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Extended Fibonacci Cubes
Jie Wu, Senior Member, IEEE

Abstract —The Fibonacci Cube is an interconnection network that possesses many desirable properties that are important in
network design and application. The Fibonacci Cube can efficiently emulate many hypercube algorithms and uses fewer links than
the comparable hypercube, while its size does not increase as fast as the hypercube. However, most Fibonacci Cubes (more than
2/3 of all) are not Hamiltonian. In this paper, we propose an Extended Fibonacci Cube (EFC1) with an even number of nodes. It is
defined based on the same sequence F(i ) = F(i - 1) + F(i - 2) as the regular Fibonacci sequence; however, its initial conditions are
different. We show that the Extended Fibonacci Cube includes the Fibonacci Cube as a subgraph and maintains its sparsity
property. In addition, it is Hamiltonian and is better in emulating other topologies. Specifically, the Extended Fibonacci Cube can
embed binary trees more efficiently than the regular Fibonacci Cube and is almost as efficient as the hypercube, even though the
Extended Fibonacci Cube is a much sparser network than the hypercube. We also propose a series of Extended Fibonacci Cubes
with even number of nodes. Any Extended Fibonacci Cube (EFCk, with k ≥ 1) in the series contains the node set of any other cube
that precedes EFCk in the series. We show that any Extended Fibonacci Cube maintains virtually all the desirable properties of the
Fibonacci Cube. The EFCks can be considered as flexible versions of incomplete hypercubes, which eliminates their restriction on
the number of nodes, and, thus, makes it possible to construct parallel machines with arbitrary sizes.

Index Terms —Fibonacci numbers, Hamiltonian graphs, graph embedding, hypercubes, interconnection topologies.

——————————   ✦   ——————————

1 INTRODUCTION

 widely studied interconnection topology is the hyper-
cube [13]. The hypercube provides a rich interconnec-

tion structure which permits many other topologies to be
efficiently emulated. Numerous research projects have been
undertaken related to hypercube design aspects and hyper-
cube applications [7]. These have resulted in several re-
search prototypes and commercial products [3].

Unfortunately, the number of nodes 2n in an n-dimensional
hypercube Q(n) grows rapidly as n increases. This limits
considerably the choice of the number of nodes in the
graph. The Fibonacci Cube (FC) proposed by Hsu [10] is a
special subcube of a hypercube based on Fibonacci num-
bers [6]. It has been shown that the Fibonacci Cube can effi-
ciently emulate many hypercube algorithms. Fibonacci
Cubes use fewer links than comparable hypercubes and
their size does not increase as fast as hypercubes. The
structural analysis of the Fibonacci Cube has been exten-
sively studied in [2] and its applications in [9]. A Fibonacci
Cube can also be viewed as resulting from a complete hy-
percube after some nodes become faulty and the system is
reconfigured. Therefore, the Fibonacci Cube not only allows
the construction of systems of arbitrary sizes, but also ex-
poses the nature of hypercube systems operating in a grace-
fully degraded mode.

Most Fibonacci Cubes are not Hamiltonian. In fact, Cong
et al. [5] showed that less than 1/3 of Fibonacci Cubes are
Hamiltonian. The challenge here is to define a new graph
that satisfies the above mentioned properties, while still
maintaining all the desirable properties of the Fibonacci

Cube. Moreover, the new graph should be sparse; at least, it
should have a similar degree of sparsity as the Fibonacci
Cube.

In this paper, we propose the Extended Fibonacci Cube
(EFC1), which is based on the same sequence F(i) = F(i - 1) +
F(i - 2) as the Fibonacci Cube; however, its initial condi-
tions are defined differently. More specifically, in EFC1, the
two initial values are 2 and 4. Therefore, F(i) is always an
even number. We show that EFC1 is Hamiltonian and
maintains virtually all the desirable properties of FC. Our
results also show that EFC1 is superior to FC in terms of
various structural properties.

