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Abstract—This paper considers a radio-frequency (RF)-based
simultaneous localization and source-seeking (SLASS) problem
in multi-robot systems, where multiple robots jointly localize
themselves and an RF source using distance-only measurements
extracted from RF signals and then control themselves to ap-
proach the source. We design a Rao-Blackwellized particle filter-
based algorithm to realize the joint localization of the robots and
the source. We also devise an information-theoretic control policy
for the robots to approach the source. In our control policy, we
maximize the predicted mutual information between the source
position and the distance measurements, conditioned on the robot
positions, to incorporate the robot localization uncertainties. A
projected gradient ascent method is adopted to solve the mutual
information maximization problem. Simulation results show that
the proposed SLASS framework outperforms two benchmarks
in terms of the root mean square error (RMSE) of the estimated
source position and the decline of the distances between the
robots and the source, indicating more effective approaching of
the robots to the source.

Index Terms—source seeking, cooperative localization, Rao-
Blackwellized particle filter, mutual information, multi-robot
systems

I. INTRODUCTION

Recently, robot systems have been increasingly popular and
used to perform a large number of tasks in various scenarios
[1]–[3]. Compared to a single robot, multi-robot systems
are more powerful because the robots can simultaneously
make observations of the environment, share the gathered
information with each other, and complete the tasks in a
more efficient manner. In addition, the inter-robot cooperation
and observation diversity make the multi-robot system more
robust to network failure. Therefore, multi-robot systems are
particularly suitable for complex tasks [4].

Radio-frequency (RF) source seeking is an important ap-
plication of multi-robot systems [5]–[8]. More specifically, a
team of robots can be used to cooperatively seek an RF source
in the areas inaccessible to humans, such as an extraterrestrial
surface. The completion of such tasks consists of two steps: (1)
determine the source position, and (2) design an appropriate
control policy for the robots to approach the source. Several
source-seeking policies have been proposed in the literature.
In [5], a particle swarm optimization (PSO) technique was
applied to design the control policy, and the performance of
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several variations of PSO was compared. In [6], the authors
used the particle filter to estimate the source position and de-
signed an information-theoretic control policy by maximizing
the mutual information between the source position and the
measurements in the next control cycle. In [7], a stochastic
gradient ascent method was developed to approximate the
exact gradient of the mutual information. A networked drone-
based RF source-seeking method was investigated in [8],
and the results showed that the localization accuracy can
be improved if the drones spread out. However, spreading
will result in additional flying distance, which is not favored
from the perspective of source approaching. To handle such a
tradeoff, the authors proposed a unified objective function in
their formulated problem to balance the localization accuracy
and approaching efficiency, offering a flexible strategy for
flight planning.

In all the source-seeking schemes mentioned above, the
positions of the robots are assumed to be known, which are
obtained using other localization means, such as the global
navigation and satellite system (GNSS) or laser scanners. As
such, only the position of the source needs to be estimated in
each control cycle. However, these localization means may
not work in some tasks. For example, laser scanners be-
come less efficient in feature-sparse environments, and GNSS
is no longer available for the tasks of space exploration.
In these tasks, RF-based localization approaches represent
a promising solution to realize robot self-localization [9]–
[11], where robots can exchange RF signals to cooperatively
localize themselves. With this in mind, it is natural to come
up with a trivial two-stage strategy for these tasks: the
robots first perform RF-based cooperative localization and
then execute one of the existing source-seeking algorithms
that treat the estimated robot positions as the known ones to
further localize the source and obtain the control inputs for
all robots. However, one can quickly realize that such a trivial
solution overlooks the mutual benefits between the robot self-
localization and the source localization that are both based
on RF signals. It is apparent that a better estimation of the
robot positions will lead to a better estimation of the source
position. Conversely, a better estimation of the source position
will also benefit the estimation of the robot positions because
the source can serve as a fixed reference node for the robots. In
this context, we are motivated to develop a new simultaneous
localization and source-seeking (SLASS) algorithm to harness
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the mutual benefits between the robot localization and the
source localization. To our best knowledge, such a problem
has not been thoroughly investigated in the open literature.

