Wait-free Consensus in “In-phase” Multiprocessor Systems

Marina Papatriantafilou
Max-Planck-Institut fir Informatik
Im Stadtwald, 66123 Saarbriicken, Germany
& CTI & Patras University, Greece
ptrianta@mpi-sb.mpg.de

Philippas Tsigas
Max-Planck-Institut fir Informatik
Im Stadtwald, 66123 Saarbriicken, Germany
tsigas@mpi-sb.mpg.de

Abstract

In the consensus problem in a system with n processes, each process starts with a private
input value and runs until it chooses irrevocably a decision value, which was the input value
of some process of the system; moreover, all processes have to decide on the same value.
This work deals with the problem of wait-free—fully resilient to processor crash and napping
failures—consensus of n processes in an “in-phase” multiprocessor system. It proves the
existence of a solution to the problem in this system by presenting a protocol which ensures
that a process will reach decision within at most n(n — 3)/2 + 3 steps of its own in the worst
case, or within n steps if no process fails.

AMS Subject Classification (1991): 68M07, 68Q22, 68Q25, 90B12

CR Subject Classification (1991): B.3.2,B.4.3,B.4.5,C.1.2,C.2.4,C.4,D.1.3,D.4.1,D .45
Keywords € Phrases: Agreement, Consensus, Distributed Computation, Fault-Tolerance,
Multiprocessor Systems, Napping Failures, Processor Crahses, Shared Memory, Wait-Free
Synchronization.

Note: Partially supported by the EC ESPRIT || BRA ALCOM Il (contr. # 7141).

This work will also appear in the Proceedings of the 7th IEEE Symposium on Parallel and
Distributed Processing

1. Introduction 2

1. Introduction

In the consensus problem in a system with n processes, each process starts with a private
input value and runs until it chooses irrevocably a decision value, which has to be wvalid,
i.e. to equal the input value of some process and consistent, i.e. it has to be the same
value for all processes. Whereas this is no problem in an ideal, failure-free environment, it
imposes certain constraints on the capabilities of an actual system, which is viable only if
it permits protocols tolerant to failures. In a system with failures the consensus problem
becomes a central issue of multiprocessor synchronization and coordination. Solutions which
guarantee that each process decides after a certain number of its own steps, regardless of the
other processes’ relative speeds, are called wait-free. Wait-freedom is a desirable property
in concurrent systems, since it helps in taking advantage of the inherent parallelism in the
system by ensuring that no process may be blocked by others which might be slow, preempted,
swapped out, delayed without warning by interrupts; moreover, it implies maximum tolerance
to processor crash and napping failures.

As expected, such a fundamental problem received the attention of many researchers; as a
result, many faces of the problem have been studied. In [12] and [20] it has been proven that
in completely asynchronous systems —message passing and shared memory, respectively— not
even one processor crash can be tolerated by a deterministic consensus protocol. In [9] the
result is generalized for message passing systems; several critical parameters are identified
and it is examined how they affect the number of faults that can be tolerated by a consensus
protocol. In [14] shared memory data objects are partially classified according to the number
of processes that can reach consensus in a wait-free manner using them. Recently, three
groups with [7], [17] and [22], concurrently and independently have proven a conjecture first
stated in [8], that even in the case when the agreement condition is weakened so that the
decision values produced may differ, there is no protocol to tolerate k failures, where k is the
maximum number of distinct values that may be chosen as decisions. Of particular interest
was the introduction of algebraic and combinatorial topology in the study of these problems
([17, 22, 16, 18]). On the other hand, since in the asynchronous model the fault-tolerant
consensus problem cannot be solved deterministically, solutions that have been given employ
randomization or assume some form of synchrony. For a survey and for detailed references
to those works cf. [11], [21].

If we want to sum these up, from the theoretical point of view, we have many surprising
negative results, while the interest in the problem remains high. This is because, on one
hand, it is interesting to develop a thorough understanding of the borders and relations
between classes of objects with respect to their synchronization power; on the other hand,
it is interesting to study more up-to-date architectures, which provide more fundamental
synchronization primitives than just atomic reads and writes. Besides, it is easily noticeable
that there is an important middle ground between the completely asynchronous and completely
synchronous extreme; this middle ground is reasonable for modeling real concurrent systems.
As a result, there is an increasing interest in the past few years in research towards defining
and designing new architectures (e.g. the transactional memory [15]) or exploiting the
properties of already existing ones (which are not all present in the theoretical models),
in order to implement wait-free shared data objects ([13, 2, 6], to mention but a few).