We then propose a series of Extended Fibonacci Cubes
in such a way that any Extended Fibonacci Cube (EFCk,
with k ≥ 1) in the series contains the node set of any other
cube that precedes EFCk. The EFCks can be considered as
flexible versions of incomplete hypercubes, which elimi-
nates their restriction on the number of nodes, and thus,
makes it possible to construct parallel machines with arbi-
trary sizes. Moreover, all the cubes in the series are Hamil-
tonian, and they are better in terms of emulating other to-
pologies (i.e., embedding) than regular Fibonacci Cubes. We
show that each cube in the series has a distinct size, and
each cube maintains virtually all the desirable properties of
the Fibonacci Cube.

Our study focuses on the structural properties of the
Extended Fibonacci Cube. The use of the Extended Fi-
bonacci Cube in various applications is beyond the scope of
this paper. In summary, the structural advantage of the
Extended Fibonacci Cube over the regular Fibonacci Cube
manifests itself in three ways:

1) The series of Extended Fibonacci Cube allows more
choices to construct systems of different sizes.

2) All Extended Fibonacci Cubes are Hamiltonian, while
less than 1/3 of Fibonacci Cubes are Hamiltonian.
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3) The Extended Fibonacci Cube is better than the regu-
lar Fibonacci Cube in emulating other topologies,
such as hypercubes.

Throughout this paper, except for a few important theo-
rems, proofs for theorems and other details are not in-
cluded. The reader may refer to [15] for details.

2 EXTENDED FIBONACCI CUBES

As mentioned earlier, Extended Fibonacci Cubes are de-
fined based on the same Fibonacci sequence. However,
their initial conditions are different. The following defines
the first Extended Fibonacci Cube in the series. The symbol
i denotes a concatenation operation; for example, 01i{0, 1} =
{010, 011} and 01i{} = 01.

DEFINITION 1. Assume EFC1(n) = (V1(n), E1(n)), EFC1(n - 1) =
(V1(n - 1), E1(n - 1)), and EFC1(n - 2) = (V1(n - 2),
E1(n - 2)). Then V1(n) = 0iV1(n - 1) < 10iV1(n - 2).
Two nodes in EFC1(n) are connected by an edge in E1(n)
if and only if their labels differ in exactly one bit position.
As initial conditions for recursion, V1(3) = {0,1} and
V1(4) = {00, 10, 11, 01}.

Fig. 1 shows examples of EFC1 of size n, where n = 3, 4, 5, 6,
respectively. An EFC1 of size n consists of one EFC1 of size
n - 1 and one EFC1 of size n - 2.

                           

    (a)             (b)

    (c)

    (d)

Fig. 1. Extended Fibonacci Cubes EFC1s: (a) EFC1(3), (b) EFC1(4), (c)
EFC1(5), and (d) EFC1(6).

THEOREM 1. For any n ≥ 4, EFC1(n) is a Hamiltonian graph.

PROOF. We prove this theorem by induction on n. In addi-
tion, we show that, for each EFC1(n), n ≥ 4, a Hamilto-

nian path of type 000 100 0104 4 4n n nG- - -Æ Æ Æ  can
be constructed, where 0 4n-  is a sequence of 0 of length
n - 4 (could be empty). G is a sequence of adjacent
nodes, and the first and last nodes of G are adjacent to
100 4n-  and 010 4n- , respectively. Since the first and
last nodes of the Hamiltonian path are adjacent, this

Hamiltonian path is also a Hamiltonian cycle. In
addition, the code for EFC1(n) is one bit longer than

the one for EFC1(n - 1). For n = 4, it is obviously true

and the Hamiltonian path in EFC1 is
00 10 11 01Æ Æ Æ

G
{ . For n = 5, the Hamiltonian path in

EFC1(5) is 000 100 101 001 011 010Æ Æ Æ Æ Æ
G

1 2444 3444 . As-

sume this theorem holds for all the EFC1(n)s, such that n

< k where k ≥ 4. Based on the induction assumption, we
have a Hamiltonian path
000 100 0105 5

