applications with sparse switching configurations by leverag-
ing Frank-Wolfe methods were also studied [16]. In [17], the
Birkhoff-von Neumann theorem was used for the analysis of
gossip algorithms. There exist applications in multi-sensor data
in signal processing [18], matrix analysis [19], and stochastic
matrix optimization for power amplifiers [20]. For instance,
in latency-constrained applications, it is possible to precom-
pute an approximated Birkhoff-von Neumann decomposition
offline and then select a permutation matrix at random with
probability proportional to its coefficient [21].

All the above will allow us to propose an achievable coding
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scheme that captures the aforementioned structure in data
and functions as well as exploits the side information, to
reduce the overall communication cost. It is worth noting
that the proposed scheme is different than the existing zero-
error distributed coding schemes [22] whose operating rates
are often limited by the network topology. The proposed
scheme, as we will see, can attain gains of approximately
40% over distributed schemes that do not exploit the above
structure. In addition, the helper-based approach will be shown
to dramatically decrease the decoding complexity of joint
distributions versus minimum-entropy decoding (which is NP-
hard in general) used in Slepian-Wolf source coding [23].

The rest of the paper is structured as follows. In Sect. II,
we give a primer on graph compression for modeling the
computation rate region for two sources jointly distributed
according to a mixture. In Sect. III, we detail the rate region
with a helper that can extract the matching information of
the sources for (i) perfectly matched, and (ii) maximally
matched sources. We conclude in Sect. IV with an example
to numerically evaluate the complexity of our technique.

Notation. For a random variable X with a finite alphabet
X , then PX will denote its probability mass function (PMF).
Similarly, for variables X1 and X2, then PX1,X2

will denote
the joint PMF. Let the entropy function of a PMF p be
h(p) = −

∑
i pi log pi where the logarithm is in base 2,

h(p) be the binary entropy function with parameter p, and
H(X) = E[− logPX(X)] be the Shannon entropy of X drawn
from PX . We denote by Xn

1 = X11, X12, . . . , X1n ∈ Xn
1

the length n sequence of X1 sampled from an n-fold finite
alphabet Xn

1 . We let [N ] = {1, 2, . . . , N}, N ∈ Z+.

II. MODEL, DEFINITIONS, & RELATED EXISTING RESULTS

We consider the problem of computing functions of two
sources of partially distributed data according to a mixture
distribution, and one user that aims to recover the function
outcome. Our model relies on the availability of the side
information that captures the matching information extracted
from the mixture, which we will elaborate later on, just below,
at the source sites, which we leverage via one helper possibly
with a limited rate. The user can recover both sources in an
error-free manner. Our main purpose is, for sources and func-
tions with described structures, to characterize an achievable
rate region for asymptotically lossless computation. Given the
existence of schemes, e.g., [7] and [24], that aim to recover
data or a function of data in a similar manner and have higher
sum rates than our scheme, the two advantages of our model
over these pertinent ones are (i) a tighter rate region, which
is critical in modern applications because of symmetries, and
(ii) complexity of decoding, not only alleviating the distributed
computing systems from performing calculations beyond what
the user seeks to compute but also eliminating the prohibitive
complexity of minimum-entropy decoding.

In what follows, we describe some of the fundamental
ingredients that we will use, first with respect to some basic
principles behind the graph entropy approach that will allow us
to capture some of the interdependencies between the sources

and the computed function, and then we will discuss the
mixture model that captures the joint source distribution.

A. Representation of Source Characteristic Graphs

In this section, we review the fundamental limits of asymp-
totically lossless compression for computation, which can be
realized using the concept of characteristic graphs. Source
one builds a characteristic graph GX1

= (VX1
, EX1

) [8] for
computing f(X1, X2) to distinguish the source outcomes that
yield a different output for any value of X2, and similarly for
source two. Vertices are the sample values, i.e., VX1 = X1, and
the edges are determined as follows. Given two arbitrary ver-
tices (xk1

1 , xk2
1 ) ∈ X 2

1 in GX1
such that k1 ̸= k2, if ∃ a vertex

xl
2 ∈ X2 in GX2

such that PX1,X2
(xk1

1 , xl
2)PX1,X2

(xk2
1 , xl

2) >
0 and the function satisfies f(xk1

1 , xl
2) ̸= f(xk2

1 , xl
2), then

(xk1
1 , xk2

1 ) ∈ EX1 . Otherwise, (xk1
1 , xk2

1 ) /∈ EX1 .
We let cGX1

(X1) be a valid coloring of GX1 , where a valid
coloring is such that any two vertices of GX1

that share an
edge are assigned distinct colors. As one would expect, the
characteristic graphs built by the sources are correlated.

