
HAL Id: hal-02552670
https://imt-atlantique.hal.science/hal-02552670

Submitted on 23 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Worst-case drift detection of sensor networks:
performances and algorithms

Alexandre Reiffers-Masson

To cite this version:
Alexandre Reiffers-Masson. Worst-case drift detection of sensor networks: performances and algo-
rithms. SPCOM 2020 : International Conference on Signal Processing and Communications, Jul
2020, Bangalore, India. �10.1109/SPCOM50965.2020.9179620�. �hal-02552670�

https://imt-atlantique.hal.science/hal-02552670
https://hal.archives-ouvertes.fr

1

Worst-case drift detection of sensor networks:

performances and algorithms

Alexandre Reiffers-Masson

RBCCPS, Indian Institute of Science, Bangalore

IMT Atlantique, Brest

Email: alexandre.reiffers-masson@imt-atlantique.fr

Abstract

The goal of this paper is to derive algorithms that are able to detect unreliable/drifted sensors, in a

sensor network. To recover the state of each sensor, we restrict ourselves to a particular decoder, inspired

by graph partitioning problems. We provide necessary and sufficient conditions over the measurements

such that the decoder perfectly recovers each sensor binary state. The outputs of the decoder can

be computed using a dynamic programming approach. One challenging part of this approach is the

complexity of the dynamic programming equation. Indeed, the resolution time will increase exponentially

with the number of sensors. Therefore, we propose an efficient heuristic method that approximately

solves the problem. We study the performance of our algorithm using simulations.

I. INTRODUCTION

In a low-cost sensor network, sensors can gradually become unreliable. This phenomenon is

called drift. For instance, it can arise either due to the loss of sensitivity (ex: electrochemical

sensors) or aging of the material after long exposure to meteorological conditions. Such phenomena

are observed in low-cost pollution sensors. In this paper, the task that we are trying to solve is

the detection of drifted sensors when only the measurements of the sensor network are available.

Multiple papers have been trying to solve this problem and we describe the most relevant

ones, due to the lack of space. Most drift estimation techniques depend on probabilistic filtering

methods. For example in [6] and [4] the authors propose a method that interpolates ground truth

based on spatial interpolation techniques such as kriging. Drifts were estimated based on the

differences in the measured sensor readings and the kriging prediction, which were filtered using

April 23, 2020 DRAFT

2

a Kalman filter. However, the accuracy of these two methods is limited by the fact that they

accumulate errors over time. We take a different approach, and solve a clustering problem by

exploiting the band limited nature of the sensing field, as in [7], and we treat degraded sensors

as outliers in our clusters as in [3] and [2].

In this paper, our contributions are the following: First, we introduce a particular decoder

designed to detect drifted sensors. This decoder is the solution of a temporal graph partitioning

problem. Secondly, we provide necessary and sufficient conditions over the measurements such

that our decoder perfectly recovers the state of each sensor. Thirdly, we propose an efficient

heuristic method that approximately solves the temporal graph partitioning problem.

II. SETUP

1) Time series model: Consider a network of I sensors that measures a finite set of spatially

and temporally varying quantities. The set of sensors is denoted by I := {1, . . . , I}. Let xni ∈ R

be the output of the sensor i ∈ I, at a particular instant n ∈ {1, . . . , N}. We assume that there

are C underlying processes. We denote by snc one of such process, with c ∈ C := {1, . . . , C}. At

each instant n, we consider a scenario where the set of sensors can be partitioned into two sets

I1(n) and I2(n) such that I1(n)∩I2(n) = ∅ and I1(n)∪I2(n) = I . At each instant n, I1(n) is

the set of reliable sensors and I2(n) is the set of drifted sensors. We assume that once a sensor

drifts, it is unreliable for the remaining time. The latter can be translated into the following

condition, I2(n) ⊆ I2(n + 1). At every instant n, the number of unreliable sensors is smaller

that the number of reliable sensors, i.e. | I1(n) |>| I2(n) |, where | A | denote the cardinality

of a set A. We assume that a sensor measures only one underlying process and we consider a

linear dynamical model as shown below:

xni = snc(i) + εni , if i ∈ I1(n),

xni = snc(i) + εni + δni , if i ∈ I2(n),
(1)

where for each i ∈ I, c(i) ∈ C denote the underlying process measured by sensor i, εni ∈ R

denote the noise of sensor i at instant n. For i ∈ I2(n), δni ∈ R captures the drift value for sensor

i at time n.

