How to share an object:
A fast timing-based solution

Rajeev Alur

Gadi Taubenfeld

AT&T Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974.

Abstract

We consider the problem of transforming a given se-
quential implementation of a data structure into a
wait-free concurrent implementation. Given the code
for different operations of an object that is designed
to work under the assumption that only a single pro-
cess accesses it, we want to construct an implementa-
tion that works correctly in a concurrent environment
where it may be accessed by many processes.

We assume a shared memory model with atomic
registers. It is well known that using atomic registers
it is impossible to construct concurrent implementa-
tions of even very simple objects such as test-and-set
bits. However, we show that the knowledge about rel-
ative speeds of processes can be used for such imple-
mentations. We assume that there is a known upper
bound on the time taken by the slowest process to
execute a statement involving an access to the shared
memory. This timing assumption is very powerful and
enables us to construct fast wait-free implementations
of data structures such as queues, stacks and synchro-
nization primitives such as test-and-set, compare-and-
swap, fetch-and-add, etc.

Our transformation works only when the given se-
quential implementation is bounded, that is, there is a
known upper bound on the number of steps required
to complete any of the operations it supports. In the
absence of contention, it guarantees that there is only
a small overhead in the cost of executing the concur-
rent operations over the sequential ones, namely, only
a constant number of accesses to the shared memory.

1 Introduction

An object is a data structure that can be accessed via
a fixed set of operations. A sequential implementation
of an object consists of the code for all its operations,
which behaves correctly when all the operations are
executed one after the other in a sequential fashion.

A concurrent implementation gives the code that be-
haves correctly even when executed by many processes
concurrently. A concurrent implementation is usually
required to be wait-free, that is, it should guarantee
that any operation by a process will always be com-
pleted in a finite number of steps regardless of the
behavior of other processes (such as abnormal termi-
nation). Since writing a concurrent implementation
is usually much trickier than writing a sequential one,
our goal is to obtain a general method that transforms
a given sequential implementation into a wait-free con-
current implementation. For efficiency purposes, we
are interested in minimizing the difference between the
costs of executing an operation in the concurrent im-
plementation and the sequential one. In this paper,
we will focus on the contention-free complexity of a
concurrent implementation, namely, the cost of an op-
eration when only one process is accessing the object.
Lamport has pointed out that in well designed sys-
tems contention for using an object is rare — most of
the time only one process is interested in accessing
the object [Lam87]. Thus, we want an implementa-
tion that works correctly even when many processes
access the object, but when only one process is access-
ing the object the overhead in executing an operation
is small. We will say that a concurrent implementa-
tion is fast when the difference between the cost of
an operation in the sequential implementation and its
contention-free cost in the concurrent implementation
is small.

One way to obtain a concurrent implementation
from the sequential code is to enforce sequentiality
in accessing the object using a mutual exclusion algo-
rithm. In this solution, in order to access the object,
a process participates in a mutual exclusion algorithm
that protects the object, and accesses the object only
in its critical section. However, typically mutual ex-
clusion algorithms are not wait-free, and a failure of a
process in its critical section will block any further ac-
cess to the object by other processes. Also, for this so-
lution to be fast, the mutual-exclusion algorithm used



needs to be of low contention-free complexity. We will
present a solution by designing a fast wait-free algo-
rithm for mutual exclusion.

The model

For process communication, we use the shared mem-
ory model with atomic registers. Thus, in one atomic
step a process can either read or write a shared regis-
ter, but cannot do both. It is well known that using
atomic registers it is impossible to construct concur-
rent implementations of even very simple objects such
as queues and test-and-set bits [LA87]. However, we
will use timing assumptions, and show that the knowl-
edge about the relative speeds of processes can be used
to obtain such implementations.

We assume that there is a known upper bound, de-
noted by A, on the time taken by the slowest process
to execute a single step. A single step involves at most
one access to the shared memory along with a minimal
local computation such as assignments to local regis-
ters, change of control location in the code, compar-
isons etc. Observe that our timing assumption does
not imply lock-step execution as in the synchronous
model, and the time it takes for different processes to
execute a single step may be different. The bound A
can be used explicitly in the following way: a process
can execute a statement delay(A); this statement is
similar to a skip statement, but takes at least A time
units to finish execution.

