
ar
X

iv
:2

00
7.

05
01

2v
1

 [
cs

.I
T

]
 9

 J
ul

 2
02

0

Design of Puncturing for Length-Compatible Polar Codes

Using Differential Evolution

Kuntal Deka1 and Sanjeev Sharma2

1 Indian Institute of Technology Goa, India 2Indian Institute of Technology (BHU) Varanasi, India

Abstract—This paper presents a puncturing technique to
design length-compatible polar codes. The punctured bits are
identified with the help of differential evolution (DE). A DE-
based optimization framework is developed where the sum of the
bit-error-rate (BER) values of the information bits is minimized.
We identify a set of bits which can be avoided for puncturing in
the case of additive white Gaussian noise (AWGN) channels. This
reduces the size of the candidate puncturing patterns. Simulation
results confirm the superiority of the proposed technique over
other state-of-the-art puncturing methods.

Index Terms—Polar codes, puncturing, length-compatibility,
successive cancellation decoder.

I. INTRODUCTION

Polar code, proposed by Arikan [1], is an important mile-

stone in coding theory and has undoubtedly completed the long

quest for capacity-achieving codes. In the original version [1],

the polarizing or the generator matrix was constructed by the

Kronecker power of the binary 2× 2 kernel F2 = [1 0
1 1]. Due

to this choice, the lengths are limited to powers of 2. Various

polarizing kernels of larger size and defined over non-binary

alphabets have been proposed [2, 3]. However, these kernels

do not ensure low-complexity decoding methods as in the case

of F2. Therefore, designing polar codes of arbitrary lengths

with reasonable decoding complexity is a vital problem.

Puncturing is a simple and effective technique to modify the

rate and the length of a code. The rate of a polar code can be

conveniently adapted by varying the number of frozen or infor-

mation bits. Puncturing is not required for the rate-adaptability

of a polar code. However, to attain length-compatibility for

the polar codes, puncturing is very helpful. In [4], an efficient

method is proposed to design length-compatible polar codes.

This method is referred to as the quasi-uniform puncturing

(QUP). Suppose, one needs to puncture np bits of a polar

code of length N . In QUP, the bit-reversed versions of the

first np consecutive integers {1, 2, · · · , np} are considered for

puncturing. The method in [5] selects the bit-reversed versions

of the last np consecutive integers {N − np + 1, · · · , N} as

the puncturing bits. The authors in [6] have proposed a punc-

turing technique by analyzing the reduced polarization matrix

after the removal of the columns and the rows corresponding

to the punctured and the frozen bits respectively. In [7], the

authors have partitioned the puncturing patterns into various

equivalent classes and proposed a method to find the optimum

pattern by examining only one representative of each class.

Contributions

In this paper, the determination of the best puncturing

pattern is formulated as an optimization problem. Differ-

ential evolution (DE) is used for the optimization process.

DE is a popular and simple evolutionary algorithm which

is used to solve complex optimization problems with real-

valued parameters [8]. The suitability of various figures of

merit or parameters for the objective function is studied.

After analyzing the behaviors of these parameters during the

decoding process under puncturing, we decide to consider the

sum of the bit-error-rate (BER) values of the information bits

as the objective function. The selection of the information bits

depends heavily on the puncturing pattern. We propose a DE-

based search algorithm to find the optimum pair of the sets

of the punctured and the information bits simultaneously by

minimizing the sum of the BER values for the information bits.

A technique to reduce the search-space for punctured bits is

presented where the even-indexed bits are overlooked.

II. PRELIMINARIES

Consider a polar code with the block length N = 2m, m ∈

Z
+. The generator matrix is given by GN = BNF

⊗
m

2

where, BN is the bit-reversal permutation matrix and
⊗

m

is the Kronecker power [1]. For a binary data vector uN
1 =

(u1, u2, . . . , uN), the codeword xN
1 is obtained by xN

1 =
uN
1GN . This encoding process produces a set of N polarized

synthetic bit-channels. For a rate R = K
N

code, the K
information bits are carried over the best K bit-channels by

putting them into the respective slots I in uN
1 . The bits in

the other locations Ic are frozen to 0 and these values are

known perfectly to the decoder. The decoding is done by the

successive cancellation (SC) algorithm [1].