2) Noise and drift models: At every instant n and for every sensor i, we assume that the

noise is such that (εni)2 ≤ cε. Moreover, we assume that if i ∈ I2(n), then cδ ≤ (δni)2 ≤ cδ. We

restrict our attention to deterministic approaches for the performance analysis. Indeed, we want

to understand the performance of the drift detection task in worst-case scenarios. More precisely,

April 23, 2020 DRAFT

3

what are the conditions on cε, cδ and cδ such that the drifts can be detected and the time series

can be filtered/recovered. Such approaches have been proven to be related to some specific noises

model (Gaussian noise models for instance, see [1]).

3) Side information: Throughout this paper, we assume that, for every (c, i) ∈ C × I, the

underlying process c measured by sensor i is unknown (therefore for every i, c(i) is also unknown).

However, we assume that it is possible to access a similarity matrix E := [[eij]]1≤i,j≤I which

captures the similarity between sensors. For instance, if past reliable measurements x−N:0 :=

[[xni]]1≤i,j≤I,−N≤n≤0 are available, in the sense that for every n ∈ {−N, . . . , 0}, I2(n) = ∅, then

it is possible to construct E using the Radial Basis Function (eij = exp(−‖x−N:0
i −x−N:0

j ‖2/σ)).

If the similarity matrix is able to recover the entire underlying processes, then eij = 1c(i)=c(j). We

will assume a less restrictive assumption, which is E = E∗ + ME where; (1) E∗ = [[e∗ij]]1≤i,j≤I

with e∗ij = 1c(i)=c(j), (2) ME ∈MI×I(R), such that maxij{MEij} ≤ cME
. We assume that E is

a symmetric matrix.

III. DRIFTS DETECTION: APPROACH AND FEASIBILITY

A. Approach

The task studied in this paper is the following: How to recover pni := 1i∈I1(n) for every sensor

i and every instant n knowing x1:N := [[xni]]1≤i,j≤I,1≤n≤N and E? To solve such challenge,

we reformulate our task as the problem of recovering binary sensors states from noisy edge

measurements in a temporal graph. The definition of our temporal graph is as follows: the set of

sensors I are the nodes of the graph; and an edge at instant n between sensor i and sensor j is

given by wnij = (xni − xnj)2. Depending on which set (I1(n) or I2(n)) the node i and the node

j are belonging to, the edge wnij will have different values and therefore will reveal different

information about the state of node i and node j:

wnij =



(εni − εnj)2, if (i, j) ∈ (I1(n))2,

(εni − εnj)2 + (δni)2

+2δni (εni − εnj), if i ∈ I2(n), j ∈ I1(n),

(εni − εnj)2 + (δni − δnj)2

+2(δni − δnj)(εni − εnj), if (i, j) ∈ (I2(n))2.

(2)

April 23, 2020 DRAFT

4

Having observed a set of matrices {W n : 1 ≤ n ≤ N} and an adjacency matrix E, the

receiver uses a decoder D : (MI×I(R+))N ×MI×I(R+) → {1, . . . , N}I , where the decoder

D({W n : 1 ≤ n ≤ N}, E) is returning a vector m := [mi]1≤i≤I . For each sensor i, mi + 1 is

the predicted time at which sensor i starts to drift. We say that the decoder D is able to detect

the drifts in the sensor network if D({W n : 1 ≤ n ≤ N}, E) = [
∑N

n=1 1pni =1]1≤i≤I =: m∗. In

this paper, we will restrict to a particular decoder, inspired from graph partitioning problems.

