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Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/iCERCA)

Parc Mediterrani de la Tecnologia (PMT), Av. Carl Friedrich Gauss 7, Building B4
08860 Castelldefels, Spain

{adriano.pastore, carles.anton}@cttc.es

Abstract—End-to-end design of communication systems using
deep autoencoders (AEs) is gaining attention due to its flexibility
and excellent performance. Besides single-user transmission,
AE-based design is recently explored in multi-user setup, e.g.,
for designing constellations for non-orthogonal multiple access
(NOMA). In this paper, we further advance the design of AE-
based downlink NOMA by introducing weighted loss function
in the AE training. By changing the weight coefficients, one can
flexibly tune the constellation design to balance error probability
of different users, without relying on explicit information about
their channel quality. Combined with the SICNet decoder, we
demonstrate a significant improvement in achievable levels and
flexible control of error probability of different users using the
proposed weighted AE-based framework.

Index Terms—Deep autoencoders, Non-orthogonal multiple
access, Successive interference cancellation

I. INTRODUCTION

Improving the resource usage efficiency of 5G and beyond-
5G wireless systems is essential to accommodate increasing
user requirements. Non-orthogonal multiple access (NOMA)
is a recent addition to the wireless signal processing toolset
that promises further advances in achieving improved spectrum
usage under additional benefits of reduced latency, increased
throughput, higher connection density and improved fairness
[1], [2]. The main idea behind NOMA is that multiple users
can be served by the same resources if appropriate joint signal
encoding (e.g., using superposition encoding principle) and
efficient signal decoding (e.g., using successive interference
cancellation) is applied [3], [4].

Recent trends see shifting the design of encoding and
decoding procedures from conventional to machine learning
(ML)-based methods. The trend is initiated in the domain
of point-to-point communication systems [5], [6], but has
since expanded to multi-user NOMA setup [7]–[10]. In this
paper, we follow this trend, and use a deep autoencoder (AE)-
based approach to design encoding and decoding solution
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for downlink NOMA. Building upon the work in [8], we
apply: 1) a weighted loss function to control error probability
balance across different users, 2) SICNet architecture [7] to
enhance deep AE-based decoding capability. Using the pro-
posed weighted AE approach, we are able to obtain significant
improvement and flexibility in the error rate performance, as
evidenced by simulation experiments.

The paper is organised as follows. In Sec. II, we provide
background on generic NOMA system, and recent ML-based
methods we use in our work. In Sec. III, we represent NOMA
system as end-to-end AE-based system and introduce our
weighted AE approach combined with SICNet. Performance
evaluation and comparison with the baseline AE-based NOMA
is presented in Sec. IV. The paper is concluded in Sec. V.

II. BACKGROUND AND SYSTEM MODEL

A. Downlink NOMA Transmission

We consider a problem of downlink NOMA transmission
of L (different) messages from a base station (BS) to L users.
The BS jointly encodes user messages into a signal x and
transmits it over n channel uses. We assume a user message
sℓ ∈ Fkℓ

2 , ℓ ∈ {1, 2, . . . , L} is a binary (information) sequence
of length kℓ bits.

Encoding process for the ℓth user can be described as
fℓ : Fkℓ

2 → Rn. In other words, the ℓ-th user maps its
information sequence sℓ into a signal qℓ obtained as qℓ =
fℓ(sℓ),qℓ ∈ Rn, ℓ ∈ {1, 2, . . . , L}. Based on the L signals
(q1,q2, . . . ,qL), the BS generates the transmitted message
x of length n (x ∈ Rn), usually by exploiting generic
superposition coding function F (·):

x = F (f1(s1), . . . , fL(sL)) = F (q1, . . . ,qL), (1)

where in the case of conventional superposition coding the
function F (·) represents a weighted linear combination [4]. At
the output of the encoder, x obeys an average power constraint,
for which, 1

Mc

∑i=Mc

i=1 ∥xi∥22 = n, where Mc = 2k1+k2+...+kL .
Each of the L users has distinct channel conditions, which

transforms input message x ∈ Rn into L output sequences
yℓ ∈ Rn, ℓ ∈ {1, 2, . . . , L} following the probabilistic channel
model p(yℓ|x). In this paper, we consider a set of independent
additive white Gaussian noise (AWGN) channels between
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the BS and each of the L users characterised by the set of
noise variances {σ2

ℓ}ℓ=1,...,L [11]. This model is suitable for
downlink NOMA in OFDM-based systems, and it can be
extended to a set of independent block-fading channels [8].