2. The Computation Model 3

1.1 Results and comparison with previous work

Following the direction mentioned above, in this work we consider the wait-free consensus
problem in an “in-phase” multiprocessor system ([19]). In the same system model the
wait-free clock synchronization problem has been earlier studied in [10]. Since by today’s
technology multiprocessor computers have large numbers of processors and since the probability
of a crash increases with the number of processors in the system, it is vitally important to
design multiprocessor systems that tolerate faults.

In an “in-phase” multiprocessor system processors share a common clock pulse; in the
duration of a pulse a processor reads the shared data of one processor, does some local
computation and updates its own shared data. (It should be pointed out that a processor
cannot modify the contents of registers owned by other processors.) It is possible that
processes in this system operate at very different speeds, i.e. miss pulses because of preemption,
interrupts, page faults, or even processor crashes. So, although in a step a process atomically
reads and writes, and, therefore, 2-process wait-free consensus is solvable ([14]), due to pulse
misses and possible processor crashes, it is not obvious whether the n-process consensus
problem can be solved wait-free in the system. This work presents a solution for the wait-free
consensus problem with n processes in an “in-phase” multiprocessor system, thus answering
an open question stated in [10] and showing that this system model/architecture is strong
enough to support deterministic n process fault tolerant agreement. The protocol ensures
that a process will reach decision within n(n — 3)/2+ 3 steps of its own in the worst case, or
within n — 1 steps when no process misses a pulse.

To the best of our knowledge no solution to this problem has been given before. Previous
results that could serve as solutions can be found in [1, 4, 5]. Those protocols are for the
the asynchronous model, which supports only read/write atomically, and guarantee decision
in exponential, O(n*) and O(nlog?n) expected number of steps, respectively, but at the
cost of randomization. On the other hand, the n process wait-free consensus protocols
presented in [14] require some form of multi-writer read-modify-write or more sophisticated
primitives (augmented queue, memory-to-memory-swap); the system model studied here
does not provide that directly. Besides, the three protocols presented in [9] as part of
a thorough analysis of the cases when consensus is solvable in message-passing systems,
cannot be translated into solutions for our system model. Protocols E2 and E3 (of [9])
assume synchronous processes (no napping faults) and totally ordered messages (not just
FIFO channels), respectively. Protocol E1 relies much on the nature of synchronous message
communication, i.e. that a process which had a long napping failure receives all the messages
sent to it during that time interval as soon as it resumes execution. In our model a process
has to make n — 1 steps to learn about shared variable modifications; during that time it
might suffer a new napping fault and this might be repeated unbounded many times.

2. The Computation Model

The system consists of n processes which are identified by distinct identity numbers, denoted
by Pi,...,P,. The processes communicate via a set of single-writer, multi-reader atomic
registers. Fach one owns a subset of these registers. The owner of a register can write the

3. Description of the Protocol 4

register while all the other processes can read it. A step by a process Py consists of the
following actions: (i) read by P of the shared registers owned by some process Py (k # k'),
(ii) transition of Pj’s local state (program counter, local variables), and (iii) update of its
own shared registers.

We consider “in-phase” multiprocessor systems, in which all processors share a common
clock pulse. Each pulse is a (possibly empty) set of process names; the set of processes that
make a step in the pulse. Each process can make at most one step in one pulse; if it does
not make a step in some pulse it will be said to miss that pulse. A configuration is a tuple of
process states and values of the shared variables. A system executionis a sequence comic17sy ...
of alternating pulses (denoted by 7,) and configurations (denoted by c,); consecutive pulses
are indexed with consecutive integers. Each configuration ¢; in a system execution is derived
from its directly preceding configuration c¢;_; by the state transitions and the shared variable
updates of the processes that make a step in pulse 7;; the reads of shared registers that occur
in pulse 7; return the respective values of ¢;_1, while the updates of the shared registers in
the same pulse take place in unison to derive ¢;. For any pulse 7; in any system execution F
and for any process Py, let work(Py, ;) denote the number of steps that P, made from the
beginning of E (pulse 71) until (and including) pulse ;.