Consider the decoder Dλ such that Dλ({W n : 1 ≤ n ≤ N}, E) is the optimal solution of the

following integer programming problem:

min
m∈{1,...,N}I

C(m) :=
N∑
n=1

I∑
i=1

I∑
j=1

eij1mi≥n1mj≥n(wnij − λ). (3)

One important observation concerning the optimization problem (3) is that each of its local

minimums (denoted by mloc) will satisfy the following local optimality condition:
mloc

i∑
n=1

I∑
j=1

eij1mloc
j ≥n(wnij − λ) ≤

m′∑
n=1

I∑
j=1

eij1mloc
j ≥n(wnij − λ), ∀i ∈ I, ∀m′ 6= mloc

i . (4)

The term eji1mloc
j ≥n(wnji − λ) does not appear in (4), because the matrix E and the matrix Wn

are symmetric matrices.

Our decoder has an elegant interpretation in terms of graph partitioning. For every instant n and

for a sensor set J n ⊆ I , we define the weight of the set J n by Ωn(J n) =
∑

(i,j)∈J n eij(w
n
ij−λ).

The optimization problem defined in (3) is equivalent to:

min
{J n⊆I; n∈{1,...,N}}

N∑
n=1

Ωn(J n), s.t. J n+1 ⊆ J n, ∀n < N.

This optimization problem is about finding the sequence of sets of sensors J n such that the

sum of weights eij(wnij−λ) inside J n is as small as possible. Therefore we expect the decoder to

decide that the sensors with the smallest wnij will be inside the set J n. The constraint J n+1 ⊆ J n

ensures that once a sensor is removed from the set J n, it should be removed forever. The goal

of this constraint is to introduce robustness and to ensure that the decoder is considering a sensor

as an unreliable sensor at time n if in the future (n′ > n) the decoder will also take the same

decision.

B. Going back to the time series model

In the rest of the paper, we will derive assumptions and algorithms for the general problem of

recovering binary sensors states from noisy edge measurements in a temporal graph. But as an

April 23, 2020 DRAFT

5

exercise, we show how easy it is to go from assumptions over the matrices Wn to assumptions

over the time series.

If we are going back to the time series model described in section II, our approach can be

understood as follows. Let us assume that cδ − 2
√
cεcδ > 2cε. Then by taking cδ − 2

√
cεcδ >

λ > 2cε, we will have wnij − λ < 0, for every (i, j) ∈ (I1(n))2 and wnij − λ > 0, for every

(i, j) ∈ I1(n)×I2(n). In this case the only global optimum of (3) is m∗. But we believe that this

assumption is too strong and in the next section, we derive necessary and sufficient conditions

for perfect recovery when it exists (i, j) ∈ (I1(n))2 such that wnij > λ and (i, j) ∈ I1(n)×I2(n)

such that wnij > λ.

For the rest of the paper, all our results will be over the matrices Wn, but the reader should

keep in mind that it is always possible to go back to the time series model.

C. Main Results

This part of our paper establishes necessary and sufficient conditions for the decoder (3) to be

able to perfectly recover the state of each sensor. We define the set C(i) := {j ∈ I | c(j) = c(i)},

the set A(i, n) := {j ∈ I − {i} | j ∈ I1(n) and c(j) = c(i)} and the set B(i, n) := {j ∈

I − {i} | j ∈ I2(n) and c(j) = c(i)}. We assume the following:

Assumption A

1) If i ∈ I1(n), then (| A(i, n) |)−1
∑

j∈A(i,n)

wnij ≤ Φ1.

2) If i ∈ I2(n), then Φ2 ≥ (| A(i, n) |)−1
∑

j∈A(i,n)

wnij ≥ Φ3.

3) For every (i, j) ∈ (I1(n))2, wnij ∈ [c1, c1], for every (i, j) ∈ I1(n)×I2(n), wnij ∈ [c2, c2] and

for every (i, j) ∈ (I2(n))2, wnij ∈ [c3, c3]. Moreover c1 ≤ c2 ≤ c1 ≤ c2, c1 ≤ c3 ≤ c1 ≤ c3.