At the receiver side, an estimated information sequence for
the ℓth user is obtained via the function gℓ : Rn → ŝℓ, i.e.,
the decoding process for each user can be defined as ŝℓ =
gℓ(yℓ), ℓ ∈ {1, 2, . . . , L}.

The goal is to design a combination of encoders
{{fℓ}ℓ=1,...,L, F} and decoders {gℓ}ℓ=1,...,L that will opti-
mally balance (in a Pareto optimal sense) the set of message
error probabilities {Peℓ}ℓ=1,...,L:

Peℓ =
1

2kℓ

∑
sℓ∈Fkℓ

2

P{ŝℓ ̸= sℓ|sℓ} (2)

across the set of L receivers.

B. Power–Domain Downlink NOMA

In the conventional downlink NOMA scheme, the function
F (·) defined in Eq. 1 is a weighted linear combination of user
signals obtained by allocating different power coefficients as
the weights of the linear combination [2], [3]:

x = F (q1, . . . ,qL) =

ℓ=L∑
ℓ=1

√
pℓqℓ, (3)

where pℓ represents power associated with user ℓ. Without loss
of generality, we assume that the power is allocated to users
in ascending order p1 < p2 < p3 < . . . < pL [1]. From the
receiver perspective, the ℓth user observes:

yℓ = hℓx+ z = hℓ

ℓ=L∑
ℓ=1

√
pℓqℓ + z (4)

where hℓ represents complex channel coefficient between BS
and user ℓ, while additive white Gaussian noise (AWGN) with
variance σ2

ℓ is denoted as z. For simplicity and without loss
of generality, we suppose that hℓ = 1, ℓ ∈ {1, 2, . . . , L}, i.e.,
we focus on the AWGN channel (Section II-A).

A combination of superposition coding at the BS and
successive interference cancellation (SIC) decoding at the
receiver is commonly used in downlink NOMA [1]. SIC
exploits different powers allocated to different users at the
transmitter side. The user with the power coefficient pL (the
strongest power coefficient) will be decoded first (treating
other users signals as noise) and subtracted from x. This
procedure is successively repeated for the remaining users
until all user messages are decoded [3], [4]. Note that the SIC
performance is dependent on a perfect knowledge of channel
state information (CSI) and power allocation coefficients, and
may degrade if imperfect CSI is used [12].

Fig. 1. Communication system represented as a deep autoencoder: a)
Conventional system - Blue blocks [5] b) NOMA downlink system with
SICNet [7] - Red blocks; Black blocks are used by both a) and b)

C. SICNet

In order to overcome the above-mentioned problem of the
conventional SIC receiver, the authors in [7] proposed a deep
neural network (DNN)-based decoding algorithm, entitled
SICNet, that incorporates DNNs to recover user messages.
SICNet preserves original SIC decoder structure and algorith-
mic flow, however, each block is replaced with a DNN that
performs classification task [7]. Output of each DNN can be
used as a soft estimate (by using softmax activation function)
and concatenated with the input of the subsequent DNN. In
such a way, the input to the SICNet of ℓth user is its received
signal yℓ concatenated with soft estimates of users ℓ + 1 to
L. This approach avoids the explicit need for prior CSI and
power allocation knowledge [7].

D. Autoencoder–Based Communication Systems

The conventional point-to-point communication system with
a transmitter and a receiver has been redesigned from the deep
learning perspective in the form of an end-to-end autoencoder
(AE) [5], as illustrated in Fig. 1a (blue blocks).