In the consensus problem each process P is given an input value vy and is required to
return an output value v; we call the step when this happens the return step of P,. If
Pp, makes its return step in some pulse 7;, it makes no more steps in subsequent pulses in
the execution; if at some pulse in an execution P has not made its return step yet, it is
called undecided in that pulse. A wait-free consensus protocol should satisfy the following
requirements for every system execution:

Wait-freedom There should be a bounded number T such that: there is no process P; and
pulse ; such that Py is undecided in 7; and work(Py,7;) > T.

Validity For each process Py, its output value v;, should equal the input value vgr of some
process P of the system.

Consistency For any processes P, and P with output values v;, and v}, it should be
! !
’Uk = ’Uk,.

3. Description of the Protocol

The protocol is described in C-like pseudocode in figures 1 and 2. We have adopted several
conventions, like using capital case names for shared variables and capital boldface for calls to
read/write shared registers. The following paragraphs describe the protocol more intuitively.

Each process Py (k # 1) first plays a game with P;. If it wins it is called dominant (in
the set { Py, ..., Pr}) and writes that information on its DO M}, shared register. Subsequently,
the final decision is reached through stages in which partial decisions are made inductively.
Let D1 proc denote the decision that would be taken if the system consisted only of processes

Py, ..., Pyoc. The protocol tries to follow the inductive rule: D, , is the input value of P,,
if P, is dominant; otherwise, D , = Dl..(n—1)7 with Dy ;1 = VAL4, the input value of P;.
Each process tries to find Di pyo. for proc = 1,...,n. After a process P, makes a partial

decision for D1 proc, it writes the value v decided and the process identity proc on its DEC}

3. Description of the Protocol 5

var (V ALy, DOM;, D_SET,, DEC,), ...,
(VAL,,DOM,,D_SET,, DEC,): (valtype, boolean, 1..n, valtype) ;
/* Shared var’s; Initially all = (null, 0,1, null) */

DECIDE(k, val) /* process Py with input value val */
var proc, d_set, d_set_p: l.n; /* Initially = 1,1, 1 */
dom, dom_p, rech: boolean ; /* Initially = 0, 0, 0 */
dec, dec_p, val_p: valtype ;
/* Local variables are globally binded in the module */

proc READ&check(i) /* Read P;’s registers as first action in a step; check for decisions */
begin

READ (val_p,dom_p,d_set_p,decp) from (VAL;, DOM;, D SET;, DEC;) ;

if d_set_p > i then d_set := d_set_p; dec := dec_p ; /* copy (partial) decision */
end

proc UPDATE() /* Update own var’s as last action of step */
begin
WRITE (val,dom, d_set, dec) to (VALy, DOMy, D_SET;, DECY,) ;

end

proc recheck(l: 1..n, dec_tmp: valtype)
var ¢: l..n;
begin
for (i:=2; i<l; i+ +) do
ifi £k do
READ&check(3) ;
if d_set > I then proc := i := d_set ; /* advance current process ptr */
if(i=l—1lori=1—2and k=1-—1) and d_set <! then d_set :=I; dec := dec_tmp ;
UPDATE() ;
endif
end _for

end

Figure 1: Protocol DECIDE: (a) Shared Variables and auxiliary procedures

and D_SET} shared registers, respectively. Let Dg(proc) = v denote that mapping, which
is the estimation of P for D1 proc; Pr will finally return its Dg(n). Since processes might
miss pulses and are, therefore, asynchronous, deviations from the rule for deciding D1 proc
are allowed, so that a fast process Py can meet the wait-free requirement when P; and Ppoc
are so slow that the result of the game between them is not known at the time that Py needs
to find out Dj_ pro.. The deviation is that the fast process Py (arbitrarily) considers that
Pyroc is not dominant and sets Dy(proc) = Dyp(proc—1). Since this is done by a fast process,
i.e. early enough, that information is available in the respective shared registers, for the slow