It is important to observe that Assumption A is only used in the analysis of the decoder, it is not

needed for the implementation of any algorithm solving (3).

Theorem 1. Necessary conditions: If assumption A is satisfied, and if
(1− α)(Φ1 − λ) | A(i, n∗1) | +αCME

(max{c2, c3} − λ) | C(i) | +αCME
(c2 − λ)

∑
j 6=i | C(j) |≤ 0,

(1− α)(Φ3 − λ) | A(i, n∗1) | +αCME
(c2 − λ) | C(i) | +αCME

(c2 − λ)
∑

j 6=i | C(j) |≥ 0,

(5)

with n∗1 = argmaxnA(i, n), then m∗i is a local optimum of (4).

April 23, 2020 DRAFT

6

Sufficient conditions: If assumption A is satisfied, if (5) is also satisfied and finally if

(1− α) ((Φ1 − λ) | A(i, n∗2) | +(c2 − λ) | B(i, n∗2) |)

+αCME
(max{c2, c3} − λ) | C(i) | +αCME

(max{c2, c3} − λ)
∑

j 6=i | C(j) |≤ 0,

(1− α) ((Φ2 − λ) | A(i, n∗3) | +(c3 − λ) | B(i, n∗3) |)

+αCME
(max{c2, c3} − λ) | C(i) | +αCME

(max{c2, c3} − λ)
∑

j 6=i | C(j) |≤ 0,

(6)

where n∗2 = argmaxn(Φ1 − λ) | A(i, n) | +(c2 − λ) | B(i, n) | and n∗3 = argmaxn(Φ2 − λ) |

A(i, n) | +(c3 − λ) | B(i, n) |, then m∗i is the unique global optimum of (3).

Proof. See appendix.

IV. ALGORITHMS

In this section, we introduce two algorithms. The first one finds the global solution of (3),

however, it is not useful if I > 10. The second algorithm finds a local solution of (3), but is

much faster.

A. Global solution: Dynamic Programming

The decoder (3) is a nonlinear integer programming problem and it is interesting to note that

this problem can be recast as a finite horizon Markov decision problem as stated in the next

theorem.

Theorem 2. Let p ∈ {0, 1}I and n ∈ {1, . . . , N}. The solution of the decoder (3) is also the

solution of the following dynamic programming equation, ∀n ∈ {1, . . . , N}:
V (p, n, 1p < 1) = minui∈{0,1}, ∀i

∑
(i,j)∈I2 e

′
ij

+V (up, n+ 1), ∀p ∈ {0, 1}I ,

(7)

with the final condition V (p,N + 1) = 0 for all p ∈ {0, 1}I , with e′ij = eij(wij − λ)uiujpipj and

starting from the state (1, 1).

Proof. We first introduce the new variable uni ∈ {0, 1} for all i ∈ I and n ∈ {1, . . . , N}. Then

mi =
∑N

n=0 p
n
i with:

pni = uni p
n
i , ∀i ∈ I, ∀n ∈ {1, . . . , N},

p0i = 1, ∀i ∈ I.

April 23, 2020 DRAFT

7

Therefore we have a deterministic system where the state is denoted by pni and the control given

by uni . By simply looking at the cost function of (3), the statement of the theorem follows.

The previous theorem seems to indicate that we could use all the reinforcement learning

techniques to solve the drift detection problem. However, it is not feasible in a real-world setting

because the number of states in the dynamic programming equation is equal to N × 2I , and most

of the time, we will face situations where I > 10. Therefore, in the next section, we will derive

a new algorithm, to obtain an approximate solution of (3).

B. Local solution: Ordinal Potential game

Knowing the complexity of solving the dynamic programming equation (7), we provide an

algorithm which converges to a local optimum of (3). When the sufficient conditions of theorem

1 are satisfied, the proposed algorithm will converge to the global optimum. Our algorithm is

based on a game theory reformulation of (3). The intuition is described below. We assume that

every sensor/agent i is minimizing the following local function:

Ui(mi,m−i) =

mi∑
n=1

I∑
j 6=i

eij1m∗j>0(w
n
ij − λ).