An input message m, which can be represented as a
sequence of k bits s = (s1, s2, . . . , sk) (where k = log2 M ), is
encoded as a one-hot vector u = (u1, u2, . . . , uM) ∈ {0, 1}M .
The transmitter, described by fAE : m → x, is represented as
a feed-forward neural network with H hidden layers, followed
by a bottleneck layer of width n. At the output of transmitter,
a batch normalization layer ensures that the average power
constraint on x are met (Section II-A).

The AWGN channel is constructed as an additive noise layer
with output y = x+z (as it is shown in Fig. 1, blue receiver),
where z contains n independent and identically distributed
samples of a Gaussian random variable with zero mean and
variance σ2.

The receiver, described as gAE : y → m̂, is implemented as
a feed-forward neural network with H hidden layers and soft-
max activation function at its output, b = (b1, b2, . . . , bM) ∈



(0, 1)M , ∥b∥1 = 1. All other hyperparameters are the same
as in the AE transmitter part. The receiver takes the channel
output y as its input and produces a message estimate m̂ as
m̂ = argmaxi{bi}.

Except the output layer of the transmitter and receiver that
have linear and softmax activation function, respectively, all
other layers are activated using rectified linear units (ReLU).

The presented AE is trained in an end-to-end manner to
minimize the message error probability Pe (Eq. 2), by using
stochastic gradient descent with Adam optimizer [13]. In
other words, fAE and gAE are jointly optimized. In order to
optimize Pe (and parameters of the AE), the minimization
of categorical–cross entropy between u and b is used as a
surrogate for the message error probability [5]:

ℓ(u,b) = −
M∑
i=1

ui log bi, (5)

III. AUTOENCODER–BASED DOWNLINK (DL) NOMA

In this section, we present a flexible and efficient way to
learn encoding and decoding strategy for NOMA downlink
transmission. Conventional NOMA downlink communication
system with SIC decoding, described in Sections II-A and II-B,
can be implemented in a DNN fashion as an extension of
the end-to-end AE-based scheme presented in Section II-D,
as illustrated in Fig. 1b (red blocks) [8].

Starting from the superposition coding at the transmitter
side, a composition of the function F (·) and single-user
encoding functions {fℓ}ℓ=1,2,...,L (Eq. 1), is replaced with a
single learning process. More precisely, an encoder is jointly
optimized with the set of L decoders using an end-to-end AE-
based approach, i.e., the function pairs (fAE, {gAEℓ

}ℓ=1,2,...,L)
are obtained using an end-to-end training procedure. Individual
users messages sℓ ∈ Fkℓ

2 , ℓ ∈ {1, 2, . . . , L}, are represented as
a message index from a set Mℓ, |Mℓ| = Mℓ = 2kℓ , and one-
hot encoded, where uℓ denotes one-hot encoding form of the
ℓth user message sℓ, and U = {u1,u2, . . . ,uL}. AE input
message m is defined as a concatenation of individual user
messages in their bit representations, i.e., m = [s1; s2; . . . ; sL]
(Fig. 1b) [8]. One-hot encoding of the AE message m maps
kC = k1 + k2 + . . . + kL bits into a one-hot encoding
uC = (u1, u2, . . . , uMC

) ∈ {0, 1}MC where MC = 2kC . The
rest of the transmitter is the same as in Section II-D (Fig. 1,
black blocks).

The transmitted message x = fAE(m) is passed through L
different AWGN channels whose outputs y1,y2, . . . ,yL are
available at the respective receivers. Without loss of generality,
we suppose that each of the L channels has different signal-
to-noise ratio (SNR) and SNR1 > SNR2 > . . . > SNRL.