3. Description of the Protocol 6

proc SafePhase(k) /* Estimate D; ;= decision if system consited only of P;..Py */
begin
READ&check(proc) ; /* step Si.k: dominance in {Pi, ..., Px}? (check presence of P;) */
if d_set > 1 then proc := d_set ;
else if val_p = null then dom =1 ;
if dom and k = 2 then d_set := 2; dec := val ;
UPDATE() ;
for (+ + proc; proc < k; proc+ +) do
READ&check(proc) ;
if d_set > proc then proc := d_set ; /* advance current process ptr */
else if —(dom) then d_set := proc ;
if dom_p then dec := val_p ; /* else dec = Dy(proc) = Dy(proc—1) */
end_if ;
if proc =k — 1 and d_set < k then d_set := proc =k ;
if dom then dec := val ;
end_if ;
UPDATE() ;
end for

end

begin /* Main body of procedure DECIDE */
if k = 1 then dec := val ; /* Step So.k: announce presence */
UPDATE() ;
if k # 1 then SafePhase(k) ;
for (+ + proc; proc < n; proc+ +) do
READ&check(proc) ;
if d_set > proc then proc := d_set ; /* advance current process ptr */
else if dom_p then
if k = 1 then d_set = proc; dec := val_p ;
else dec_tmp := val_p; rech:= 1; /* should recheck for “deviate” decisions */
else d_set = proc ; /* consider proc not dominant (“deviate” decision) */
UPDATE() ;
if rech then recheck(proc, dec_tmp); rech := 0 ;
end for
return(dec) ;
end

Figure 2: Protocol DECIDE: (b) Procedure SafePhase(k) and main body of DECIDE

processes to find out about the deviation from the rule, and, therefore, decide consistently.
Naturally, each process, in each one of its steps, checks whether a final decision or a more
advanced —than the one it knows so far— partial decision is reached and adopts it, thus
advancing its process scanning pointer, i.e local variable proc.

The game between P; and an arbitrary P is played as follows: Each process (including
Py), as its first action of the protocol —announcement or0- step— simply announces its

3. Description of the Protocol 7

participation in the game by writing its input value on its V A Lj, register. In its next step, each
Py, (k # 1) reads the register of P; and becomes dominant only if it reads that P; has not made
its announcement step yet (i.e. if VAL; = null); in all other cases Py looses the game. P;
plays with each P,.oc in {Ps,..., P,}, one at a step and in that order (except when advancing
its local variable proc), by checking whether P, is dominant; if not, Pp,.,. will never become
dominant, since it will read that P; has already made its announcement step. Thus, in that
case the partial decision is D1 proc = Di.(proc—1) and Py sets Di(proc) = Di(proc — 1).
Otherwise —if P,.,. is dominant—, P; safely (for reasons that become clear later in this
section) concludes that D1 proc = VALproe and sets Dy(proc) = VALpoc.

Each process Py, (k # 1) follows a protocol of 2 stages; first, using procedure SafePhase(k)
it estimates the partial decision D;_j and then continues for Dl..(k-|—1)7 «ovy D1 pn. After making
an observation, we first describe the second phase, to give the intuition in a more clear way.

Observation 1 If a process Py is not dominant and reads DO My — 0, then it knows that
Py will not become dominant in that execution, because P; has made its announcement step.

Suppose that Py has an estimation (from procedure SafePhase(k)) of the partial decision
D, .. Then, for each proc = k4 1,...,n, it estimates D;_p.o. —in that order except from
advances of the local variable proc— as follows: if it reads DO Mp,,c = 0, i.e. that P, is
not dominant, then, only if Pj itself is not dominant, it can safely make a conclusion, namely
that P,.o. will never become dominant (by observation 1); otherwise, it cannot conclude
in a wait-free manner (i.e. without waiting for P; and/or P,.,. to make a step) anything
about this future. Therefore, it arbitrarily considers P,.,. not dominant and writes that
Dy (proc) = Dy(proc — 1) (by leaving its DEC}, shared register unchanged and updating
only its D_SET}, into proc). This implies that any other process P} (k' < proc), which will
possibly later read that P,,.,. is dominant, before feeling free to decide Dy:(proc) = VAL,
it will have to recheck for earlier, deviate decisions about Di pyo., among processes with
identity P, s.t. ¢ < proc (i.e. among processes that might have had to decide about that
with insufficient information). Note that P; need not recheck for deviations in decisions for
any D1 proc if it reads that P,,.,. is dominant; if such a decision was made, this would have
happened before the first step of P,,,., therefore before the 0-step of P; itself, by a process
P, s.t. # < proc. Thus, P; would have read that decision before reading P,,..’s registers.