For simultaneous encoding of multiple instances of a source,
source m ∈ [2] similarly builds the n-th power of GXm

, i.e.,
Gn

Xm
. We note that Gn

Xm
= (V n

Xm
, En

Xm
) is an OR graph

such that V n
Xm

= Xn
m and if (xk1

mi, x
k2
mi) ∈ EXm

for some
coordinate i ∈ [n], then (xk1

m ,xk2
m ) ∈ En

Xm
.

The characteristic graph entropy of X1 is given by [8]

HGX1
(X1) = lim

n→∞
min
cGn

X1

1

n
H(cGn

X1
(X1)) ,

where the minimization is over the set of all valid colorings
cGn

X1
(X1) of Gn

X1
. Similarly, conditional graph entropy [25]

and joint graph entropy [9] can be determined.

B. Mixture Distribution in the Discrete Parameter Domain

As we outlined above, the two sources are partially dis-
tributed based on a mixture distribution. Generally, such
mixture distribution results from assuming that a random
variable Y is distributed according to some parametrized
distribution PY |Θ with an unknown parameter Θ with the
latent distribution PΘ [26]. In this context, the unconditional
distribution PY results from marginalizing over PΘ:

PY (y) =
∑
θ

PΘ(θ)PY |Θ(y|θ) =
∑
l∈[L]

ql PY |Θ(y|θl) , (1)

where Θ ∼ (q1, . . . , qL) is distributed over (θ1, . . . , θL).
Our interest in mixture distributions stems from two main

properties. The first has to do with the fact that such mixture
distributions span a broad range of scenarios that are of
particular interest in modern science. Mixture distributions
arise in Bayesian inference where a hypothesis is updated as
more information becomes available. The second aspect relates
to the fact that albeit broad, this mixture structure is endowed
with properties that are easier to analyze and expand. One such
property relates to the renowned Birkhoff’s algorithm.

Birkhoff’s algorithm is a greedy algorithm that receives as
input a bistochastic matrix W = (wij) ∈ RN×N

≥0 (meaning



that each of whose rows and columns sums to 1), and returns
a Birkhoff-von Neumann decomposition of W , instantiated
by the Birkhoff–von Neumann Theorem [12], where W is a
sum of permutation matrices with non-negative weights [27].
The run-time complexity of Birkhoff’s algorithm is O(N2).
This algorithm is useful in our particular case with partially
distributed sources, in providing a decomposition for the
mixture distribution, which we will detail in Sect. III-A.

Birkhoff’s algorithm has applications in fair random as-
signment, alleviates the problem of solving challenging linear
systems with unstructured and indefinite coefficient matrices,
and improves efficiency and scalability of parallel computing
[28]. It also helps us in our goal to derive the rate region in
Sect. III for distributed computing of functions.

III. PROBLEM STATEMENT AND RESULTS

We here consider a pair of partially distributed sources
X1, X2 that accept a joint PMF PX1,X2(x1, x2) > 0 for
all (x1, x2). Our goal is to derive the rate region for the
distributed computation of f(X1, X2) exploiting the fact that
(X1, X2) is distributed according to a mixture PMF (cf. 1).
Such mixture assumption implies that the sources are matched
with a high probability. Equivalently, we can see that for
BX1,X2 = (X1,X2, E) being the bipartite graph representation
of PX1,X2 — with vertex sets X1 and X2 representing the
individual source outcomes, and edge set E whose weights
capture PX1,X2

— then the vertices of BX1,X2
are non-

matched with a vanishing probability. To derive the sought
rate region, we next detail how to represent and then exploit
this structural decomposition of mixture distributions.

A. Representation of Matchings

To now explore and exploit the implications of having
integral matchings, let us consider X2. Let X2 = π(X1,Θ)
such that the permutation index l ∈ [L] leads to a matching
configuration described by the mixture parameter Θ = θl,
as introduced in (1). We let q = (q1, . . . , qL) ∈ RL

>0

where ql = PΘ(θl) such that
∑

l∈[L] ql = 1, for an integer
L ∈ O(N2) [12], and a set of N × N permutation matrices
{Bl, l ∈ [L]}. Let πl : X1 → X1 be a one-to-one and onto
function that permutes the elements of X1 to provide a perfect
matching where every vertex is adjacent to exactly one edge
in BX1,X2

, which simply means that X2 = πl(X1). Given the
perfect integral matching structure in Bl given l ∈ [L] and
the value of X1, say X1 = xk

1 , the source X2 takes the value
πl(x

k
1) and the function f(X1, X2) in takes the form

f(xk
1 , πl(x

k
1)) , ∀k ∈ [N ] , (2)

with probability qlP(X1 = xk
1 |θl). We note that the outcome

of f(X1, X2) is completely determined by Bl and X1.
We next state our lemma, which allows a standard form for

any joint PMF with positive entries.