At the receiver side, each of the L users estimates the
corresponding message through the feed-forward neural net-
work, described in Section II-D (there are in total L DNN
receivers, one per each user). In order to implement SICNet
[7] (Section II-C), soft output of each preceding users’ DNN
is connected to the input of the next user (Fig. 1-red block

receiver), where the decoding process starts from the user with
the most degraded channel (yL). The softmax output of all L
users is collected into B = {b1,b2, . . . ,bL}, where each bℓ

is of length Mℓ = 2kℓ , ℓ ∈ {1, 2, . . . , L}.
The goal is to learn a pair (fAE, {gAEℓ

}ℓ=1,2,...,L) that
minimizes the individual user message error probabilities
{Peℓ}ℓ=1,2,...,L (Eq. 2). As in Section II-D, minimization of
Peℓ is replaced with the loss function based on the categorical-
cross entropy, defined for the ℓth user as:

ℓℓ(uℓ,bℓ) = −
Mℓ∑
i=1

uℓi log bℓi , (6)

The total loss function for the AE-based downlink NOMA
is the sum of the individual users’ loss contributions:

L(U,B) =

L∑
j=1

ℓj(uj ,bj) (7)

A. Weighted Autoencoder-Based Design of Downlink NOMA

In order to train AE-based downlink NOMA communication
system described in the previous section, the SNR difference
∆SNR between subsequent receivers is needed as one of the
hyperparameters of the training process. As channel conditions
may change during the testing phase, this may lead to a
potential performance degradation.

In our previous work [14], we explored a novel class of
autoencoders that utilise a compound loss function in the
context of single-user unequal error protection (UEP) coding.
Such AE method is able to flexibly balance between error
probabilities among the set of messages (message-wise UEP)
or between specific subblocks of different importance classes
within a single message (bit-wise UEP). Inspired with this
approach, a similar weighted sum approach can be used in the
AE-based downlink NOMA by introducing weights associated
to L different users (Eq. 7), leading to a weighted total loss
function:

L(U,B) =

L∑
j=1

λjℓj(uj ,bj), (8)

where λj represents a weight factor associated to the user j,∑L
j=1 λj = 1, and λj ≥ 0.
Loss function defined in Eq. 7 is a special case of the

weighted sum presented in Eq. 8, where λℓ = 1
L , ℓ ∈

{1, 2, . . . , L}. By incorporating the above mentioned com-
pound loss function (Eq. 8), all users can be trained assuming
they experience the same SNR (thus disregarding ∆SNR
as a hyperparameter) while adjusting the desirable users’
performance using λ = {λ1, . . . , λL}. Although a simple
alteration of loss function, the proposed approach introduces
a single “knob” (parameter λ) one can tune to design a
family of NOMA constellations that progressively balance the
users’ error probabilities. The influence of λ on the system
performance is elaborated in the next section.
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Fig. 2. Different architectures (Pe1 , Pe2 ) versus SNR performance com-
parison for λ = {0.5, 0.55, 0.6} in NOMA downlink transmission with two
users (k1 = 2, k2 = 2, n = 2, ∆SNR = 9 dB).

IV. PERFORMANCE EVALUATION OF THE WEIGHTED
AE–BASED DOWNLINK NOMA

A. Training Procedure

For simplicity, and without loss of generality, the number
of users in all conducted experiments is restricted to two
(λ = {λ1, λ2} = {λ, 1 − λ}), and k1 = k2 = k (number
of messages is Mc = 2k1+k2 = 22k). Apart from the
introduction of the suitable loss function (Eq. 7 and 8), the
same training procedure as presented in [5] is preserved, i.e.,
AE-based NOMA downlink system is optimized by using
stohastic gradient descent with Adam optimizer [13] (learning
rate α = 0.0009, β1 = 0.9, β2 = 0.999). Regarding the
number of bits associated to the each user, for both encoder
and each of two decoders, single fully–connected hidden layer
is considered (H = 1) with Mc neurons. Batch size is set
to 3000. When Eq. 7 is used as a loss function, training is
performed at ∆SNR = SNR1 − SNR2 = 9 dB, where
SNR1 = 15 dB. With introduction of λ (Eq. 8) both decoders
are trained on the same SNR1 = SNR2 = 6 dB. During the
testing phase, ∆SNR is preserved at 9 dB for all conducted
experiments. Training and test data sets contain 105 and
2 × 106 messages sampled at random from {1, 2, . . . ,Mc},
respectively.