Now, let’s see what the first phase is. In procedure SafePhase(k), if P, becomes dominant,
in which case it should be D, p = VAL, it only has to check whether a fast process in
{Ps, ..., Pr_1} has earlier made a deviate decision about D; ;. If Pj is not dominant it has
to estimate D;_(x_1). In both cases it suffices for P to scan once the shared registers of each
one of the processes in {Ps,..., Pr_1}. If from a process Py it reads DO My, = 0, then
it knows that P, will never become dominant (by observation 1) and decides Dy(proc) =
Dy (proc — 1). Otherwise, if Py, is dominant, it decides Dg(proc) = VALymoe. It does not
have to recheck for earlier, deviate decisions for D;_ poc, because if there was any, P, would
have read it before reading P,,,.’s registers (by an argument similar to the one in the previous
paragraph).

4. Correctness and Performance of the Protocol 8

4. Correctness and Performance of the Protocol

For what follows in this section, we need some auxiliary notation/terminology. Consider an
arbitrary system execution E:

e A process P, maps a value v to the set {1,...,proc} in E if there exists a configuration
such that DEC}), = v and D_S ET}, = proc; we denote this mapping by Dy(proc) and say that
Py, decides this value v for the set {1,...,proc}. This might happen either because Pj copies
that decision from the shared register of some other process (in READ&check) or because
Py, computes that decision (in SafePhase on in the main body of DECIDE). Note that
Py in its return step in E returns Dg(n). In analogy with consistency for the final output
value, we say that the decisions for a set {1,...,proc} are consistently made in E by the
processes of a set P, if for any two Py, Py € P that decide for {1,...,proc}, it holds that
Dy (proc) = Dyi(proc).

e If s and s’ are steps by processes, s — s’ denotes that s precedes s', while s||—s’ denotes
that s either precedes or is concurrent with s’ in E; the latter is equivalent with —(s’ — s).
The step of P, in which it reads P,,o.’s shared registers for the first time, not during procedure
recheck, is denoted by Sp,oc.k. Furthermore, So.k denotes the announcement, or 0-step of
P.

e A process Py is dominant in F, if in the configuration after S;.k —and, henceforth in all
subsequent configurations in E— it is DO M}, = 1.

Lemma 1 (Wait-freedom) In a system with n processes, in any execution, each process Py
makes its return step after having made at most n(n — 3)/2 + 3 steps.

Proor. (Sketch) Each process Pj decides Di(k) in k steps of its own; for each D(z)
(k < & < n) it needs in the worst case —i.e. if recheck is necessary— 1+ (2 — 3) steps of its
own. Summing this all up, we have that in the worst case P, terminates using DECIDE in

k+ i (2 —2) = n(n—3)/2 — k(k — 5)/2

r=k+1

steps of its own. The largest value is when k = 2 (because P; never rechecks and terminates
in at most n steps) and equals n(n — 3)/2 + 3 steps. O

Lemma 2 (Validity) In each execution each process which makes a return step, outputs a
value that equals the input value of some process in the execution.

Proor. (Sketch) A process Pj that terminates returns the value Dy(n) that decides and
holds in its DEC} shared variable. That value came either from a copy from some process
Pr’s DEC} shared variable, or from an assignment to DEC), of the input value VAL,
of a process Pp,oc. In the latter case the lemma is straightforward; in the former case, if we
trace back the origin of the value held in D ECy, by the same argument, we will find that it
is an input value of some process in that execution. |

4. Correctness and Performance of the Protocol 9

Lemma 3 (Consistency) In a system with n processes the decisions for all sets {1,...,p}
(1 < p < n) are consistently made by the processes of the set {P,..., P,}, in every system
execution.

ProorF. (Sketch) This can be proven by induction on the number p.

Consider an arbitrary execution F in a system with n processes. For p = 1 the lemma
holds because for any process Pp.oc in {Py,..., P,}, in order to decide D,oc.1 it should be
S1.proc — Sp.1, which implies that the input value of P; is available in its V AL, shared
variable; therefore, for each P,.,. that decides for {1,...,1}, it will be Dp0c(1) = VAL;.
Assume the lemma holds for all p < k; we will show that it also holds for p = k£ + 1. From
the induction hypothesis we know that the decisions for {1,..., k} are consistently made by
the processes of the set {P;,..., P,}. In order to prove that the decisions for {1,...,k+ 1}
are also consistently made by the processes of the set {Py,..., P,}, there are two cases to be
considered:

Case 1: Pyyq is not dominant in E. Each Pyoc € {P1,..., P} U{Pry2,..., Py} that makes
Sk+41.proc in E, reads DO My, = 0 and, therefore, can only possibly decide Dp.oc(k 4 1) =
Dyroc(k). Besides, Ppiq itself will also decide Dyyq1(k + 1) = Dpyq(k). Since the decisions
for {1,...,k} are consistently made by the processes in { P4, ..., P,}, the same follows in this
case for the decisions for {1,...,k + 1}.