Lemma 1. Provided that PX1,X2
(x1, x2) > 0 for all (x1, x2),

the joint PMF PX1,X2 can be written as a weighted sum of
generalized permutation matrices:

PX1,X2(x1, x2) =
∑
l∈[L]

ql PX1,X2|Θ(x1, x2|θl) . (3)

Proof. Under our assumption that PX1,X2
(x1, x2) > 0 for

all (x1, x2), then we first employ Sinkhorn’s Theorem [13]
to note that PX1,X2

can be mapped into a doubly stochastic
W = D1PX1,X2D2 for unique diagonal matrices D1 = (d1,ij)
and D2 = (d2,ij) in RN×N

>0 . Then we proceed to employ
the famous Birkhoff–von Neumann Theorem [12] to note that
W =

∑
l∈[L] qlBl, and PX1,X2

is a weighted sum of general-
ized permutation matrices, thus taking the form in (3), where
PX1,X2|Θ(·, ·|θl) = D−1

1 BlD
−1
2 is a generalized permutation

matrix obtained from {Bl, l ∈ [L]} where L ∈ O(N2), and
the matrices D−1

1 and D−1
2 are such that D−1

1 = (d−1
1,ij) and

D−1
2 = (d−1

2,ij) in RN×N
>0 , and the mapping πl : X1 → X1

from X1 to X2 captures PX1,X2|Θ(x1, x2|θl).

B. Identifying Structures of BX1,X2 via Matchings
There exist techniques to exploit the combinatorial struc-

ture of BX1,X2 when it has multiple connected components,
see e.g., the Gács-Körner-Witsenhausen common information
(GKW-CI) [29]. However, if BX1,X2

has only one bipartition,
GKW-CI cannot be extracted, i.e., GKW-CI is zero.

A helper-based scheme can still provide a low-complexity
distributed coding technique even when BX1,X2

has one bi-
partition, despite being sub-optimal in terms of its operating
rate. We are motivated to contemplate a matching-based helper
as maximum matching in graphs can be determined using
polynomial time algorithms [30], which can be exploited to
facilitate the Birkhoff-von Neumann decomposition. When
PX1,X2

is a mixture distribution satisfying (3) that accepts
a matching-based decomposition, a helper can be used to
distinguish the matched and non-matched vertices of BX1,X2

.
In the following, we devise a helper-based model to extract
the matching information from BX1,X2 , and denote this helper
variable by KM. For the described partial distributed setting,
Theorem 1 provides the rate region for computing (2).

Theorem 1. (A matching-based computation sum rate.) For
computing f(X1, X2), where PX1,X2 is given by the mixture
PMF in (3), with a helper that extracts the perfect matching
between the sources, there exists a low-complexity zero-error
encoding and decoding of X1 and Θ that operates at rates

RH ≥ H(KM) = H(Θ), R1 ≥ HGX1
(X1|Θ) ,

yielding the following total rate to compute f(X1, X2):

RM ≥ H(KM) +HGX1
(X1|Θ) , (4)

where HGX1
(X1|Θ) denotes the conditional characteristic

graph entropy of X1 for computing f(X1, X2) given Θ.

Proof. In the partially distributed setting, to be able to com-
pute f(Xn

1 ,X
n
2 ) accurately, the perfect matching variable Θn

where Θi ∼ q for all i ∈ [n] should be made available



to the user (or via side information), which requires an
asymptotic rate RH ≥ H(KM ) = H(Θ). Knowledge of
Θn determines the jointly typical coloring sequence pairs
(cGX1

(Xn
1 ), cGX2

(Xn
2 )) to be compressed asymptotically.

Given that the perfect matching variable Θ ∼ q is known
at the user, such that X2 = π(X1,Θ), it is sufficient for the
user if only one source transmits. Let us assume source one
is selected. Source one builds the characteristic graph GX1

to
compute f(Xn

1 ,X
n
2 ) = f(Xn

1 , π(X
n
1 ,Θ

n)) given Θn. This
requires, following the notion of the conditional graph entropy,
as detailed in [25], an asymptotic rate of HGX1

(X1|Θ).
The rate needed from source one to compute f(X1, X2) is

R1 ≥
∑
l∈[L]

qlH(f(X1, X2) |X2 = πl(X1)) , (5)

enabling the partial distributed computation of f(X1, X2) at
an asymptotic rate upper bounded by H(f(X1, X2) , Θ).