In order to derive a length-N ′ polar code from a mother

code of length N , a total of np = N−N ′ bits of the codeword

xN
1 need to be punctured. The rate of the modified code is

given by R′ = K
N−np

. Let P denote the set of puncturing

bits with |P| = np. The coded bits corresponding to P are

not transmitted. The decoder knows only the location of the

punctured bits and sets their initial log-likelihood ratio (LLR)

values to zero. Because of the puncturing of the bits in P , the

quality of the synthesized bit-channels get modified and the

information set I should be re-selected.

III. DESIGN OF PUNCTURING PATTERN BASED ON

DIFFERENTIAL EVOLUTION

Suppose the objective is to derive a length-N ′ polar code

from a length-N one. For that, one needs to puncture np =
N − N ′ bits. The number of candidate bits is D = N and

we have to select the best np bits amongst these D bits. The

optimization problem can be formulated as:

[Pm, Im] = argmin
P,I

f

(

P , I,
Eb

N0

)

(1)

http://arxiv.org/abs/2007.05012v1

where, the objective function is f
(

P , I, Eb

N0

)

and Eb

N0

is the

signal-to-noise-ratio (SNR). There are many figures of merit

which can be considered as the objective function. Some of

these are Bhattacharrya parameters of the bit-channels, the

BER values of the individual bits computed by Monte Carlo

simulation, the mean of the LLRs etc. These parameters are

also taken into consideration in the construction step [9]. In

order to find the best figure of merit for puncturing, we analyze

the evolution of various parameters during decoding under the

influence of puncturing.

BEC(1)

BEC(ǫ)

BEC(ǫ)

BEC(ǫ)

x1

x2

x3

x4

1

ǫ

2ǫ− ǫ
2

ǫ
2

y1

y2

y3

y4

1

ǫ + ǫ
2

ǫ
3

u1

u3

u2

u4

−ǫ
3

?

2ǫ− ǫ
2

(a) x1 punctured

BEC(ǫ)

BEC(ǫ)

BEC(ǫ)

BEC(1)

x1

x2

x3

x4

1

ǫ

2ǫ− ǫ
2

ǫ
2

y1

y2

y3

y4

1

ǫ + ǫ
2

ǫ
3

u1

u3

u2

u4

−ǫ
3

2ǫ− ǫ
2

?

(b) x4 punctured

Fig. 1: Bhattacharyya parameters for N ′
= 3 polar code over BEC with

erasure probability ǫ.

Consider the generation of N ′ = 3 polar code from

N = 4 mother polar code by puncturing one bit in the case

of binary erasure channel (BEC). In Fig. 1(a), the coded-

bit x1 is punctured. Since, this bit is completely erased,

the first channel effectively becomes a BEC with erasure

probability 1. The other channels are identical and equal to

BEC with erasure probability ǫ. By applying Proposition 6

of [1], the evolution of these parameters at different layers is

shown in Fig. 1(a) when x1 is punctured. These are found to

be
{

1, 2ǫ− ǫ2, ǫ + ǫ2 − ǫ3, ǫ3
}

for the bit-channels. Consider

the case when x4 is punctured instead of x1 as shown in

Fig. 1(b). The Bhattacharyya parameters are the same as that

in the previous case. This means that the puncturing patterns

W

W

x1

x2

x3

x4

y1

y2

y3

y4

0.49975

0.17588

0.17591

0.09771

u1

u3

u2

u4

W

W

0(0)

(0.1222)

(0)

(0.0317)

(a) x1 punctured

W

W

x1

x2

x3

x4

y1

y2

y3

y4

0.50008

0.49997

0.49998

0.49994

u1

u3

u2

u4

W

W
0

(0)

(0.1266)

(0)

(0.0992)

(b) x4 punctured

Fig. 2: BER values for N
′
= 3 polar code over AWGN channel at 1 dB.

{1} and {4} are equivalent when the underlying channel

is BEC. However, for other channels, these two puncturing

patterns may not be equivalent. Fig. 2 shows such a situation

when the underlying channel is AWGN (represented by W).

The BER values of the input bits as computed from Monte

Carlo simulation are {0.49975, 0.17588, 0.17591, 0.09771}
and {0.50008, 0.49997, 0.49998, 0.49994} for the puncturing

patterns {1} and {4} respectively at Eb

N0

= 1 dB1. This shows

that {1} is better than {4} and in fact {4} should be avoided

for puncturing. Observe that here, we have considered all the

input bits to be the information bits.