Case 2: P4 is dominant in E. There are two possibilities:

e Each P, in {P1,..., Pt} U {Prya,..., P,} that executes Siyq.proc and decides for
{1,...,k + 1}, reads DOMp,1; = 1, and, therefore, sets Dp.oc(k + 1) = VALpiq;
similarly, Pyi1 will set Dgyq(k + 1) = VALgyq. Therefore, in this case the decisions
for {1,...,k, k4 1} are consistently made by the processes in {P,..., P,}.

e Some P, in {Py,..., P}, which executes Siiq.proc and decides for {1,...,k + 1},
reads DO Mp4q = 0. Clearly, proc # 1 and proc # k + 1; otherwise, the dominance of
Pr41 would be contradicted. Py, computes Dpoc(k + 1) = Dyroc(k). It holds that:

Skt1.proc||—S1.(k + 1) (Pr+1 is dominant but P,,.. reads DOMpyq1 = 0)

S1.(k+ 1)||—So.1 (Pg41 is dominant in E)
S1.(k+1) = Sproc-(k+ 1)||—Sk.(k+ 1) (1 < proc < k)
S0.1 = Sproc-1 — Skt1.1 (0 < proc<k+1)

Since in Sk41.proc process Py, computes Dypoc(k + 1) = Dproc(k), the above imply
that P, and Py will copy that decision from P,,,.’s shared register in their S,,o.1
and Spoc.(k + 1) steps, respectively, i.e. before the steps in which they would have to
decide for {1,...,k, k4 1}.

For any Ppoc in {Pi,..., P} that executes Sgii.proc’ and decides for {1,...,k + 1},
we have either that (a) P, reads DOMy1 = 0 and, therefore, sets D,...(k+ 1) =

Dyroct(k), or that (b) Py.oer reads DOMj; = 1 and executes recheck. In the latter
case, since Pprocy Pproct Tead from DO My, values 0,1, respectively, it holds that

4. Correctness and Performance of the Protocol 10
Skr1.proc||—S1.(k + 1) — Sgiq.proc’
Moreover, from the protocol we have that
Sky1-proc’ — {recheck(k+ 1,V ALpy1) steps by Ppuoer }

Since Pppoc in Sky1.proc computes Dppoc(k + 1) = Dyroc(k), the above imply that Py,
will copy that decision from P,,,.’s shared register during recheck.

For any Pp.ocn in { Prya, ..., P,} that executes Si1.proc” and decides for {1,...,k+1},
we have the following: (a) if P,.ov is dominant in E, since k + 1 < proc”, from
the protocol it follows that P,.,.» may only copy Dy..cn(k + 1) from a process in
{P1,..., Pi}. (b) if Pyroen is not dominant in E and reads DO M1 = 0, it will decide
Dprocrt(k 4+ 1) = Dypoer(k); if it reads DOMj11 = 1 then we have the following about
precedence relations of certain steps of these processes in F:

Skt1.proc||—S1.(k + 1) (Pr+1 is dominant but Py, reads DOM, 1 = 0)

S1.(k+ 1)||—So.1 (Pg41 is dominant in E)
So.1 — S1.(proc”) (Pproct is not dominant in F)
S1.(proc”) — Sproc-(proc”) — Spi1.(proc”) (since 1 < proc < k+ 1)

Since Pppoc in Sgt1.proc computes Dp.oc(k 4+ 1) = Dproc(k), the above imply that in its
Sproc-(proc”’) step, Ppocr, Will copy that decision into its DECypc.

Since the decisions for {1, ..., k} are consistently made by the processes in { P4, ..., P,},
the same follows in this case for the decisions for {1,...,k+ 1}.

a

Considering the requirements from a solution to the wait-free consensus problem, the
previous lemmas imply the following theorem:

Theorem 1 The DECIDE protocol correctly implements a wazit-free solution to the consensus
problem in an in-phase multiprocessor system with n processes, with T = n(n — 3)/2 + 2.