The cost of an implementation is measured by the
number of accesses to the shared memory, and the
amount of explicit delay introduced by executing the
delay statements. A concurrent implementation is
called fast if the difference between the sequential cost
and the contention-free concurrent cost is a constant
number of accesses and no explicit delay. Notice that
the costs of a single access to memory and an exe-
cution of delay(A) are different, because the value of
A needs to account for the slowest process, whereas
the time taken to execute a memory access needs not.
Hence, we require that no delay statements are used
in absence of contention.

Processes are subject to crash failures in which a
process at an arbitrary time ceases to participate fur-
ther in the algorithm. As long as a process has not
failed, it must follow its program and satisfy all the
timing assumptions. Thus, wait freedom means that
any operation by a process must be completed in a fi-
nite number of steps even if all other processes crash.

Overview

The main result of the paper is a method for trans-
forming a sequential implementation into a fast wait-
free concurrent one. QOur transformation works only
for bounded implementations. A sequential implemen-
tation is called bounded if there exists a known up-
per bound on the number of steps required to com-
plete any of the operations. Thus, in a bounded im-
plementation, the time complexity of various opera-
tions does not depend on the input or the current
state of the object. The natural implementations of
queues, stacks, test-and-set, fetch-and-add, consensus
(for one process), sticky-bit, swap, compare-and-swap,
are all bounded. On the other hand, consider a data
structure set that is implemented as a linked list with
the membership operation implemented by a linear
search through the list. Such an implementation is not
bounded because the number of steps needed to exe-
cute the membership operation depends on the num-
bers of elements in the set.

We reach our goal in several steps. First, using only
atomic registers we design a fast timing-based imple-
mentation of a restricted type of test-and-set bits; the
subsequent algorithms employ these bits as primitives.
In the second step, we construct a fast starvation-free
mutual exclusion algorithm using test-and-set bits.
This algorithm is interesting in its own right. It makes
no timing assumptions and regardless of the level of
contention, the maximum number of steps of the pro-
cess that enters its critical section in its entry code and
exit code, since the last time a process exited its criti-
cal section, is a constant (assuming test-and-set takes
one step). The previous best known starvation-free al-
gorithm has time complexity O(logn), where n is the
total number of processes. The third step is to modify
the starvation-free algorithm, maintaining the prop-
erty of being fast, so that it also becomes wait-free.
This requires the additional assumption that there is
a bound on the time a process spends in its critical
section.

Finally we use the fast wait-free mutual exclusion
algorithm to transform a given sequential bounded im-
plementation into a concurrent one. When each se-
quential operation involves only writes that are robust
to failure, that is, a process failure immediately after a
write does not leave the object in an inconsistent state,
the transformation is easy. In this case the wait-free
mutual exclusion algorithm is fine-tuned so that the
bound on the time a process is allowed to be in its
critical section is long enough to enable it to finish
an operation. When the sequential operations contain
writes that are not robust to failure, a process may



fail leaving the object in an inconsistent state. In this
case, when some other process detects such a failure it
needs to complete the preceding unfinished operation.
In Section 5 we explain how this can be done for any
bounded implementation.

Related work

The idea of transforming a given sequential imple-
mentation into a wait-free concurrent one, has drawn
the attention of many researchers. Both general
transformation methods and specific concurrent im-
plementations of various objects have been proposed
[Her91, Plo89, Her90]. However, our model, that
employs atomic registers with timing assumptions as
primitives, is quite different from the models used in
these previous works.

The importance of contention-free complexity was
stressed originally by Lamport [Lam87], where he
presents a fast mutual exclusion algorithm in which
the number of steps by a process before entering its
critical section in the absence of contention is constant.
Since then, various algorithms that are sensitive to the
level of contention have been proposed for mutual ex-
clusion [AT92, CS93, MT93].

Relatively less work has been done on designing al-
gorithms in the timing-based model used in this pa-
per. In such a model, the first deadlock-free mutual
exclusion algorithm, is due to Fischer [Lam87]. Lam-
port also gives a fast timing-based deadlock-free mu-
tual exclusion algorithm, which works correctly when
some bound is assumed on the time needed to execute
the critical section [Lam87]. In [AT92], we have pre-
sented a fast timing-based algorithm for mutual ex-
clusion. Lynch and Shavit have presented an algo-
rithm for mutual exclusion where only the property of
deadlock freedom depends on the timing assumptions;
their algorithm is not fast [LS92]. None of these pre-
vious algorithms is starvation-free, and hence, cannot
be used directly to obtain wait-free concurrent imple-
mentations.