The BER values after the selection of the information bits

are also analyzed here. These BER values are more appropriate

measures and are shown within brackets in Fig. 2 when the

rate R = 0.5. It can be safely concluded that {x1} is a better

puncturing pattern than {x4}. The above examples show that

Algorithm 1: Puncturing based on differential evolution

input : N , K, np,
Eb

N0
, F , Cr , and SP

output: Puncturing bits Pm and information bits Im

Initialize the population matrix P to a matrix of size
SP ×D having random numbers uniformly distributed over
[0, 1] where D = N // Initialization;

while termination criteria not fulfilled do
for i← 1 to SP do

Select three distinct vectors (rows) zr0 ,zr1 and zr2

uniformly at random from P such that they are
also different from zi;

Generate an integer jrand uniformly at random from
{1, 2, . . . , D};
/* Generation of trial vector u */

for j ← 1 to D do
if rand[0,1] ≤ Cr or j = jrand then

wj,i = zj,r0 + F × (zj,r1 − zj,r2)
// Crossover and Mutation

else
wj,i = zj,i

/* Evaluation and Selection */

Suppose w
p and z

p
i are the first np

arguments/indices of the sorted (descending)
version of w and zi respectively.

With the help of GA method, find the sets Iwp and
I
z
p
i

of the information bits when the code bits in

w
p and z

p
i are punctured respectively;

Run Monte Carlo simulation with the chosen
information or frozen sets. Suppose, f(wp) and
f(zpi) are the sums of the BER values for the
information bits in Iwp and I

z
p
i

respectively ;

if f(wp) < f(zpi) then
zi = w // Replace the ith row of P by w;

From the updated population matrix P, find the vector
(row) zmin (or equivalently z

p

min
) which yields the

minimum value of objective function;
If f (zp

min
) is not changing significantly from the

previous iteration or the maximum number of iterations
are exhausted, then break from loop;

Set Pm to z
p

min
;

Assign the set I
z
p
min

of information bits to Im;

the Bhattacharyya parameters are not suitable for designing

puncturing patterns for general channels. The BER values

computed from Monte Carlo simulation are more reliable

1 The Monte Carlo method in [1] was used to find the estimates for the
Bhattacharyya parameters of the bit channels. As these parameters are related
to the probability of error for the input bits, we consider the Monte Carlo
simulation to estimate the probability of bit error.

features. Therefore, in (1), we consider the objective function

f
(

P , I, Eb

N0

)

as the sum of the BER values of the bits in

the information set I at SNR Eb

N0
when the coded bits in P

are punctured. For brevity, f
(

P , I, Eb

N0

)

will be substituted

by f (P) with the understanding that I is the optimum

information set for P at a fixed SNR= Eb

N0
.

In order to solve (1), we adopt DE. The detailed steps are

shown in Algorithm 1. In DE, a population P of vectors is

updated iteratively. The number of vectors in the population

is denoted by SP . The length of a vector is D = N in this

case. At first, P is initialized as a matrix of dimension SP ×D
whose elements are chosen uniformly at random from [0, 1].
For each vector zi , i = 1, . . . , SP in P, a trial vector w

is generated with the given values of crossover rate (Cr) and

scaling factor (F). The details of the generation of the trial

vector are presented in Algorithm 1. Here, we consider the

convention that, for any candidate vector zi = (z1,i, . . . , zD,i),
if zj,i > zk,i, then it is preferable to puncture the jth bit

compared to the kth bit as per that candidate. Based on this

convention, the vectors w and zi are sorted in descending

order and the arguments are stored in w
sorted,arg and z

sorted,arg
i

respectively. Then the first np indices are stored in w
p and

z
p
i . By using Gaussian approximation (GA) method [10],

the information bits Iwp and Izp
i

are found out against the

puncturing patterns w
p and z

p
i respectively. Note that the

information bits need to be re-selected for every distinct

puncturing pattern. GA is considered for the construction step

as it provides good performance with low complexity [9].

Now, by carrying out Monte Carlo simulation, the values of

the objective functions f(wp) and f(zpi) are computed. If

f(wp) < f(zpi), then the ith row of P is replaced by the

trial vector w. In this way, every vector in P is examined

and updated if needed. From the updated P, the best vector

z
p
min

with the minimum objective value is found out. If there

is negligible change in this objective value from the previous

iteration or the maximum number of iterations are completed,

the algorithm is stopped. The puncturing pattern z
p
min

and the

corresponding set of the information bits Izp
min

are returned as

the outputs Pm and Im.