Conclusions

For the n-process consensus problem we have given a solution that tolerates processor crash
and napping failures in an in-phase multiprocessor system, thus showing that this system
model has a nice property, which is useful for fault-tolerant multiprocessor coordination and
synchronization. Besides fault-tolerant consensus and clock synchronization, it is interesting
to solve other problems efficiently and fault-tolerant in this system model; moreover, it would
be useful to implement these algorithms.

References 11

References

1. K. ABrRAHAMSON On Achieving Consensus Using a Shared Memory. Proceedings of
PODC 1988, pp. 291-302.

2. JuaN ALEMANY AND EDWARD W. FELTEN Performance Issues in Non-Blocking
Synchronization on Shared Memory Multiprocessors. Proceedings of PODC 1992, pp.
125-134.

3. JamEes AspNEs, MAURICE HERLIHY Wait-free data structures in the Asynchronous
PRAM. Proceedings of SPAA’90, 340-349.

4. JaMEs AsPNES, MAURICE HERLIHY Fast Randomized Consensus Using Shared Memory.
Journal of Algorithms 11, pp. 441-461 (1990).

5. James AspNEs, OrLI WARTS Randomized Consensus in Expected O(nlog’n)
Operations Per Processor. Proceedings of FOCS 1992, pp. 137-146.

6. GREG BARNES A Method for Implementing Lock-Free Shared Data Structures.
Proceedings of SPAA 1993, pp. 261-270.

7. ELISABETH BOorROWSKY, ELI GAFNI Generalized FLP Impossibility Results for ¢-resilient
Asynchronous Computations. Proceedings of STOC 1993, pp. 91-100.

8. SoMa CHAUDHURI Agreement Is Harder Than Consensus: Set Consensus Problem in
Totally Asynchronous System Systems. Proceedings of PODC 1990, pp. 311-324.

9. DANNY DoLEv, CYNTHIA DWORK, LARRY STOCKMEYER On the Minimal Synchronism
Needed for Distributed Consensus. Journal of the ACM, vol. 34, No. 1, January 1987,
pp- 77-97.

10. SHLOMI DOLEV, JENNIFER L. WELCH Wait-free clock synchronization. Proceedings of
PODC?93, pp. 97-108.

11. M.J. FiscHER The Consensus Problem in Unreliable Distributed Systems (A Brief
Survey). YALEU/DCS/RR-273, June 1983.

12. MicHAEL FISCHER, NANCY LyNCH AND MICHAEL PATERSON Impossibility of
Distributed Consensus with One Faulty Process. Journal of ACM, Vol. 32, No. 2, April
1985, pp. 374-382.

13. MaAURrICE HERLIHY A Methodology for Implementing Highly Concurrent Data Objects.
Proceedings of ACM PPoPP 1990, pp. 197-206.

14. MAURICE HERLIHY Wait-Free Synchronization. ACM Transactions on Programming
Languages and Systems, Vol. 11, No. 1, January 1991, pp. 124-149.

15. Maurice HErRLIHY, J.E.B. Moss Transactional Memory: Architectural Support for
Lock-Free Data Structures. Proceedings of ISCA 1993.

16. MAURICE HERLIHY AND SERGIO RAJSBAUM Set Consensus Usibg Arbitrary Objects.
Proceedings of PODC' 1994, pp-324-333.

17. MAURICE HERLIHY AND NIR SHAVIT The Asynchronous Computability Theorem for
t-resilent Tasks. Proceedings of STOC 1993, pp. 111-120.

18. MAURICE HERLIHY AND NIR SHAVIT The Asynchronous Computability Theorem for

References 12

19.

20.

21.

22.

Wait-free Computation. Proceedings of STOC 1994.

K. Hwana Advanced Computer Architectures, Parallelism, Scalability,
Programmability. McGraw-Hill, Inc. 1993.

MicHAEL C. Loul AND HosaME H. ABU-AMARA Memory Requirements for Agreement

among Unreliable Asynchronous Processes. Advances in Computing Research, Vol. 4
(1987), pp. 163-183

Nancy A. LyncH AND Isaac Saias Distributed Algorithms: Lecture Notes
MIT/LCS/RSS 16 Research Seminar Series

MICHAEL SAKS AND FoTIOS ZAHAROGLOU Wait-Free k-set Agreement is impossible:
The topology of Public Knowledge. Proceedings of STOC 1993, pp. 101-110.