In this paper, we consider a SLASS problem with the
joint localization of the source and robots using distance-
only measurements, which can be extracted from the time-
of-arrival (ToA) parameters of RF signals. In the considered
problem, the robot positions are no longer known a priori
due to the control error and localization uncertainty, making
the problem more challenging than existing ones. In partic-
ular, the localization of both robots and source needs to be
performed in a probabilistic manner, the objective of which
is to compute the posterior distributions of the robot and
source positions. Based on the obtained posterior distributions,
we then adopt a new conditional mutual information as the
objective function to design the control policy. We provide
a centralized solution to the considered SLASS problem by
developing new algorithms for both cooperative localization
and information-theoretic control. For the localization part, we
apply a Rao-Blackwellized particle filter [12] to approximate
the continuous distributions as discrete ones and compute the
marginalized posterior probabilities of the involved unknown
variables. For the control part, we use a projected gradient
ascent method to navigate the robots to the directions with the
largest mutual information. Simulation results are provided to
demonstrate the merits of the proposed algorithms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system consisting of K robots and a remote
and stationary RF source. The position of robot k at the n-
th control cycle is denoted by xn,k = [xn,k, yn,k]

T , and the
source is located at xn,0 = [x0, y0]

T with n = 1, · · · , N . The
task of the robots is to control themselves to approach the
source. The positions of the robots and the source are both
unknown, and thus we will use a joint probabilistic model to
simultaneously estimate their positions. Assume the robots can
receive reference RF signals to estimate the distances between
each other and between the source and themselves. In this
paper, we use the following distance measurement model [6]

p(zn,k1,k2 |xn,k1 ,xn,k2)

= N (zn,k1,k2 ;α0 + rn,k1,k2α, rn,k1,k2σ
2
z),

(1)

where zn,k1,k2 represents the distance measurement obtained
from the RF signal received by robot k2 (k2 = 1, · · · ,K)
and transmitted from robot k1 (k1 = 1, · · · ,K) or the source
(k1 = 0). N (z;µ, σ2) is the probability density function of
a Gaussian random variable z with mean µ and variance σ2.
rn,k1,k2

= ∥xn,k1
− xn,k2

∥2 is the distance between node
k1 and node k2. α0, α, and σ2

z are parameters related to the
physical environment.1

1These parameters can be estimated using some labeled data [6].

Based on (1), the joint likelihood function at the n-th control
cycle can be written as

p(zn|xn) =

K∏
k=1

p(zn,0,k|xn,0,xn,k)

×
∏

1≤k1<k2≤K

p(zn,k1,k2 |xn,k1 ,xn,k2),

(2)

where zn = [zn,0,1, · · · , zn,0,K , zn,1,2, · · · , zn,K−1,K ]T is the
collection of all the measurements between any two nodes,
and xn = [xT

n,0,x
T
n,1, · · · ,xT

n,K ]T is the collection of all the
node positions. In the above equation, we assume that the
measurements are mutually independent given the positions
of the source and the robots.

In each control cycle, the robots need to generate control
inputs to decide where they should move in the next step based
on the distance measurements. The relationship of the robot
positions in two consecutive control cycles is described as

xn,k = xn−1,k + cn−1,k + nn−1,k, (3)

where cn−1,k is the control input of robot k at the (n − 1)-
th control cycle, and nn−1,k is the control error following a
Gaussian distribution with zero mean and variance σ2

c . Hence,
the transition distribution of the robot position is given by

p(xn,k|xn−1,k) = N (xn,k;xn−1,k + cn−1,k, σ
2
cI), (4)

where I is an identity matrix. In addition, since the source
remains stationary during the whole seeking process, its tran-
sition distribution of the position can be written as

p(xn,0|xn−1,0) = δ(xn,0 − xn−1,0), (5)

where δ(·) is a Dirac impulse function.
At the initialization stage, p(x1,0) ≜ p(x1,0|x0,0) is as-

signed to be a uniform distribution in the explored area, and
p(x1,k) ≜ p(x1,k|x0,k) = δ(x1,k − x̄1,k) for k = 1, · · · ,K,
where x̄1,k is the true starting position of robot k. It should
be noted that although the robot positions are assumed to be
known at n = 1, it is inadequate to use the initial positions and
the control inputs to infer the robot positions when n ≥ 2. This
is because the control error nn,k can accumulate over time and
the estimates of robot positions will become highly inaccurate
if the error is simply ignored.