Reduction of the search space: For length-compatible

polar codes, the search space for the punctured bits can be

reduced by ignoring the set FP of forbidden bits as given by

FP = E ∪ {N − 1}

where, E = {2, 4, · · · , N − 2, N} is the set of even-indexed

bits. Polar codes of any arbitrary length can be obtained

without resorting to puncturing of these forbidden bits. We

set D = N
2
− 1 in Algorithm 1.

Justification: The polar encoding structure for length-N code

contains log2 N layers with each layer containing N/2 basic

butterfly structures. The structure contains N branches corre-

sponding to the coded bits. The situation is explained in Fig. 3

for the case N = 8. The input bits comprising of the frozen

and the information bits are fed to the first layer. The last

layer is connected directly to the channels. Consider the SC

W
x1

x2

x3

x4

y1

y2

y3

y4

u1

u5

u3

u7

W

W

W

W
x5

x6

x7

x8

y5

y6

y7

y8

W

W

W

u2

u6

u4

u8

Layer 1 Layer 2 Layer 3

Branch 1

Branch 2

Branch 3

Branch 4

Branch 5

Branch 6

Branch 7

Branch 8

Fig. 3: Encoding structure for N = 8 polar code.

decoding in LLR domain over a particular basic structure in

the last layer as shown in Fig. 4.

Fig. 4: LLR-based SC decoding under puncturing at the last layer (vo and
ve are typically intermediate bits and not the frozen/information bits).

The input LLRs to the upper (odd) and the lower (even)

branch of the basic structure are Lo and Le respectively. The

outputs are given by:

L′

o =2 tanh−1

[

tanh

(

Lo

2

)

tanh

(

Le

2

)]

L′

e =(1− 2v̂o)Lo + Le

(2)

where, v̂o is the most recent estimate found regarding the bit

vo while computing L′
e.

We take insight from the GA method where the mean of

the LLR messages is updated across the layers [10]. Consider

the transmission of all-zero codeword. Suppose, µ is the mean

of the channel LLR values. As shown in Fig. 4, if the upper

or the odd bit xo is punctured, then Lo = 0. Subsequently, by

(2), the output LLRs become L′
o = 0, L′

e = Le. Thus we have

the following pair of mean values (E [L′
o] = 0, E [L′

e] = µ).
On the other hand, if the lower or the even bit xe is punctured,

then Le = 0. In that case, L′
o = 0. Note that the computation

of v̂o may benefit from the known values of a few frozen bits

by the time L′
e is computed. Suppose, p is the probability that

v̂o is correct i.e., Pr (v̂o = vo = 0) = p. In that case, the pair of

mean values are given by (E [L′
o] = 0, E [L′

e] = (2p− 1)µ).
As p ≤ 1, we have (2p − 1)µ ≤ µ. Therefore, when xe

is punctured, the evolution of the mean is slower compared

to case where xo is punctured. In GA, the probability of bit

TABLE I: Number of appearances

Bit/ Branch x1 x2 x3 x4 x5 x6 x7 x8

As upper branch 3 2 2 1 2 1 1 0

As lower branch 0 1 1 2 1 2 2 3

error is inversely proportional to the mean value. This implies

that the probability of error for the information bits will be

higher when xe is punctured. Moreover, both the upper and

the lower bits of a basic structure should not be punctured

simultaneously because it will fully disturb the structure.

Therefore, the search space may be reduced by rejecting all

even bits (E = {2, 4, . . . , N}). The total number of even bits is

N/2. The maximum number of bits to be punctured is N/2−1.

Amongst the odd bits, the bit or branch‘N−1’ appears as the

lower branch in the maximum number of basic structures in

various layers. The number of involvements of a bit as lower

and upper branch are shown in TABLE I. The set FP of the

forbidden bits is given by FP = E ∪ {N − 1}. There is no

need to puncture any of the bits in FP as any lower-length

code can be derived from a code of length N/2 or less. �

Example 1. Consider the case of deriving N ′ = 6 polar code

from N = 8 polar code by puncturing np = 2 coded bits. The

DE-based algorithm is invoked to find the best np = 2 bits for

puncturing. We consider a population matrix P of size 4× 3
with SP = 4 and D = 8

2
−1 = 3. P is initialized to a random

matrix where an element is selected uniformly at random from

[0,1]. Suppose P is initialized to the following matrix:

P =









0.68471631 0.144816 0.26360207
0.0790236 0.40264467 0.13473581
0.59553136 0.57930957 0.77943687
0.96593194 0.03113405 0.83083448









. (3)