1
5k k kG- - -Æ Æ Æ  for EFC1(k - 1) and

000 100 0106 6
2

6k k kG- - -Æ Æ Æ  for EFC1(k - 2). We

construct a Hamiltonian cycle for EFC1(k) as follows:
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where G-1 is the reverse sequence of G. �

Recall that the Fibonacci Cube is defined as follows [10]:
Assume FC(n) = (V(n), E(n)), FC(n - 1) = (V(n - 1), E(n - 1)),
and FC(n - 2) = (V(n - 2), E(n - 2)). Then, V(n) = 0iV(n - 1)
< 10iV(n - 2). Two nodes in FC(n) are connected by an
edge in E(n) if and only if their labels differ in exactly one
bit position. As initial conditions for recursion, V(2) = {},
V(3) = {0, 1}. Cong et al. [5] showed that less than 1/3 of
Fibonacci Cubes are Hamiltonian. Therefore, the proposed
Extended Fibonacci Cube is better in emulating rings than
the regular Fibonacci Cube. The relationship between FC
and EFC1 is revealed in the following theorem.

THEOREM 2. FC(n) is a proper subgraph of EFC1(n), for n ≥ 4.

PROOF. Since ,in both EFC1 and FC, nodes are connected
if their labels differ in exactly one bit position, it
suffices to show that V(n) Ã V1(n), where V(n) and
V1(n) are node sets of FC(n) and EFC1(n), respec-
tively. We prove this theorem by induction on n.
Clearly, V(4) Ã V1(4) and V(5) Ã V1(5). Assume V(n) Ã
V1(n) for all n < k. When n = k > 6, based on the
definition of V(n) = 0iV(n - 1) < 10iV(n - 2), we
have

V(k) = 0iV(k - 1) < 10iV(k - 2) Ã 0iV1(k - 1)

 < 10iV1(k - 2) = V1(k).                              �

A path between two nodes is called Hamming distance
path if the length of this path is equal to the Hamming dis-
tance of these two nodes.

THEOREM 3. There exists a Hamming distance path for any two
nodes in EFC1(n).

PROOF. We prove this theorem by induction on n. Clearly,
this theorem holds for n = 3, 4, 5. Assume that this
theorem holds for all n < k. When n = k and V1(k) =
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0iV1(k - 1) < 10iV1(k - 2), randomly select two nodes;
if both belong to 0iV1(k - 1) (or 10iV1(k - 2)), this theo-
rem holds based on the induction assumption. We
only need to consider cases when one node is in
0iV1(k - 1) and the other is in 10iV1(k - 2). Because
0iV1(k - 1) = 00iV1(k - 2) < 010iV1(k - 3), the problem
is divided into:

1) proving there is a Hamming distance path between
a node in 10iV1(k - 2) and a node in 00iV1(k - 2),
and

2) proving there is a Hamming distance path between
a node in 10iV1(k - 2) and a node in 010iV1(k - 3).

Case 1 is obvious, since, based on the induction as-
sumption, there exists a Hamming distance path be-
tween any two nodes in V1(k - 2). Case 2 can be
proved by using the fact that 010iV1(k - 3) Ã 01V1(k - 2).
Then, the problem is reduced to find a Hamming dis-
tance path from a node in 01iV1(k - 2), via 00iV1(k - 2),
to a node in 10iV1(k - 2). �

In the subsequent discussion, the i notation will be
omitted without causing confusion. For example, 01i10 will
be written as 0110.

COROLLARY. The diameter of EFC1(n) is n - 2.

THEOREM 4. The node degree of a node in EFC1(n) is between
n
3  and n - 2.

PROOF. Since there are n - 2 bits in each node of EFC1(n),
based on [10], n - 2 is the maximum node degree of
FC(n), the maximum node degree of EFC1(n) is n - 2.
Let tn denote the minimum node degree in EFC1(n).
Based on the definition of EFC1(n),

V1(n) = 00V1(n - 2) < 010 V1(n - 3) < 10 V1(n - 2).