2 Implementing test-and-set bits

In this section we provide a fast implementation of a
restricted type of test-and-set bits from atomic regis-
ters using timing assumptions. This implementation
will play a central role in the implementations of more
complex objects in the remaining sections.

2.1 Single-use test-and-set

We first consider test-and-set bits that are meant to
be used only once. The shared object is a bit that
is initially false, and it is accessible to the processes
sharing it through the test-and-set operation. This
operation atomically reads the register, sets it to true,
and returns the value read. Such an object is called
a single-use test-and-set bit. When many processes
execute the test-and-set operation on such an object,
the first operation returns false and all others return
true, and hence, we need some mechanism of choosing
the winner.

function single-use-test-and-set(t):
t.x, t.y : shared registers, initially t.y is O;
t.z : shared bit, initially false;

t.x = 1;
if t.y # 0 then return(true) fi;
t.y =1,

if t.x # ¢ then delay(3-A);
if t.y # i then
return(true) fi fi;
cs: if t.z then return(true)
else t.z := true; return(false) fi
end-function

Figure 1: Fast timing-based implementation of
a single-use test-and-set bit from atomic
registers (process i's program).

Our solution is inspired by the algorithms for mu-
tual exclusion of [Lam87] and [AT92], and is shown
in Figure 1. A single-use test-and-set bit ¢ is imple-
mented using two atomic registers x and y, and an
atomic bit z. We assume that each process has a
unique identifier, and when process i wants to exe-
cute the test-and-set operation on the bit ¢, it executes
the code of Figure 1. In our construction, the bit z
models the actual shared bit, and is accessed only in
the critical section of the code, namely, the if state-
ment labeled cs. The algorithm ensures that no two
processes are in their critical sections simultaneously.
Also, if some process i returns true without reading
z, then some other process j, that starts before 7 fin-
ishes, enters its critical section (assuming no failure).
These two properties together ensure the existence of
a consistent serialization. Let us see why no two pro-
cesses can be in their critical sections simultaneously.
We will say that a process i enters its critical section
along path « if it finds = = 4, and along path j if it



finds y = i after the delay. It should be obvious that
at most one process can enter along path a. The de-
lay statement has two roles. First, after some process
executes the delay, the value of y will stay unchanged,
and hence at most one process i can find y = i after
the delay, and enter along path §. Secondly, suppose
that process ¢ enters along path o and process j en-
ters along path 3. Since j finds y = j after the delay,
process ¢ must have executed y := ¢ before j starts
its delay. Since process ¢ takes at least 3 steps while
j executes its delay statement, ¢ terminates when j
finishes the delay.

In absence of contention, a process enters the crit-
ical section along path «, executes only 7 steps. In
presence of contention, the test-and-set operation in-
volves at most 8 steps and an explicit delay of 3-A.

2.2 Multi-use test-and-set

The (multi-use) test-and-set bit is similar to a single-
use test-and-set bit, except that it has an additional
reset operation. As before, the bit is initially false.
The test-and-set operation is as before, and the reset
operation assigns the value false.

We will modify the code of Figure 1 to implement
a weaker form of this object. Let us define a cor-
rupted test-and-set bit to be a bit with test-and-set
and reset operations such that the test-and-set opera-
tion always returns true, and the reset operation does
nothing. Thus, a corrupted test-and-set bit is just
like the (read-only) constant value true. A corruptible
test-and-set bit is again a shared bit accessible through
test-and-set and reset operations; it behaves like a cor-
rect test-and-set bit as long as there are no process
failures, but if a process accessing the bit crashes then
the bit may start behaving like a corrupted test-and-
set bit. In other words, a failure of a process accessing
the bit may cause all the subsequent test-and-set op-
erations to return true.