For every row of P, a trial vector is generated by carrying

out the mutation and the crossover operations. For the se-

lection step, we consider the sum of the BER values of the

information bits as the objective function. The punctured bits

are identified from the indices of the sorted rows of P. The

first column refers to puncturing of bit 1, the second column

refers to puncturing of bit 3 and the third column refers

to puncturing of bit 5. For example, consider the first row

(0.68471631, 0.144816, 0.26360207) of P in (3). As we need

to select two bits for puncturing, we consider the indices of the

first two highest row elements. The first two highest elements

are (0.68471631, 0.26360207) and they refer to puncturing

of (1, 5). For these punctured bits, the information bits are

selected using GA. Monte Carlo simulation for SC decoding

is carried out. The sum of the BER values of the information

bits is considered as the objective function during the selection

process. If the value of objective function for the first row

is higher than that for the trial vector, then the first row

is replaced by the trial vector. In this way, every row of P

is examined and updated iteratively if required. When the

stopping criteria are met, the best row or vector (having

the lowest sum of the BER values) from P is selected and

the corresponding set of punctured bits is considered as the

optimum pattern.

IV. SIMULATION RESULTS

In recent communication standards, polar codes of short

blocklengths have been considered [11]. We present the sim-

ulation results for two cases. The short codes are considered

so that the punctured bits and the information bits can be

explicitly mentioned. Due to space constraint, we provide only

the block-error-rate (BLER) performances although the BER

results are found to be equally impressive.

Case 1: In this case, we puncture np = 28 bits of polar code

of length N = 128 and rate R = 0.5. This puncturing will

produce a code of length N ′ = 100 and rate R′ = 0.64. The

DE-based algorithm is run to find the optimum punctured bits

and information bits with the parameters SP = 100, Cr = 0.8
and F = 0.6 at Eb

N0

= 6 dB. These bits are shown in Table II.

The DE-based search algorithm is run to find the optimum

puncturing pattern at an SNR such that the BER is around

10−5. The pattern determined in this way is found to work

well at different SNR values.

TABLE II: Pm and Im for Case 1

Punctured bits

Pm

1 3 5 7 9 11 13 17 21 25 33 37 41 45 49 53 57

65 69 73 77 81 85 89 97 101 105 113

Information bits

Im

32 46 47 48 52 54 55 56 58 59 60 61 62 63 64

72 76 78 79 80 84 85 86 87 88 89 90 91 92 93

94 95 96 98 99 100 101 102 103 104 105 106

107 108 109 110 111 112 113 114 115 116 117

118 119 120 121 122 123 124 125 126 127 128

Fig. 5: Comparison under SC decoding, Case 1.

The BLER performances of the puncturing methods under

SC decoding are shown in Figure 5. Observe that the proposed

puncturing pattern yields the best result and offers a coding

gain of about 0.8 dB at BLER=10−4. The high value of

the coding gain confirms the superiority of the DE-based

puncturing strategy over the existing methods.

We also evaluate the performances of these puncturing

schemes under cyclic-redundancy-check (CRC) aided SC list

decoding [12]. The size of a list is set to L = 8. We consider

an outer CRC code of length 16 with generator polynomial

g(x) = x16 + x12 + x5 + 1. This code is known as CRC-

16-CCITT. The CRC coded bits are put in the locations of

the last 16 information bits as per the recommendation given

in [12]. The performances of the puncturing schemes under

Fig. 6: Comparison under CRC-aided SC list decoding, Case 1.

CRC-aided SC list decoding are shown in Figure 6. Observe

that, the proposed puncturing method performs better than the

QUP [4] and method in [5]. However, unlike in the case of SC

decoding, the coding gain is relatively small and it is around

0.25 dB at BLER=10−4. This reduction of the coding gain

is due to the presence of a powerful CRC code as the outer

code in the concatenated encoding scheme. Nevertheless, the

proposed puncturing method performs significantly better than

the existing methods in a purely polar coding environment.

Case 2: In this case, we puncture np = 24 bits of a polar

code of length N = 64 and rate R = 0.5. This puncturing will

produce a code of length N ′ = 40 and rate R′ = 0.8. The

DE-based algorithm is run to find the optimum punctured bits

and information bits with SP = 50, Cr = 0.8 and F = 0.6 at
Eb

N0
= 8 dB. These bits are shown in Table III. The BLER

TABLE III: Pm and Im for Case 2

Punctured bits

Pm

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 27, 29,

33, 37, 39, 41, 45, 51, 53, 55, 59, 61

Information bits

Im

24 28 30 31 32 36 38 39 40 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

63 64

performances of the puncturing methods under SC decoding

are shown in Figure 7. Observe that the proposed puncturing

pattern yields the best result and offers a coding gain of about

0.3 dB at BLER=10−4. This coding gain is smaller than that in

the previous case. This is due to the fact that a higher number

of bits are punctured which, in turn, produces a code with a

high rate of R′ = 0.8.