The rate region in Theorem 1 is encompassed by that of
optimal distributed functional compression given in [9]. On
the other hand, when PX1,X2 accepts the decomposition in (3),
a helper-based model to extract the matching information has
advantages over Slepian-Wolf coding. Not only it eliminates
the complexity associated with joint typicality decoding [31]
with exponential complexity, but also provides an almost
lossless compression asymptotically, given by Theorem 1.

We next impose additional structure on the distributed
sources by exploiting the maximal coupling construction.

C. Extracting Matched versus Non-Matched Vertices

In this section, we capture the matchings between the pair of
partially distributed sources X1 and X2, which are maximally
coupled. A maximal coupling between a pair (X1, X2) max-
imizes P(X1 = X2) subject to the marginal PMFs X1 ∼ p1

and X2 ∼ p2. Let C(p1, p2) be the set of all joint PMFs of
X1 ∼ p1 and X2 ∼ p2. Elements M = [mij ] ∈ R|X |×|X|

≥0 of
C(p1, p2) are couplings of p1 and p2:

C(p1, p2) ≜
{[

mij :
∑
j∈|X|

mij = p1i,
∑
i∈|X|

mij = p2j
]}

.

A coupling of (X1, X2) that maximizes P(X1 = X2) is
called a maximal coupling which is formally stated next.

Lemma 2. Maximal coupling (X1, X2) subject to the
marginal distributions X1 ∼ p1 and X2 ∼ p2 satisfies

∥p1 − p2∥TV = inf [P(X1 ̸= X2) : C(p1, p2)] , (6)

where the measure ∥p1−p2∥TV is the total variation distance
between the PMFs of X1 and X2.

From Lemma 2, if the sources X1 and X2 are maximally
matched, the total variation distance between them is mini-
mum.

Maximal coupling of the pair (X1, X2) becomes relevant
when the discrepancy between p1 and p2 is bounded above,
e.g., the PMFs coincide in the first two decimal points.

Fig. 1. Bipartite graph for Example 1 where the function outcomes are
indicated on the edges, the bipartite vertex sets denote the outcomes X1 and
X2, respectively, and each dotted or dashed edge has a probability δ.

Intuitively, this coupling can be exploited to further reduce
the communication cost for distributed computing.

Recall that Theorem 1 derives a schedule-based lower bound
on the sum rate given by Lemma 1, irrespective of the coupling
of (X1, X2). Next, Theorem 2 provides a lower bound on
the sum rate by assuming an additional structural correlation
between X1 and X2 through their maximal coupling.

Theorem 2. (A maximally-coupled computation sum rate.)
Assume that the sources X1 and X2 are maximally coupled.
Then, there exists a low-complexity zero-error encoding and
decoding of f(X1, X2) and Θ with a helper that extracts the
perfect matching between the sources and operates at rates

RH +
∑
m∈[2]

Rm ≥ H(Θ) +
∑
l∈[L]

ql
(
h(δl) + δclH(Tl)

+δl[H(Vl) +H(Wl)]
)
, (7)

where Vl, Wl, and Tl are independent integer-valued variables
with distributions given according to (8) with δ is substituted
with δl = P(πl(X1) ̸= X2) for given l ∈ [L], and δcl = 1− δl.

Proof. To prove this result, we provide a construction for
maximal coupling from [32, Ch. 4.12]. There exists a pair X ′

1

and X ′
2 having the same marginals as X1 and X2 such that

P(X ′
1 = X ′

2) = 1−∥p1−p2∥TV = 1−δ. Let U ∼Bern(1−δ)
and V , W , T be independent integer-valued variables with
respective masses at k = 1, . . . , |X |:

P(T = k) ≜
min[p1k, p2k]

(1− δ)
, (8)

P(V = k) ≜
[p1k − p2k]

+

δ
, P(W = k) ≜

[p2k − p1k]
+

δ
.

Then, the random variables X ′
1 and X ′

2 defined as

X ′
1 ≜ UT + (1− U)V, X ′

2 ≜ UT + (1− U)W (9)

have the required marginals, and are maximally coupled such
that P(X ′

1 = X ′
2) = P(U = 1) = 1− δ. Furthermore, X ′

1 and
X ′

2 are independent when X ′
1 ̸= X ′

2 as their sets are disjoint.
For the proof, we refer the reader to [32, Ch. 4.12].