Figure 2 shows the proposed construction of a cor-
ruptible test-and-set bit from atomic registers and de-
lays. The construction is similar to the one of Figure 1,
and we will point out the differences. As before, the
bit z models the actual shared bit, and the reset oper-
ation corresponds simply to setting the bit z to false.
In Figure 1, once the register y gets a nonzero value,
it is never reset to 0, and all the remaining processes
return true without even testing z. This mechanism
is now unacceptable because of the reset operation.
In the new code, the process that enters the critical
section resets y to 0 before returning from the test-
and-set operation. The algorithm ensures that no two
processes are in the critical section simultaneously.

function corruptible-test-and-set(t):
t.x, t.y : shared registers, initially ¢.y is 0;
t.z : shared bit, initially false;
t.x =1
if t.y # 0 then delay(A);
if t.y # 0 then
delay(9-A);
return(true) fi fi;
t.y =1
if t.x # i then delay(4-A);
if t.y # i then
delay(5-A);
return(true) fi fi;
cs: if t.z then t.y := 0; return(true)
else t.z := true; t.y := 0; return(false) fi
end-function
procedure reset(t)
t.z := false
end-procedure

Figure 2: Fast timing-based implementation of
a corruptible test-and-set bit from
atomic registers (process i’s program).

To prove correctness, we need to show that every
run involving multiple invocations of test-and-set and
reset operations has a consistent serialization. With
each operation we associate a commit point. Consider
a test-and-set operation by a process that enters the
critical section. If the process finds z set, then the
commit point coincides with this read. If the process
finds z to be false and assigns true to z, then the com-
mit point coincides with this assignment. The commit
point of a reset operations coincides with the assign-
ment of false to z. To begin with, let us ignore all the
test-and-set operations that terminate without testing
z, that is, without entering the critical section. Then,
it is easy to prove that the ordering of all other op-
erations specified by the ordering of their respective
commit points gives a consistent serialization. Now
consider a test-and-set by some process ¢ which re-
turns true without testing z. The deadlock freedom
of the underlying mutual exclusion algorithm ensures
that there is some other process 7 whose execution of
test-and-set overlaps with that of process 7, and pro-
cess j enters the critical section. The long delays in-
troduced just before process ¢ terminates ensure that
this invocation overlaps with the commit point associ-
ated with process j’s operation. The commit point for



process i’s operation is immediately after process j’s
commit point, and this leads to a consistent serializa-
tion. There is one remaining case: it may happen that
process j is already committed before process i starts,
but process j has not yet reset y to 0. In this case,
process i may find y # 0. The statement delay(A)
following the test ensures that process j finishes the
assignment y := 0 in its critical section. Now process
i tests y again, and if it finds y # 0 again, then there
must be another process k that enters the critical sec-
tion. In this case, process i’s execution overlaps with
the commit point of process k.

If a process in the critical section fails just before
resetting y, then all the subsequent test-and-set op-
erations will return ¢rue, and thus, this failure will
change the bit into a corrupted test-and-set bit.

In absence of contention, a process will enter its
critical section along path a and test z, and thus,
the implementation is fast. The worst-case time-
complexity of the implementation can be computed
easily by counting the steps. The properties of the
construction are as follows:

Proposition 1 Properties of algorithm of Figure 2:

e The algorithm is a correct implementation of a
corruptible test-and-set bit.

o A process finishes test-and-set operation within
time 17-A irrespective of the failures of other pro-
cesses.

e The contention-free time complezity is 8 steps and
no delay statements.

3 Starvation-free mutual exclusion

We now present a new and simple solution to the mu-
tual exclusion problem [Dij65] (see also [Ray86]). The
solution uses test-and-set bits as the basic synchro-
nization primitive. The algorithm we present is fast
even when there is contention — its worst-case time
complexity is a constant. That is, regardless of the
level of contention, the maximum number of steps of
the process that enters its critical section in its en-
try code and exit code, since the last time some pro-
cess exited its critical section, is a constant (assuming
test-and-set takes constant time). This should be con-
trasted with the fact that using atomic registers only,
it is impossible to design a deadlock-free mutual exclu-
sion algorithm, even for two processes, with bounded
(worst-case) time complexity [AT92].

turn: shared register;

lock: shared (corruptible) test-and-set bit,
initially false;

waiting[0..(n — 1)]: shared array of bits,
initially false;

lturn, key: local registers ;

waitingt] := true;
key := true;
while (waiting[i] and key) do
key := test-and-set(lock) od;

critical section;

waiting[i] := false;
if turn = i then
lturn := (turn + 1) mod n
else lturn := turn fi;
if waiting[lturn] then
turn := lturn; waiting[lturn] := false
else turn := (lturn + 1) mod n; reset(lock) fi

Figure 3: Fast starvation-free mutual exclusion
using test-and-set bits — process i’s program.