The performances of the puncturing schemes under CRC-

aided SC list decoding are shown in Figure 8. The CRC

coded bits are put in the locations of the last 16 information

bits. Observe that, in this case also, the proposed puncturing

method performs better than the QUP [4] and the method

in [5]. Similar to the previous case, we have experienced a

reduction in the coding gain. The coding gain is around 0.2 dB

at BLER=10−4.

Fig. 7: Comparison under SC decoding, Case 2.

Fig. 8: Comparison under CRC-aided SC list decoding, Case 2.

V. CONCLUSIONS

This paper presented a DE-based technique to search for

the optimum pair of the puncturing and the information bits

for length-compatible polar codes. By analyzing the decoding

progression under puncturing, the even-indexed bits and the

last odd-indexed bit are excluded from the search space. DE-

based optimization is carried over this reduced space. Simu-

lation results are provided to compare the proposed method

with other methods in literature.

REFERENCES

[1] E. Arikan, “Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels,”
IEEE Transactions on Information Theory, vol. 55, no. 7, pp. 3051–
3073, July 2009.

[2] R. Mori and T. Tanaka, “Non-binary Polar Codes Using Reed-Solomon
codes and Algebraic Geometry Codes,” in IEEE Information Theory

Workshop, 2010, Aug 2010, pp. 1–5.
[3] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar Codes: Characteri-

zation of Exponent, Bounds, and Constructions,” IEEE Transactions on

Information Theory, vol. 56, no. 12, pp. 6253–6264, Dec 2010.
[4] K. Niu, K. Chen, and J. Lin, “Beyond Turbo Codes: Rate-compatible

Punctured Polar Codes,” in IEEE International Conference on Commu-
nications (ICC), June 2013, pp. 3423–3427.

[5] R. Wang and R. Liu, “A Novel Puncturing Scheme for Polar Codes,”
IEEE Communications Letters, vol. 18, pp. 2081–2084, Dec 2014.

[6] D. Shin, S. Lim, and K. Yang, “Design of Length-Compatible Polar
Codes Based on the Reduction of Polarizing Matrices,” IEEE Transac-

tions on Communications, vol. 61, no. 7, pp. 2593–2599, July 2013.
[7] L. Chandesris, V. Savin, and D. Declercq, “On Puncturing Strategies for

Polar Codes,” in 2017 IEEE International Conference on Communica-

tions Workshops (ICC Workshops), May 2017, pp. 766–771.
[8] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient

Heuristic for global Optimization over Continuous Spaces,” Journal of

Global Optimization, vol. 11, no. 4, pp. 341–359, Dec 1997. [Online].
Available: https://doi.org/10.1023/A:1008202821328

[9] Harish Vangala, Emanuele Viterbo, Yi Hong, “A comparative study of
polar code constructions for the AWGN channel,” arxiv.org, 2015.

[10] P. Trifonov, “Efficient Design and Decoding of Polar Codes,” IEEE

Transactions on Communications, vol. 60, no. 11, November 2012.
[11] Peiying Zhu, “Polar Code for 5G NR,” ITW 2018 Keynote, available

online: http://itw2018.org/static/resource/Keynote-Peiying.pdf.
[12] I. Tal and A. Vardy, “List Decoding of Polar Codes,” IEEE Transactions

on Information Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

https://doi.org/10.1023/A:1008202821328

W = BEC(1)

W = BEC(ǫ)

W = BEC(ǫ)

W = BEC(ǫ)

x1

x2

x3

x4

1

ǫ

2ǫ− ǫ2

ǫ2

y1(e)

y2

y3

y4

1

2ǫ− ǫ2

ǫ + ǫ2 − ǫ3

ǫ3

u1

u3

u2

u4

x

x

1

ǫ

2ǫ− ǫ2

ǫ2

1

2ǫ− ǫ2

ǫ+ ǫ2 − ǫ3

ǫ3

u1

u3

u2

u4

	I Introduction
	II Preliminaries
	III Design of Puncturing Pattern based on Differential Evolution
	IV Simulation Results
	V Conclusions