We have,

min{ , , }

min{ , , } .

t t t t
t t t

n n n n

n n n

- - -

- - -

+ + + £ £
+ + +

2 3 2

2 3 2

1 1 1

2 1 1

Since t tn n- -≥2 3 , we have t tn n= +-3 1. Based on t3 =

1, t4 = 2, t5 = 2, we have t n
n= 3 .                           �

3 EXTENSIONS

In this section, we consider another Extended Fibonacci
Cube, called EFC2(n), by changing the initial conditions of
the Fibonacci sequence. We show that EFC1(n) is a proper
subgraph of EFC2(n), where n ≥ 5. However, EFC2(n) still
maintains the sparsity of FC(n) and virtually all the other
desirable properties. We show that the sequences generated
by FC, EFC1, and EFC2 are mutually disjoint and propose
guidelines for constructing different Extended Fibonacci
Cubes with their corresponding sequences mutually dis-
joint. Because these Extended Fibonacci Cubes have similar
properties, we can use them as a group (probably together
with FC, although most of FC’s are not Hamiltonian) to con-
struct a special series of incomplete hypercubes [11], [14]. In this
way, the restriction on the number of nodes in regular hyper-
cubes (2n) is further relaxed or totally removed.

DEFINITION 2. Assume EFC2(n) = (V2(n), E2(n)), EFC2(n - 1) =
(V2(n - 1), E2(n - 1)), and EFC2(n - 2) = (V2(n - 2),
E2(n - 2)). Then V2(n) = 0iV2(n - 1) < 10iV2(n - 2).
Two nodes in EFC2(n) are connected by an edge in E2(n)
if and only if their labels differ in exactly one bit position.
As initial conditions for recursion, V2(4) = {00, 10, 11,
01} and V2(5) = {000, 100, 101, 111, 110, 010, 011, 001}.

Following the proofs used in the previous section, we
can prove that Theorems 1 to 3 are still valid. That is, EFC2
is Hamiltonian and the diameter of EFC2(n) is n - 2.

THEOREM 5. EFC1(n) is a proper subgraph of EFC2(n), for n ≥ 6.

DEFINITION 3. A series of Extended Fibonacci Cubes is defined as

{EFCk, k ≥ 1}, where EFCk(n) = {Vk(n), Ek(n)}, EFCk(n - 1) =

(Vk(n - 1), Ek(n - 1)), and EFCk(n - 2) = (Vk(n - 2),

Ek(n - 2)). Then Vk(n) = 0iVk(n - 1) < 10iVk(n - 2). Two

nodes in EFCk(n) are connected by an edge in Ek(n) if and
only if their labels differ in exactly one bit position. As ini-
tial conditions for recursion, V k dd ddk

k

( ) { }+ =2 K124 34  and

V k dd ddk
k

( ) { }+ =
+

3
1

K124 34 , where d is either 1 or 0.

THEOREM 6. For any n, such that n ≥ i + 3 and n ≥ j + 3,
EFCi(n) is a proper subgraph of EFCj(n) if i < j.

Based on the result of Theorem 6, we represent the rela-
tionship among regular hypercubes, Fibonacci Cubes, and
Extended Fibonacci Cubes in the series in Fig. 2, where the
fact that a graph G is a subgraph of another graph H is rep-
resented by a rectangle (representing graph G) nested
within another rectangle (representing graph H). Q(n) de-
notes an n-dimensional hypercube.

By using the series of Extended Fibonacci Cubes defined
in Definition 3, the rigid restriction of the hypercube topol-
ogy can be removed. For example, if we want to construct a
cube consisting of 10 to 100 nodes, there are only three op-
tions for regular hypercube structures, that is, 16, 32, 64.
Within the series of Fibonacci Cubes (including FC, EFCk
with k £ 5) there are 18 choices (see Table 1). They are: 10,
12, 13, 20, 21, 26, 32, 34, 42, 48, 52, 55, 64, 68, 80, 84, 89, 96. In
Table 1, the element at the kth row and the nth column is
the size of Fk(n). For example, the element at the second row
(the row for F2(n)) and the fifth column is F2(5) = 8. For each
row that represents an EFC, two initial values are placed in
two square boxes.