The algorithm is based on a starvation-free algo-
rithm by Burns [Bur78]. In his algorithm, the winning
process, even in the absence of contention, executes
O(n) steps, where n is the total number of processes.
As far as we know, the time complexity of the best
previously-known (deterministic) starvation-free solu-
tion is O(logn).

The algorithm of Figure 3 employs a test-and-set
bit lock, an array waiting of atomic bits, and a shared
atomic register turn. Process ¢, when it wants to en-
ter its critical section, first sets waiting[i] to true,
and then repeatedly performs test-and-set operation
on the bit lock. It can decide to enter its critical sec-
tion in two ways. If test-and-set returns false, then the
process has the lock, and can enter the critical section.
On the other hand, the last winner, that is, the last
process to enter the critical section, may grant permis-
sion to process i by resetting waiting[i] to false. When
some process exits its critical section, it checks if the
process turn wants to enter critical section, that is, if
waiting[turn] is set. If so, it grants turn permission to
enter the critical section; otherwise, it increments turn
and resets lock. The winning process executes only a
constant number of steps in both its entry code and
exit code. Also, the algorithm guarantees that while



a process is waiting to enter its critical section, all the
remaining processes can enter the critical section at
most n — 1 times altogether. The properties of the
algorithm are summarized in the following claim:

Proposition 2 Properties of algorithm of Figure 3:

e No two processes are in their critical sections si-
multaneously even if processes fail.

e In absence of process failures, if a process is try-
ing to enter its critical section, then it eventually
enters its critical section.

o Assuming test-and-set takes constant number of
steps, a process entering its critical section takes
constant number of steps in its entry code and
exit code, since the last time some process exited
its critical section.

Note that the algorithm makes no use of timing as-
sumptions. We can replace the test-and-set bit by
atomic registers with timing assumptions according to
the construction of Section 2. The resulting algorithm
is a timing-based starvation-free solution from atomic
registers. In absence of contention, it provides fast
access with constant time complexity.

4 Wait-free mutual exclusion

Now we modify the algorithm of Section 3 so as to
make it robust to process failures also. The property
of wait freedom requires that a failure of a process
should not block the progress of other non-faulty pro-
cesses; that is, if a process is trying to enter its criti-
cal section, then it should eventually enter its critical
section, provided this process itself does not fail. To
ensure wait freedom, it is essential that a process is
able to detect the failure of some other process. We
use timing assumptions for this purpose. We assume
that there is an upper bound on the amount of time
a process is allowed to spend in its critical section,
and this bound is known to all the processes. Recall
that in our model only crash failures are allowed, and
thus, all timing assumptions are satisfied as long as a
process participates in the algorithm.

Let us see how the solution of Figure 3 can be
made wait-free. We introduce a new register called
count, and this register is incremented each time a
process leaves its critical section. Recall that, in ab-
sence of failures, once a process leaves its critical sec-
tion, the next one enters the critical section within a
constant number of steps. Each process spends only a

turn: shared atomic register;

count[0..(n — 1)]: shared array of registers;

lock[0..(n — 1)]: shared array of corruptible
test-and-set bits, initially false;

waiting[0..(n — 1),0..(n — 1)]: shared array of bits,
initially false;

lturn, lcount, 7, £: local registers, £ is initially 0;

K constant;

startl: waiting[i, €] :== true;
start2: lcount = count[l];
for j =1 to K do
if not test-and-set(lock[(]) then
goto cs fi;
if not waiting[i, ¢] then
goto cs fi;
delay(A) od;
if count[] = lcount then
{:={+1; goto startl
else goto start?2 fi;

cs: critical section;
lcount := (count[¢] + 1) mod n;
count[f] := leount;

waiting[i, €] := false;
if turn = ¢ then
lturn := (turn + 1) mod n
else lturn := turn fi;
if waiting[lturn, ] then
turn := lturn; waiting[lturn] .= false
else turn := (lturn + 1) mod n;
reset(lock[l]) fi

Figure 4: Fast wait-free mutual exclusion using
test-and-set bits — process ¢’s program.

bounded amount of time in the critical section. This
implies that the value of count should change within a
bounded period. If a process records the value of count
initially, and finds count unchanged after a sufficient
delay, it can conclude that some process has failed.
Observe that, once a process i starts trying, there can
be at most n — 1 entries to the critical section before
1 wins, and hence, count can get incremented at most
n — 1 times while ¢ is waiting to enter. Consequently,
it suffices to have count to act as a modulo n counter.
Once a failure is detected by a process, the process
can execute the same algorithm, but with a fresh set
of registers. For each process failure, we may need a
new copy, and hence, n such copies are required. (A



finer analysis reveals that it is sufficient to have only
one copy of the register turn.)