A Nash equilibrium of this game is defined as the vector mNE := [mNE
i]1≤i≤I where for every

i, mNE
i satisfies:

Ui(m
NE
i ,mNE

−i) ≤ Ui(m,m
NE
−i), ∀m 6= mNE

i ,

where m−i = [mj]j∈I−{i}. We are now able to prove that the previous optimization problem (3)

can be seen as an ordinal potential (see [5] for a better understanding of potential games) of our

game:

Ui(mi,m−i) > Ui(m
′
i,m−i)⇔ C(mi,m−i) > C(m′i,m−i).

Therefore two observations can be made: (1) Each Nash Equilibrium is a local optimum of (3);

(2) One-sided better reply dynamic will converge to a Nash equilibrium. The one-sided better

reply dynamic is the following:

One-sided better reply algorithm

1) Set T .

2) For t = 1, . . . , T do:

April 23, 2020 DRAFT

8

a) For i = 1, . . . , I do:

mi(t) = argminmi∈{1,...,N}Ui(mi,m−i(t)),

b) Set m(t+ 1) = m(t).

3) Return m(T).

We do not provide a proof for the number of iterations needed for the convergence of the

one-sided better reply dynamic, but we observe that in all our simulations (see section V), the

convergence of the algorithm happens in less than 1s.

V. NUMERICAL STUDIES

This section is dedicated to the numerical studies performed to understand the robustness of

our approach. We will first describe our two setups. Then we will discuss the different results

obtained. Note that, in both scenario we assume that MEij ∼ N (0, 0.01) and MEij = MEji, for

all i, j. As a rule of thumb, we choose λ to be equal to the sample quantile, corresponding to

the probability 0.7, of the vector [wnij]i,j,n. Through different simulations, this approximation

has been proved to be efficient. In subsequent work, we will discuss what are the different

options for λ. In all the numerical studies, we have only used the one-sided better reply algorithm.

A. Description of the simulation setups

Setup (1): In the first setup, we assume that C := {1, 2} and sn1 ∼ N (0, 0.1) and sn2 ∼

N (1.2, 0.1) for every n. Moreover c(i) = 1 for all i ∈ {1, . . . , bI/2c} and c(i) = 2 otherwise.

Concerning the drift, sensors are picked randomly as well as the instant at which a sensor starts

to drift. Finally if the sensor i drifts, then xni ∼ N (µi, 0.1) for every n. In this setup, we choose

µi = (2xi − 1)(i+ 1), where xi ∼ Bernouilli(0.5). The major purpose of this setup is to prove

and to ensure the performance of our algorithm. It does not have any ambition of capturing a

real-world scenario. An illustration of this setup, with four drifted sensors, is presented in figure

1.

Setup (2): In the second setup, we will try to capture a more realistic scenario. Here, we assume

that C := {1, 2}, the source signals are ARMA processes for which the parameters are also

April 23, 2020 DRAFT

9

−2

−1

0

1

2

0 25 50 75 100
Sample #

Sensor 10 Sensor 18(False Negative)
Sensor 6 Sensor 7

True Algorithm
Figure 1. Setup (1): The measurements which did not drift are in grey in this figure. The drift measurements are in red, purple

and yellow. The vertical dotted lines represented the instant at which sensors drifted and the vertical dashed lines capture the

instant predicted by the decoder.

chosen randomly. As in [7], we assume that the classical low-cost sensor drift model is similar to

the increase in the variance due to the gradual acquisition of drift. We introduce degradation at a

randomly selected time n for the sensor i as δni = δni + εni , where εni ∼ N (0.01, 0.01). Again,

the drift sensors are picked randomly. This setup with four sensors, is illustrated in figure 2.