It is easy to verify that Theorem 3 still holds for any EFCk
and the diameter is n - 2 for any EFCk. Moreover, we have
the following results for node degree in EFCk.
THEOREM 7. The node degree of a node in EFCk(n) is be-

tween n k k- - + -( ) ( )1
3 1  and n - 2.

In Theorem 7, k is the sequence number in the series of
Extended Fibonacci Cubes and n is the dimension of the
cube. When k is closer to n, the resultant EFCk resembles
more to the regular hypercube. Theorem 7 shows that the
minimum node degree of the corresponding EFCk increases
as k increases. The proof can be done in a similar way used
in proving Theorem 4.
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Let F(n), F1(n), and F2(n) denote the size of FC(n), EFC1(n),
and EFC2(n), respectively. The following theorem shows that
all these numbers are distinct for different selections of n.

THEOREM 8. Except for initial conditions, the sequences gener-
ated by FC, EFC1, and EFC2 are mutually disjoint.

PROOF. We prove this theorem by contradiction. Consider
two Fibonacci sequences Fi and Fj with different initial
conditions. Suppose Fi(n) = Fj(m), where n is the
smallest number for Fi satisfying this condition. Based
on the definition of the Fibonacci sequence, we have

Fi(n - 1) + Fi(n - 2) = Fj(m - 1) + Fj(m - 2)

Since n is the smallest number for Fi satisfying the
equality condition, we have

Fi(n - 1) > Fj(m - 1) (1)

Fi(n - 2) < Fj(m - 2) (2)

or

Fi(n - 1) < Fj(m - 1) (3)

Fi(n - 2) > Fj(m - 2) (4)

From (1) and the definition of Fibonacci sequence,
F(n - 1) = F(n - 2) + F(n - 3), we have

Fi(n - 2) + Fi(n - 3) > Fj(m - 2) + Fj(m - 3)      (5)

From (5) and (2), we have

Fi(n - 3) > Fj(m - 3).

Similarly, from (3) and (4), we have

Fi(n - 3) < Fj(m - 3).

It is easy to prove by induction that, for any p < n,
there exists q such that,

Fi(p) > Fj(q) (6)

Fi(p - 1) < Fj(q - 1)                      (7)

or
Fi(p) < Fj(q) (8)

Fi(p - 1) > Fj(q - 1)                      (9)

Fig. 2. Relationship among hypercubes, Fibonacci Cubes, and Extended Fibonacci Cubes.

TABLE 1
SEQUENCES FOR FC, EFC1, AND EFC2, ETC.
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It is easy to see from Table 1 (where the numbers in
boxes are initial conditions) that, for n £ 7, except for
numbers that correspond to initial conditions, all the
numbers from different sequences are distinct. Also,
for all q,

F1(6) > F2(q - 1) Ÿ F1(7) > F2(q)

or

F1(6) < F2(q - 1) Ÿ F1(7) < F2(q).

Each of the above cases violates necessary condi-
tions (6) and (7) (or (8) and (9)) for the equality condi-
tion. That is, there do not exist m and n, such that
Fi(m) = Fj(n). Similar reasoning can be used for F1 and
F, and for F2 and F. �

CONJECTURE. Except for initial conditions, the sequences gener-
ated by FC, EFCk, for k ≥ 1, are mutually disjoint.

The validation of this conjecture can be easily seen from
Table 1 for small dimensions. Tests have been conducted to
show that the above conjecture holds for FC < {EFCk, 1 £ k £
20}. The significance of the above disjoint property is the
following: by considering Fibonacci cube-based systems as
incomplete hypercubes, resulting from a complete hyper-
cube after some nodes become faulty and systems are re-
configured. The Extended Fibonacci Cube is more flexible
than the regular Fibonacci Cube, since it provides more
choices of systems with difference sizes.

4 EXTENDED FIBONACCI TREES

In this section, we study the Extended Fibonacci Tree (T1),
which is a special spanning tree of the Extended Fibonacci
Cube (EFC1). The extension for general Extended Fibonacci
Cubes (EFCk) is straightforward. We then study an applica-
tion that uses this tree structure.