B. Comparison with the State-of-the-Art

1) Case 1 - (k, n) = (2, 2): In order to examine per-
formances of the proposed approach, the two-user scenario
and corresponding architecture form [8] is recreated. More
precisely, BS jointly encodes k1 = k2 = k = 2 bits per user
(Mc = 22k = 16) and sends it over n = 2 channel uses.

In Fig. 2 we compare performances obtained with the
proposed approaches and architecture replicated from [8].
Channel conditions for the second user can be obtained as
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Fig. 3. λ influence on (Pe1 , Pe2 ) in two users downlink NOMA transmission
(k1 = 2, k2 = 2, n = 2, SNR1 = 12 dB, ∆SNR = 9 dB).

SNR2 = SNR1−∆SNR, where SNR1 is presented on the
Fig. 2 x-axis. Significant performance improvement in terms
of error performance of both users can be observed with the
introduction of the SICNet [7], compared to the baseline results
in [8]. Moreover, use of compound loss function (Eq. 8) by
incorporating non-uniform users weights in the loss function
(parameter λ) provides for a flexible system design, where a
desirable trade-off between the two users’ performance can be
easily controlled through manipulation of λ value.

Influence of different λ values, introduced during the train-
ing process, on system performances is illustrated in Fig. 3,
where we plot (Pe1 , Pe2 ) against λ = {0, 0.1, 0.2, . . . , 0.9, 1}.
As the value of λ increases, the loss function (Eq. 8) begins to
favour the first user. This is reflected in a graceful improvement
of Pe1 on Fig. 3, simultaneously with the graceful degradation
of Pe2 . By tuning λ, the system can be adapted to a different
requirements and variable channel conditions (∆SNR). The
testing phase is done on SNR1 = 12 dB and ∆SNR = 9
dB, i.e., although the second user is tested on SNR2 = 3 dB
and its slope is gentler, it still outperforms the first user for λ
values below 0.3 (Fig. 3).

Learned messages x are two-dimensional real values (x ∈
R2), thus they can be visualized as symbols (or points) in 2D
”constellation” (Fig. 4). Fig. 4 illustrates the influence of λ on
learned constellation. We observe that the distance between
messages associated to user 1 increases with increasing λ (loss
function favors the first user), while the opposite happens to
the second user (shape of the constellation transforms from
the square (λ = 0.5) to a rectangle (λ = 0.6)).

2) Case 2 - (k, n) = (4, 4): Most of the existing works
targeting AE-based downlink NOMA restrict their attention to
the case of two-bit user messages (k = 2) [8], [15]. Exploring
how learned NOMA will behave in higher dimensions, we
further expand the number of bits per user to k1 = k2 = k = 4
(Mc = 22k = 256) and the number of channel uses to n = 4.
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Fig. 4. λ influence on learned constellations for two users NOMA downlink
transmission (k1 = 2, k2 = 2, n = 2, Mc = 2k1+k2 = 16).

Although the number of messages grows exponentially, the
proposed approach significantly outperforms an architecture
from [8] (Fig. 5). More precisely, from Fig. 5 we observe
that SICNet receiver noticeably improves the performance of
the second user (when ∆SNR is known), while the first user
performance remains comparable to [8]. On the other hand,
with the introduction of the compound loss function (λ, Eq. 8),
the proposed approach significantly outperforms [8] in terms
of the first user performance (Fig. 5, green and cyan solid
lines), with the price of slight performance degradation for
the second user.

We note that moving to higher constellation dimensions
(i.e., from n = 2 to n = 4), although incurs higher complexity
(Mc = 256), leads to a considerable improvement of error
performance of both users. It also leads to faster saturation
of the second user performance with the increase of λ (i.e.,
already for λ > 0.55 on Fig. 5).

V. CONCLUSION

In this paper, we presented a flexible and efficient weighted
AE-based method for design of downlink NOMA constella-
tions. The method demonstrates promising performance under
simplicity in training and tuning to the desired error probability
balance between users. In the future work, we plan explore a
combination of outer low-density parity-check codes (LDPC)
with inner weighted AE-based dowlink NOMA constellations.
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