Combining the likelihood function in (2) and the transition
prior distributions in (4) and (5), the joint posterior distribution
of the source and robot positions can be computed as

p(x1:N |z1:N ) ∝ p(x1:N )p(z1:N |x1:N )

∝
N∏

n=1

p(xn|xn−1)p(zn|xn),
(6)

where x1:N = [xT
1 , · · · ,xT

N ]T , z1:N = [zT1 , · · · , zTN ]T ,
p(xn|xn−1) = p(xn,0|xn−1,0)

∏K
k=1 p(xn,k|xn−1,k), and

p(zn|xn) is given in (2). The objective of the SLASS algo-
rithm is to obtain an estimate of the source and robot positions
from the posterior distribution, and accordingly design a policy
to control the robots to move to their next positions.



III. PROPOSED SLASS ALGORITHM

In this section, we propose a centralized SLASS algorithm
that simultaneously incorporates the position uncertainty of the
source and the robots. First, a Rao-Blackwellized particle filter
is used to jointly estimate the posterior probabilities of the
source and robot positions. Based on the estimated posterior
probabilities, a control policy is designed for the robots by
maximizing the predicted mutual information between the
source position and the distance measurements, conditioned on
the robot positions. In practice, one of the K robots should act
as a central robot which has high computing power. The central
robot gathers the measurements from all the robots, executes
the SLASS algorithm, and sends the control inputs back
to other robots to navigate them. Nevertheless, the detailed
implementation is beyond the scope of this paper.

A. Joint Localization of the Source and Robots

In this part, we elaborate on the joint localization algorithm
for the source and robots based on the established probabilistic
model in Section II. In practice, it is intractable to directly
compute the posterior distribution from (6) because the source
position and robot positions are coupled with each other.
To address this challenge, we refer to [12] and develop a
Rao-Blackwellized particle filtering algorithm to perform the
localization. To this end, we factorize the posterior distribution
in (6) as

p(x1:N |z1:N ) = p(x1:N,1:K |z1:N )p(x1:N,0|x1:N,1:K , z1:N ),
(7)

where x1:N,1:K = [xT
1,1:K , · · · ,xT

N,1:K ]T and xn,1:K =

[xT
n,1, · · · ,xT

n,K ]T . Based on this factorization, the posterior
distribution of the robot positions can be approximated by a
set of discrete particles, i.e.,

p(x1:N,1:K |z1:N ) ≈
Mr∑
i=1

w
(i)
N δ(x1:N,1:K − x

(i)
1:N,1:K), (8)

where Mr is the number of robot particles, x
(i)
1:N,1:K is the

i-th particle of x1:N,1:K sampled from an importance density
function, which is typically chosen to be the density function
of the position transition model, and w

(i)
N is the weight of

the i-th robot particle. Given the robot particle x
(i)
1:N,1:K , the

conditional posterior distribution of the source position can be
approximated by

p(x1:N,0|x(i)
1:N,1:K , z1:N ) ≈

Ms∑
j=1

w
(i,j)
N δ(x1:N,0−x

(i,j)
1:N,0), (9)

where Ms is the number of source particles subordinate
to one robot particle, x

(i,j)
1:N,0 is the j-th particle of x1:N,0

subordinate to robot particle x
(i)
1:N,1:K sampled from its

importance density function, and w
(i,j)
N is the correspond-

ing particle weight. In each control cycle, the weights of
the robot and source particles are updated recursively as
w

(i)
N ∝ w

(i)
N−1

∑Ms

j=1 w
(i,j)
N−1p(zN |x(i)

N,1:K ,x
(i,j)
N,0 ) and w

(i,j)
N ∝

w
(i,j)
N−1p(zN |x(i)

N,1:K ,x
(i,j)
N,0 ), respectively. The detailed deriva-

tion of the weight update equations is omitted due to space lim-
itation. After updating the particle weights, resampling should
be performed to avoid the degeneracy phenomenon [13].

B. Information-Theoretic Control Policy

In this part, we design the control policy by maximizing the
predicted mutual information between the source position and
the distance measurements, conditioned on the robot positions.
We adopt the mutual information as the objective function, as
it can effectively measure the reduction in the source position
uncertainty when the distance measurements are available in
the next control cycle.