DEFINITION 4. The Extended Fibonacci Tree T1(n) of EFC1(n) is
defined as follows: (Base) T1(3) and T1(4) are defined as
shown in Fig. 2a and 2b. Basically, T1(3) is EFC1(3) with
node 0 being the root and T1(4) is an EFC1(4) rooted at
node 00 after removing the link connecting nodes 01 and 11.
(Recursion) T1(n) (n > 4) consists of T1(n - 1) and T1(n - 2)
by connecting the root of T1(n - 2) as a child of the root of
T1(n - 1). Suppose T1(n) also denotes the set of nodes in
T1(n), then T1(n) = 0iT1(n - 1) < 10 i T1(n - 2).

Fig. 3 shows the structure of Extended Fibonacci Trees
T1(n), for n = 3, 4, 5, 6. Clearly, T1(n) has the same node set
as EFC1(n). Hence, T1(n) is a spanning tree of EFC1(n). Ex-
tended Fibonacci Trees can be used to implement several
tree-based algorithms efficiently. As an example, we show
the implementation of two general procedures: tree con-
traction and tree expansion. A tree contraction is used to
reduce a rooted tree to its root by a sequence of conflict-
free operations to remove its vertices. Tree expansion is an
inverse operation of tree contraction. By conflict-free, we
mean that two vertices removed (or added) in the same

Fig. 3. Extended Fibonacci Trees: (a) T1(3), (b) T1(4), (c) T1(5), and (d) T1(6).
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time step do not have a parent-child relation and that, at
most, one of a node’s child is removed (or added) at a
time. It has been shown [1] that tree contraction and ex-
pansion are general techniques for scheduling parallel
computations on tree. For example, the prefix computa-
tion problem can be converted to a tree contraction and
expansion problem.

The following are tree contraction and expansion algo-
rithms for T1(n), which are executed at each node a of
EFC1(n). a(i) denotes the ith bit of node a (counting from the
right), and node ai, the neighbor of node a, along dimension
i, i.e., nodes ai and a differ only in the ith bit.

TREE CONTRACTION:
for Step i from 1 to n - 2
if a(i) = 1 then node a is removed

TREE EXPANSION:
for Step i from n - 2 downto 1
if a(i) = 1 then node a

i
 is added as the child of node a

Because the address of node a in EFC1(n) has n - 2 bits, each
tree contraction (or tree expansion) takes n - 2 steps.

THEOREM 9. The tree contraction (and tree expansion) algorithm
for T1(n) takes n - 2 steps and each step is conflict-free.

The proof for this theorem is straightforward, from the
definition of EFC and the tree contraction and expansion
algorithms.

5 EMBEDDING

This section shows how to emulate regular hypercubes on
Extended Fibonacci Cubes. Then, we show that the Extended
Fibonacci Cube can emulate binary trees more efficiently
than the regular Fibonacci Cube, and almost as efficiently as
the hypercube, even though the Extended Fibonacci Cube is a
much sparser network than the hypercube.

THEOREM 10.

• EFC1(n) is a proper subgraph of Q(n - 2) when n > 4.
• Q(1) = EFC1(3), Q(2) = EFC1(4), and Q(n) is a proper

subgraph of EFC1(2n) for n > 2.

THEOREM 11.

• EFCk(n) is a proper subgraph of Q(n - 2) for n ≥ k + 3.
• Q(k) = EFCk(k + 2), Q(k + 1) = EFCk(k + 3), and Q(n)

is a proper subgraph of EFCk(2n - k + 1) for n > k + 2.