0.0

0.3

0.6

0.9

0 25 50 75 100
Sample #

Sensor 1(False Positive) Sensor 11 Sensor 19(False Negative) Sensor 2(False Positive)
Sensor 4(False Positive) Sensor 5(False Positive) Sensor 6(False Positive) Sensor 7Figure 2. Setup (2): The measurements which did not drift are in grey and dark blue in this figure. The measurements in dark

blue indicate that the decoder predicted, wrongly, that these measurements are unreliable. The drift measurements are in green,

light grey and yellow. As in figure 1, the vertical dotted lines represented the instant at which sensors drifted and the vertical

dashed lines capture the instant of drift beginning predicted by the decoder.

April 23, 2020 DRAFT

10

0.4

0.6

0.8

2 3 4 5 6

Tr
ue

 P
os

iti
ve

0.6

0.7

0.8

0.9

1.0

2 3 4 5 6

Tr
ue

 N
eg

at
iv

e

0.0

0.1

0.2

0.3

0.4

2 3 4 5 6

Fa
ls

e
po

si
tiv

e

0.2

0.4

0.6

2 3 4 5 6
Fa

ls
e

ne
ga

tiv
e

0

5

10

15

20

2 3 4 5 6
Degraded Sensors

A
ve

ra
ge

 D
el

ay
 D

et
ec

tio
n

Scheme 1 Scheme 2

Figure 3. Performance metrics.

B. Results

We define two performance metrics: The average detection delay and the classical rate of

False Positive/Negative. If a sensors are designed to fail in a predetermined number of trials, the

average delay is the mean of the absolute difference between the true instant of drift acquisition

and the estimated time of degradation. Fig.3 represents the results of the One-sided better reply

algorithm. For each point on the x-axis, the detection time and the rate of False Positive/Negative

are averaged over 10 trials. As expected, the decoder is performing better in setup 1 than setup 2.

April 23, 2020 DRAFT

11

In setup 1, we observe an unexpected phenomenon. The rate of false-negative decreases when the

number of unreliable sensors increases. Otherwise, the decoder behaves as expected in the setup,

its performance decreases when the number of unreliable sensors increases. Again, in setup 2,

when the number of failed sensors increases, the performance of the decoder decreases in terms

of the rate of false positive and false negative. However, when a drifted sensor is detected by

the decoder, we observe that the average detection delay of detection is slightly better when the

number of unreliable sensors increases.

APPENDIX

Proof. Step 1 (Necessary condition): We first prove the necessary condition for m∗ to be a local

optimum of (3). If m′ < m∗i , then from (4) we can decomposed
∑m∗i

n=m′+1

∑I
j=1 eij1m∗j≥n(wnij−λ)

into the sum of two terms
∑m∗i

n=m′+1

∑I
j∈c(i) eij1m∗j≥n(wnij−λ) and +

∑m∗i
n=m′+1

∑I
j 6=c(i) eij1m∗j≥n(wnij−

λ). From assumption A, note that for all n ≤ m∗i ,
∑I

j∈C(i) 1m∗j≥n(wnij − λ) ≤ A(i, n)(Φ1 − λ),

we have
m∗i∑

n=m′+1

I∑
j∈C(i)

αMij1m∗j≥n(wnij − λ)

≤ (m∗i −m′ − 1) | C(i) | αCME
(c3 − λ),

m∗i∑
n=m′+1

I∑
j 6=C(i)

αMij1m∗j≥n(wnij − λ)

≤ (m∗i −m′ − 1)
∑
j 6=i

| C(j) | αCME
(c3 − λ)

Therefore it follows that if (5), then
m∗i∑

n=m′+1

I∑
j=1

eij1m∗j≥n(wnij − λ) ≤ 0. A similar line of thought

can be used for every m′ > m∗i . Instead of find an upper bound we need to find a lower bound

for
∑m′

n=m∗i+1

∑I
j=1 eij1m∗j≥n(wnij − λ).

Step 2 (Uniqueness condition): Let us assume that there exists another local solution mloc 6= m∗.