The solution is shown in Figure 4. The register ¢
denotes the number of the copy currently being used.
Initially, ¢ is 1, and when a failure is detected, it is
incremented. Notice that this register should stay the
same between different invocations of the mutual ex-
clusion algorithm by the same process; that is, though
¢ is accessible only by process i, it is a (temporally)
global register.

The waiting for entering the critical section is
mainly inside the for loop. As before, process i
can enter its critical section if it obtains false from
test-and-set operation, or if the previous winner grants
it permission by resetting its bit in the array wait-
ing. Executing the loop K times ensures a delay of
K- A between the successive sampling of the register
count. Let K.s-A be the upper bound on the time
that a process is allowed to spend in its critical sec-
tion. Suppose the time taken to execute test-and-set is
Kys/A. A careful counting shows that it suffices to have
K = K.; + K;s + 12. If we assume that test-and-set
is atomic, then choose K to be K .5 + 13.

If a process accessing lock fails, thereby corrupt-
ing it, then this failure will be eventually detected by
everyone. We point out that a process will have to
execute the for loop K times only when some process
fails, a rare occasion. On the other hand, in absence
of contention, our wait-free solution is fast.

Proposition 3 Properties of algorithm of Figure 4:

e No two processes are in their critical sections si-
multaneously even if processes fail.

e If a process is trying to enter its critical section,
then it eventually enters its critical section even
if other processes fail.

e In absence of contention, a process needs to exe-
cute 4 steps (including a test-and-set operation)
in its entry code, 8 steps in its exit code, and no
delay statements.

Since lock can be an array of corruptible test-and-set
bits, we can use the implementation of Section 2. In
that case, the value of K should be K. + 29, and
contention-free time complexity is 19 steps.

5 Sharing a sequential object

Consider a data structure that can be accessed
through a fixed set of operations. We are given the

code of each operation such that the code implements
the operation correctly using atomic registers under
the assumption that the object is accessed only se-
quentially, that is, by only one process. We also as-
sume that the given code is bounded, that is, the num-
ber of steps required to execute the given sequential
code of an operation is bounded, and this bound is
known a priori. As an example, consider the object
stack with three operations push, pop, and is-empty.
It is possible to implement the stack as an array, where
all these three operations take only a small number of
steps, and this number is independent of the current
state of the stack, or the value to be pushed. On the
other hand, consider a data structure set that sup-
ports the operation member that tests whether its ar-
gument is a member of the set. Suppose we implement
the set by a linked list of its elements. The member-
ship operation will involve search, and the number of
steps it takes will depend on the size of the set at the
time of the invocation. Consequently, this implemen-
tation of set is not bounded. We can get a bounded
implementation of a set (which supports a member-
ship operation) using a hash table.

Typically, the given sequential code for any opera-
tion will involve several read and write operations to
the shared registers modeling the object. A write op-
eration is said to be failure robust, if a process failure
immediately after the write operation does not leave
the object in an inconsistent state. That is, in case
of a process failure immediately after a failure-robust
write, we may either assume that the operation was
successfully completed, or assume that the operation
was never executed. As an example, consider the ob-
ject stack that is implemented as an array A and an
integer ¢ that keeps the count of its elements. The
stack consists of the elements A[0] through Alc — 1].
Suppose the operation push first writes to the location
Alc] and then increments c. Here, both writes are fail-
ure robust; if a process fails before the second write,
it is safe to assume that the process failed before exe-
cuting push. Observe that if the operation push first
increments ¢, and then writes the element into the ar-
ray, the first write is not failure robust.

If all the write operations in the given sequential
code are failure robust, then we can use the code of
Figure 4 directly to transform the given sequential
bounded implementation into a concurrent implemen-
tation. To access the object, process i simply exe-
cutes the code of Figure 4 and in the critical section
executes the given sequential code of the desired oper-
ation. The fact that the object is bounded gives us the
desired value of K,.s. (Recall that K s-A is the upper



bound on the time that a process is allowed to spend
in its critical section.) Each such access to the shared
object finishes within a finite time in spite of the fail-
ures of other processes. In absence of contention, in
addition to the number of steps of the sequential code,
the process needs to execute 19 extra steps. Thus, the
overhead is constant in absence of contention, and the
implementation is fast.