In graph embedding techniques, host and guest archi-
tectures are viewed as graphs H and G, respectively, and
then the graph G is embedded into the graph H. In order to
obtain efficient emulation of G by H, various cost meas-
ures of an embedding must be optimized. Among them,

the dilation of an edge of G is defined as the length of the
path onto which an edge of G is mapped. The dilation of
the embedding is the maximum edge dilation of G. The
expansion of the embedding is the ratio of the number of
nodes in G to the number of nodes in H. The congestion of
the embedding is the maximum number of paths contain-
ing an edge in H, where every path represents an edge in G.
The load of an embedding is the maximum number of proc-
essors of G assigned to any processor of H. In our study, we
assume that the load of an embedding is restricted to one,
i.e., the mapping is one-to-one. Intuitively, the dilation rep-
resents the maximum communication delay between the
communicating nodes, the expansion is a measure of proc-
essor utilization, and the congestion measures maximum
congestion along a link. Ideally, we would like to find em-
beddings with minimum dilation, expansion, and congestion.

A complete binary tree of height n, denoted by B(n), has
2n+1 - 1 nodes. We have the following result that minimizes
dilation without considering the expansion factor.

THEOREM 12. B(n) can be embedded into EFC1(2n + 2) with dila-
tion two and congestion two, and B(n) can be embedded
into EFC1(2n + 6) with dilation one and congestion one.

Clearly, the expansion of embedding B(k) into EFC1(2k + 2)
is O(ck) for some constant 1 < c < 2. That is, the expansion
increases drastically as k increase.

Can we keep the expansion factor relatively stable with-
out increasing dilation? The answer to this question is posi-
tive. Based on [4], the smallest Fibonacci Cube with at least
2k+1 - 1 nodes is FC(t), where t = 1.47k. Since |EFC1(t + 1)| =
2|FC(t)|, the smallest Extended Fibonacci Cube will still be
EFC1(t), where t = 1.47k + c. We will show that B(2k + 4) can
be embedded into EFC1(3k + 9) with dilation two. Note that,
by ignoring the constant factor, 1.5 is the ratio of the dimen-
sion of EFC1 to that of B, which is close to 1.47; therefore,
the expansion grows slowly as k increases. This can be
shown using Table 2, where sizes of EFC1, FC, Q, B of vari-
ous dimensions and levels are listed. For example, the ex-
pansion of embedding B(6) into EFC1(12) is 178/127 = 1.402
and the expansion of embedding B(8) into EFC1(15) is
754/511 = 1.476. Note that in Table 2, symbol - represents
an undefined entry.

We start with embedding of n-level double-rooted complete
binary tree DRCB(n) into the Extended Fibonacci Cube. The
DRCB(n) tree is an n-level complete binary tree B(n), with
the root replaced by a path of length two. A DRCB(n) con-
tains 2n+1 nodes. The constructive proofs of Theorems 13
and 14 can be found in [15].

THEOREM 13. For any m ≥ 0, DRCB(2m + 4) can be embedded in
EFC1(3m + 9) with dilation two and congestion two.

TABLE 2
SIZES OF EFC1, FC, Q, B OF VARIOUS DIMENSIONS AND LEVELS

size (n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
B(n) 3 7 15 31 63 127 255 611 1,023 2,047 4,095 8,191 16,384 32,767 65,535
Q(n) 2 4 8 16 32 64 128 255 612 1,024 2,048 4,096 8,192 16,384 32,768
FC(n) 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

EFC1(n) - - 2 4 6 10 16 26 42 68 110 178 288 466 754
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Note that a complete binary tree B(2k + 4) can be derived
from DRCB(2k + 4) by connecting a root node to the son of
another root node. Since these two nodes are two distances
apart, by carefully mapping two roots and their two sons
[15] to avoid accumulative congestion and dilation, we can
still embed B(2k + 4) into EFC1(3m + 9) with dilation two
and congestion two.

COROLLARY. For any m ≥ 0, B(2k + 4) can be embedded into
EFC1(3k + 9) with dilation two and congestion two.

Similarly, the above results apply to FC.

THEOREM 14. For any m ≥ 0, DRCB(2m + 1) can be embedded in
FC(3m + 5) with dilation two and congestion two.

COROLLARY. For any m ≥ 0, B(2k + 4) can be embedded into
FC(3k + 9) with dilation two and congestion two.

Note that, in [5], it is shown that B(2n + 1) can be em-
bedded into FC(3k + 5) with dilation three. Clearly, our re-
sult here is better which reduces dilation by one.