We will use a contradiction argument. We need to prove that it exists m′, such that (4) is

not satisfied for mloc. Two cases need to be solved. First, for a given i, let us assume that

April 23, 2020 DRAFT

12

mloc
i < m′ ≤ m∗i . Note that i ∈ I1(m′) and from (4) we have:

m′∑
n=mloc

i +1

I∑
j=1

eij1mloc
j ≥n(wnij − λ)

=
m′∑

n=mloc
i +1

I∑
j∈C(i)

((1− α) + αMij)1mloc
j ≥n(wnij − λ)

+
m′∑

n=mloc
i +1

I∑
j 6=C(i)

αMij1mloc
j ≥n(wnij − λ)

From assumption A, from B(i, n) ≤ Bc(i) and from | A(i, n) |=| C(i) | − | B(i, n) | we can

easily deduce the following inequality:
m′∑

n=mloc
i +1

I∑
j∈C(i)

1mloc
j ≥n(wnij − λ)

≤
m′∑

n=mloc
i +1

(Φ1 − λ) | A(i, n) | +(c2 − λ) | B(i, n) |

≤ (1− α)(m′ −mloc
i − 1)

×((Φ1 − λ) | A(i, n∗) | +(c2 − λ) | B(i, n∗)) |,

where n∗ = argmaxn(Φ1 − λ) | A(i, n) | +(c2 − λ) | B(i, n) |. Moreover, by using assumption

A, we have:
m′∑

n=mloc
i +1

I∑
j∈C(i)

αMij1mloc
j ≥n(wnij − λ)

≤ (m′ −mloc
i − 1) | C(i) | αCME

(c3 − λ)

m′∑
n=mloc

i +1

I∑
j 6=C(i)

αMij1mloc
j ≥n(wnij − λ)

≤ (m′ −mloc
i − 1)

∑
j 6=i

| C(j) | αCME
(c3 − λ)

Note that if the assumption of the theorem are respected then it is leading us to a contraction.

Indeed,
∑m′

n=mloc
i +1

∑I
j=1 eij1mloc

j ≥n(wnij − λ) < 0 and not be positive.

The second case is the following, for a given i, let us assume that m∗i < m′ ≤ mloc
i . Note

that i ∈ I2(m′). Then by using the same argument as previously and by replacing (Φ1 − λ) |

A(i, n) | +(c2 − λ) | B(i, n) | by (Φ2 − λ) | A(i, n) | +(c3 − λ) | B(i, n) |, we will reach the

same conclusion.

April 23, 2020 DRAFT

13

REFERENCES

[1] Tamer Başar and Pierre Bernhard. H-infinity optimal control and related minimax design problems: a dynamic game approach.

Springer Science & Business Media, 2008.

[2] Toby Dylan Hocking, Armand Joulin, Francis Bach, and Jean-Philippe Vert. Clusterpath an algorithm for clustering using

convex fusion penalties. In 28th international conference on machine learning, page 1, 2011.

[3] Itamar Katz and Koby Crammer. Outlier-robust convex segmentation. In Twenty-Ninth AAAI Conference on Artificial

Intelligence, 2015.

[4] Dheeraj Kumar, Sutharshan Rajasegarar, and Marimuthu Palaniswami. Automatic sensor drift detection and correction using

spatial kriging and kalman filtering. In 2013 IEEE International Conference on Distributed Computing in Sensor Systems,

pages 183–190. IEEE, 2013.

[5] Dov Monderer and Lloyd S Shapley. Potential games. Games and economic behavior, 14(1):124–143, 1996.

[6] MS Takruri, Subhash Challa, and Rajib Chakravorty. Recursive bayesian approaches for auto calibration in drift aware

wireless sensor networks. Journal of Networks, 2010.

[7] Yuzhi Wang, Anqi Yang, Zhan Li, Xiaoming Chen, Pengjun Wang, and Huazhong Yang. Blind drift calibration of sensor

networks using sparse bayesian learning. IEEE Sensors Journal, 16(16):6249–6260, 2016.

April 23, 2020 DRAFT

	Introduction
	Setup
	Drifts detection: Approach and Feasibility
	Approach
	Going back to the time series model
	Main Results

	Algorithms
	Global solution: Dynamic Programming
	Local solution: Ordinal Potential game

	Numerical studies
	Description of the simulation setups
	Results

	Appendix
	References