Let us consider the possible matchings described by Θ ∼ q,
where the matched vertices are invariant up to permutations.



For each l ∈ [L] with probability ql = PΘ(θl), we have

π(X1, θl) = πl(X1) = UlTl + (1− Ul)Vl ,

X2 = UlTl + (1− Ul)Wl , l ∈ [L] , (10)

where Ul ∼Bern(1− δl), and Vl, Wl, and Tl are independent
integer-valued variables with respective masses at k ∈ [|X |]
according to (8) where δ being replaced by δl.

A maximal coupling of X1 and X2 results in

P(X2 = π(X1,Θ)) =
∑
l∈[L]

qlP(Ul = 1) =
∑
l∈[L]

ql · δcl ,

where δcl = 1− δl. The parts corresponding to Ul = 1 versus
Ul = 0 denote the matched and the non-matched components,
respectively. This yields the sum rate needed from the helper
and both sources to compute f(X1, X2), as given in (7).

To contrast our model with the state-of-the-art, we next
consider an example. Due to limited space, we deferred several
examples to the extended version of the draft [33].

IV. EXAMPLE WITH STRUCTURED SOURCES

We next study an example where a helper leverages the
structure of BX1,X2

, and provides the necessary rate to distin-
guish the matching information, KM , in BX1,X2 . Extracting
this information alleviates the complexity of distributed com-
puting provided that the non-matched distributions correspond
to low-probability events. Given KM , one source (or both)
needs to send a refinement to identify the function outcome.

In the following, we denote by F the table of function
outcomes, where the coordinates match the coordinates of
PX1,X2

with entries ordered in an increasing fashion.

Example 1. Consider the probability matrix and the table of
function outcomes given as follows:

PX1,X2
=

1

3

 0 1− δ δ
1− δ 0 δ
δ δ 1− 2δ

 , F =

X 1 4
1 X 3
4 3 2

 ,

where δ ∈ (0, 0.5). The bipartite graph BX1,X2
is shown in

Fig. 1 where the vertices are listed in the presented order.
Fully distributed coding. The entropy of the func-

tion for given PX1,X2
and F is H(f(X1, X2)) =

h
(
2−2δ

3 , 1−2δ
3 , 2δ

3 , 2δ
3

)
. A trivial rate upper bound is

HGX1
(X1) +HGX2

(X2) = 2 log 3. The sum rate required to
compute the function in the case of no helper is HGX1

(X1)+
HGX2

(X2|X1) = log(3) + 2
3h(δ) +

1
3h(δ, δ, 1− 2δ).

Partially distributed coding via extracting matchings.
The helper decomposes BX1,X2

into a perfect matching and
a non-matched graph. More specifically, PX1,X2

can be de-
scribed by the following mixture distribution:

PX1,X2
= q1

 0 1−δ
3−4δ 0

1−δ
3−4δ 0 0

0 0 1−2δ
3−4δ

+ q2

0 0 1
4

0 0 1
4

1
4

1
4 0

 ,

where δ ∈ (0, 0.5), the first matrix describes a perfect match-
ing, denoted by KM = 0 with probability q1 = 1 − 4δ

3 , and

the second matrix describes a low-probability event, denoted
by KM = 1 with q2 = 4δ

3 . Hence, the rate required from the
helper to distinguish between these two is H(KM) = h (q1).
Given KM = 0, only 1 source needs to transmit, which
requires a rate of h

(
2−2δ
3−4δ

)
to determine the function outcome.

Given KM = 1, source 1, X1, needs 2 colors for u1 and u2

to distinguish the outcomes 4 and 3 each with a probability
1
4 , and u3, which has a probability 1

2 , does not need to
be distinguished from {u1, u2} (no shared edges between
{u1, u2} and u3). Similarly for X2. Hence, given KM = 1,
each source is required to send at an asymptotic rate of h

(
3
4

)
bits per use. Hence, the sum rate required to compute F with
a helper that exploits the matching information of BX1,X2

is

RM ≥ H(KM) + P(KM = 0)HGX1
(X1|KM = 0)

+ P(KM = 1)(HGX1
(X1|KM = 1) + (HGX2

(X2|KM = 1))

= h (q1) + q1h
(1− 2δ

3− 4δ

)
+ q2

(
h

(
3

4

)
+ h

(
3

4

))
.

From above, our matching-based approach has the best
approximation for small δ, where the gain of our model over
the fully distributed coding setting that exploits the structure
of the function but not the source is %42 and the loss versus
the fundamental limit H(f(X1, X2)) is at most %26.
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