We compare regular hypercubes, Fibonacci Cubes, and
the series of Extended Fibonacci Cubes in terms of degree
of sparsity, network growth rate, and power of emulating
other topologies. Let Fk(n) and Lk(n) denote the number of
nodes and links in EFCk(n), respectively, where k ≥ 1.

THEOREM 15. For any EFCk(n) with n > k + 3 , Fk(n) = Fk(n - 1) +

Fk(n - 2), where Fk(k + 2) = 2k, Fk(k + 3) = 2k+1. Lk(n) =

Lk(n - 1) + Lk(n - 2) + Fk(n - 2), where L k kk
k( )+ = *-1 2 1 ,

Lk(k + 3) = 2k * (k + 1).

COROLLARY. Fk(n) = 2k * F(n - k), n ≥ k + 2.

Two measures are used in comparison: The network
growth rate is measured by the number of nodes in a given
size n. The degree of sparsity is measured by the ratio of the
number of links to the number of nodes in a network under
consideration. The above equations can be plotted and re-
sults show that for Fibonacci Cubes, EFC1, and EFC2, both
measures are very close with the rate (and ratio) for EFC2
being slightly higher than the one for EFC1, which, in turn,
is slightly higher than the one for FC. Therefore, Fibonacci
Cubes and Extended Fibonacci Cubes have the similar net-
work growth rate and the degree of sparsity.

When a network is embedded in a (regular or Extended)
Fibonacci Cube, the quality of embeddings can be meas-
ured by the ratio of the size of the embedded network to
the size of the embedding cube (which is measured in terms
of the number of nodes). This ratio reflects the utilization of
nodes in the embedding cubes. Therefore, in general, the
larger the ratio the better the embedding. Let RG(n) be the
ratio of the size of the n-dimensional hypercube to the size
of minimum embedding graph of type G.

THEOREM 16. For any size n,

R n R n R n R n R nFC EFC EFC EFC EFCk k
( ) ( ) ( ) ( ) ( )< < < < < <

+1 2 1
K K

The detailed results on network growth rates and de-
grees of sparcity for Extended Fibonacci Cubes can be
found in [15].

6 CONCLUSIONS

In this paper, we have proposed a series of Extended Fi-
bonacci Cubes which virtually maintains all the desirable
properties of the Fibonacci Cube. In addition, Extended
Fibonacci Cubes are Hamiltonian and they are better in
terms of emulating other topologies than regular Fibonacci
Cubes.

We believe that the series of Extended Fibonacci Cubes is
a promising incomplete hypercube structure. This structure
not only provides cube structures with arbitrary sizes, but
also exposes the nature of hypercube systems operating in a
gracefully degraded manner. For example, when some
nodes become faulty in a hypercube Q(n), we may try to
determine a maximum k (k < n - 2), such that EFCk(n) is a
subgraph of the faulty hypercube. We envisage that the
class of the Extended Fibonacci Cubes would be of interest
to designers of cube-based parallel machines.

Possible future work includes, but not limited to:

1) Other possible extensions. One possible extension
could be based on the pth order Fibonacci numbers
[8]: F(p)(n) = F(p)(n - 1) + F(p)(n - 2) + ... + F(p)(n - p). By
assigning appropriate initial conditions, a pth order
Extended Fibonacci Cube is derived. Another possible
extension, called Enhanced Fibonacci Cube [12], is based
on a different recursive sequence: F(n) = 2 * F(n - 2) + 2
* F(n - 4), whereas initial conditions F(3) = 2, F(4) = 3,
F(5) = 5, and F(6) = 8. It has been shown that the En-
hanced Fibonacci Cube is Hamiltonian and it maintains
virtually all the desirable properties of the Fibonacci
Cube. However, the relationship between the Extended
and Enhanced Fibonacci Cubes is yet to be determined.

2) Reconfiguring a faulty hypercube into an Extended
Fibonacci Cube EFCk with maximum k is an interest-
ing, but challenging, problem, the results of which
will certainly provide insight into the nature of hy-
percube parallel machines operated in a gracefully
degraded mode.
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