Using the particle representation of the robot positions,
the predicted mutual information between the source position
and the measurements conditioned on the robot positions is
expressed as2

I(xN+1,0; zN+1,0|xN+1,1:K)

≈
Mr∑
i=1

w
(i)
N+1I(xN+1,0; zN+1,0|xN+1,1:K = x

(i)
N+1,1:K),

(10)
where zN+1,0 = [zN+1,0,1, · · · , zN+1,0,K ]T . Specifically, we
assume w

(i)
N+1 = w

(i)
N and w

(i,j)
N+1 = w

(i,j)
N , and then use the

following predicted likelihood function to compute the mutual
information in the next control cycle:

p̃(zN+1,0|x(i,j)
N+1,0,x

(i)
N+1,1:K)

= p(zN,0|x(i,j)
N,0 ,x

(i)
N,1:K + cN,1:K)

∣∣∣∣
zN+1,0=zN,0

,
(11)

where cN,1:K = [cTN,1, · · · , cTN,K ]T . The derivation of the
detailed expression of (10) is omitted due to space limitation.
The expression can be derived by adapting the method used
in [6].

The control input can be generated by solving the following
optimization problem

max
{cN,k}K

k=1

I(xN+1,0; zN+1,0|xN+1,1:K)

s.t. ∥xN+1,k1
− xN+1,k2

∥2 ≥ dmin,

∀k1, k2 = 1, · · · ,K, k1 ̸= k2,

(12)

where the constraints are imposed to avoid collisions among
the robots. Inspired by [14], we apply a projected gradient
ascent method to solve (12). By maximizing the mutual
information, the robots can gradually approach and eventually
arrive at the source position. The whole SLASS algorithm is
formally presented in Algorithm 1.

IV. SIMULATIONS

In this section, we evaluate the performance of the pro-
posed SLASS algorithm and show its superiority over the
benchmarks through simulations. In the following, we use the
meter as the unit of distance-related parameters. A stationary

2We use the index N instead of n in this part, since we are focusing on
the latest control cycle.



Algorithm 1 SLASS at Control Cycle N

Input: Robot particles {x(i)
N,1:K}Mr

i=1 and source particles
{x(i,j)

N,0 }
Mr,Ms
i=1,j=1.

Output: Control inputs of the robots {cN,k}Kk=1.
1: The robots receive distance measurements zN .
2: Compute the weights of source particles {w(i,j)

N }Mr,Ms
i=1,j=1.

3: Compute the weights of robot particles {w(i)
N }Mr

i=1.
4: Normalize the weights and resample the particles.
5: Compute the control inputs of the robots by solving (12).
6: The robots move to their new positions according to the control

inputs.
7: Draw new source particles {x(i,j)

N+1,0}
Mr,Ms
i=1,j=1 from

{p(xN+1,0|x(i)
N,1:K ,x

(i,j)
N,0 )}

Mr,Ms
i=1,j=1.

8: Draw new robot particles {x(i)
N+1,1:K}Mr

i=1 from
{p(xN+1,1:K |x(i)

N,1:K)}Mr
i=1.

source is located at xn,0 = [100, 100]T for all n. The number
of robots K varies from 1 to 3. The initial positions of
the three robots are x1,1 = [0, 0]T , x1,2 = [5, 0]T and
x1,3 = [0, 5]T . As mentioned in Section II, the source particles
are initialized to follow a uniform distribution in the explored
area {[x, y]T |0 ≤ x ≤ 150, 0 ≤ y ≤ 150}, and the initial
robot particles are given by x

(i)
1,k = x̄1,k for all i and k. The

parameters of distance measurements are α0 = 0, α = 1, and
σ2
z = 0.1. The numbers of robot particles and source particles

are Mr = 30, Ms = 30 for K = 1, Mr = 100, Ms = 100 for
K = 2, and Mr = 300, Ms = 300 for K = 3. We normalize
the control input such that ∥cn,k∥2 = 1. In other words, each
robot moves 1 meter in each control cycle. The variance of
the control error is chosen such that E{∥nn,k∥22} = 0.05. To
avoid collisions, the minimum tolerated distance between any
two robots is dmin = 4. As in [15], we introduce a small
noise with variance σ2

s = 0.1 in the transition model of the
source position for the sake of numerical stability, although the
source remains stationary during the whole seeking process.
When a robot is within 5 meters of the source, it will stop
moving but continue to measure distances to assist the other
robots in approaching the source. The algorithm is terminated
when either the number of control cycles reaches 500 or all
the robots are within 5 meters of the source. Except for the
robot trajectories, all the other curves in the following figures
depict the average results from 100 trials.