It is possible to write bounded sequential code with
only failure robust writes for various synchronization
primitives such as test-and-set, fetch-and-add, and
data structures such as queue, stack. This code can
then be transformed as above to allow sharing.

Now we illustrate how to use the construction of
Figure 4 even when the code contains writes that are
not failure robust. Suppose the number of writes in a
sequential operation accessing the object is bounded
by a constant, say k. We introduce additional atomic
registers x1,...x; and yi,...yk, and an atomic bit
b. We modify the code for each operation as follows.
The bit b is initially false. At the i-th write, instead
of modifying the object, the process writes the name
of the register (or the location) in z;, and the value it
wants to write in y;. At the end of the code, the pro-
cess sets the bit b to true, and then actually updates
the object; that is, for ¢ = 1,...k, writes the value y;
to the location specified by z;. After this update, it
resets the bit b to false. Consider what happens when
a process fails in the middle of an operation. If b is
false then the object is in a consistent state. If b is
true then the object may be only partially updated,
but all the information needed to finish the incomplete
operation is available. Hence, any process that wants
to update the object first tests b, and if b is true, it
writes the value y; to the location specified by x; for
i =1,...k, resets b to false, and then starts its own
operation.

As an example, consider an array A that supports
the operation swap(i,j) that swaps the values in the
locations A[i] and A[j]. Clearly, the operation has
to update both the registers, and no matter in what
order these two writes occur, the first one cannot be
failure robust. The code of Figure 5 shows the above
strategy. We can now use this code in the critical
section of Figure 4 with K., = 18 (assuming each
statement involves one access to a shared location).

References

[AT92] R. Alur and G. Taubenfeld. Results about fast
mutual exclusion. In Proceedings of the 13th
IEEE Real-Time Systems Symposium, pages 12—

procedure swap(i,j):
T1,T2,Yy1,Yy2: shared registers;
b : shared bit, initially false;
if b then
Alzy] = g5 Ales] = ya; b= false 6
z1 = 1i; y1 == Afjl;
z 1= j; y2 = Alil;

b := true;
Ali] = yi; Alj] = yo;
b := false

end-procedure

Figure 5: Code for swapping.

21, December 1992. Full version available from
{alur,gadi} @research.att.com.

[Bur78] J.E. Burns. Mutual exclusion with linear waiting
using binary shared variables. SIGACT News,
10(2):42-47, 1978.

[CS93] M. Choy and A.K. Singh. Adaptive solutions
to the mutual exclusion problem. In Proc. 12th
ACM Symp. on Principles of Distributed Com-
puting, pages 183-194, August 1993.

[Dij65] E. W. Dijkstra. Solution of a problem in concur-
rent programming control. Communications of
the ACM, 8(9):569, 1965.

[Her90] M. Herlihy. A methodology for implementing
highly concurrent data structures. In Proc. 2nd
ACM Symp. on Principles and Practice of Par-
allel Programming, pages 197-206, 1990.

[Her91] M. Herlihy. Wait-free synchronization. ACM
Trans. on Programming Languages and Systems,
11(1):124-149, January 1991.

[LA87] M. C. Loui and H. Abu-Amara. Memory re-
quirements for agreement among unreliable asyn-

chronous processes. Advances in Computing Re-
search, 4:163-183, 1987.

[Lam87] L. Lamport. A fast mutual exclusion algorithm.
ACM Trans. on Comp. Systems, 5(1):1-11, 1987.
[LS92] N. Lynch and N. Shavit. Timing-based mutual
exclusion. In Proc. of the 13th IEEE Real-Time
Systems Symp., pages 2-11, December 1992.
[MT93] M. Merritt and G. Taubenfeld. Speeding Lam-
port’s fast mutual exclusion algorithm. Informa-
tion Processing Letters, 45:137-142, 1993.
[Plo89] S. A. Plotikin. Sticky bits and universality of con-
sensus. In Proc. 8th ACM Symp. on Principles of
Dist. Computing, pages 159-175, August 1989.

[Ray86] M. Raynal. Algorithms for mutual exclusion. The
MIT Press, 1986.