Fig. 1 shows examples of the robot trajectories with the
number of robots K varying from 1 to 3, in which the
triangle/square/star indicates the starting position of a robot. It
can be observed that the trajectories are not straight lines from
the starting positions to the source. In the cases of K = 2
and K = 3, the robots first spread out and then converge
to the source. This is because there is a high uncertainty
about the source position at the early stage, and thus moving
directly toward the estimated source position possibly leads to
a deviation from the true position. Spreading allows the robots
to receive diverse distance measurements between the source
and the robots. Hence, position information can be observed
from different views. After the source position uncertainty

reduces to a low level, the robots can gradually approach the
source. Even when K = 1, a twisty trajectory is observed,
which is also for reducing the source position uncertainty.
All these robot behaviors directly result from the information-
theoretic control policy proposed in Section III-B. Note that
robot 1 and robot 2 do not pass through the intersection point
in Fig. 1(c) in the same control cycle. In other words, the
collision avoidance constraints are not violated.

Fig. 2(a) shows the root mean square error (RMSE) of the
estimated source position with the number of robots K varying
from 1 to 3. In each trial, if all robots reach the source before
n = 500, the subsequent RMSE values are set to equal the one
computed at the final positions of the robots. From the figure, a
peak can be observed in each curve when n is small, implying
that there is a large localization uncertainty at the early stage.
In addition, the peak becomes narrow as the number of robots
increases. This is reasonable because the cooperation among
the robots improves the localization efficiency and thus the
source position uncertainty rapidly reduces as n increases. It
is noted that the RMSE does not decrease monotonically with
n, since, in some trials, the estimated source position deviates
from the true position due to the accumulated localization error
during the source-seeking process. As a result, the robots fail
to reach the source and gradually move away from the source,
leading to large RMSE. For the other trials, the RMSE remains
unchanged after the robots reach the source. Therefore, the
overall RMSE increases when n is large.

In Fig. 2(b), we fix K = 2 and compare the RMSE
of the proposed source-seeking scheme with two benchmark
schemes: a flocking scheme and a two-stage scheme (i.e.,
the trivial scheme discussed earlier). In the flocking scheme,
the robots move directly toward the estimated source position
in each control cycle. For fairness, we use the same Rao-
Blackwellized particle filtering method for the cooperative
localization. The only difference is that the objective is to
maximize

∑K
k=1 ∥xN+1,k − xN+1,0∥2. Compared with the

source-to-robot distances, the robots are close to each other
initially. Hence, the flocking scheme will generate similar
control inputs for all the robots. Instead of spreading out, the
robots will approach the estimated source position as a flock,
and no measurement diversity can be used to reduce the large
localization uncertainty in the early stage. As a result, the
flocking scheme has the worst RMSE performance and the
robots are most likely to deviate from the true position of the
source and gradually move away. In the two-stage scheme,
we first use a conventional particle filtering algorithm to
estimate the robot positions. Afterward, the estimated positions
of the robots are regarded as the true positions to localize
the source and design the control inputs. As we can see, the
RMSE of the two-stage scheme is also higher than that of
the proposed scheme because the proposed joint localization
approach has leveraged the mutual benefits between the robot
self-localization and the source localization and thus achieves
better performance.

Fig. 2(c) shows the distances between one of the robot
(we select k = 1 without loss of generality) and the source
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Fig. 1. Robot trajectories of the proposed source-seeking scheme with K varying from 1 to 3.
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Fig. 2. (a) RMSE comparison with K varying from 1 to 3. (b) RMSE
comparison with different source-seeking schemes. (c) Comparison of the
distances between robot 1 and the source with K varying from 1 to 3. (d)
Comparison of the distances between robot 1 and the source with different
source-seeking schemes.

with different K’s. We observe that the distances almost
keep decreasing as n increases. Further, with more robots
cooperatively performing the task, the robots can move more
efficiently to the source, which is particularly evident when
K is increased from 1 to 2. In Fig. 2(d), we fix K = 2
and compare the distances between the selected robot and the
source in different schemes. In the two benchmarks, the robots
can approach the source faster at the early stage. However, they
are more likely to fail to reach the source eventually due to
the large accumulated localization errors.

V. CONCLUSIONS

This paper investigated a simultaneous localization and
source-seeking (SLASS) problem in multi-robot systems. A
centralized algorithm has been proposed, including a cooper-
ative localization algorithm to jointly estimate the positions
of the source and robots, and an information-theoretic control
policy for navigating the robots. Simulation results show that
the proposed scheme outperforms two benchmarks, and the
robot team can approach the source more efficiently as the
number of robots increases. In future work, we will design
decentralized and scalable SLASS algorithms that better suit

our application scenario, considering the high computational
complexity of the current algorithm.
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