
Wait�free Consensus in �In�phase� Multiprocessor Systems

Marina Papatrianta�lou

Max�Planck�Institut f�ur Informatik

Im Stadtwald� ����� Saarbr�ucken� Germany

	 CTI 	 Patras University� Greece

ptrianta�mpi�sb�mpg�de

Philippas Tsigas

Max�Planck�Institut f�ur Informatik

Im Stadtwald� ����� Saarbr�ucken� Germany

tsigas�mpi�sb�mpg�de

Abstract

In the consensus problem in a system with n processes� each process starts with a private
input value and runs until it chooses irrevocably a decision value� which was the input value
of some process of the system� moreover� all processes have to decide on the same value�
This work deals with the problem of wait�free�fully resilient to processor crash and napping
failures�consensus of n processes in an �in�phase� multiprocessor system� It proves the
existence of a solution to the problem in this system by presenting a protocol which ensures
that a process will reach decision within at most n�n� ������ steps of its own in the worst
case� or within n steps if no process fails�

AMS Subject Classi�cation ������� 	
M��� 	
Q

� 	
Q
�� ��B�

CR Subject Classi�cation ������� B���
� B����� B����� C���
� C�
��� C��� D����� D����� D����
Keywords 	 Phrases� Agreement� Consensus� Distributed Computation� Fault�Tolerance�
Multiprocessor Systems� Napping Failures� Processor Crahses� Shared Memory� Wait�Free
Synchronization�
Note� Partially supported by the EC ESPRIT II BRA ALCOM II �contr� � ������
This work will also appear in the Proceedings of the �th IEEE Symposium on Parallel and
Distributed Processing



�� Introduction �

�� Introduction

In the consensus problem in a system with n processes� each process starts with a private
input value and runs until it chooses irrevocably a decision value� which has to be valid�
i�e� to equal the input value of some process and consistent� i�e� it has to be the same
value for all processes� Whereas this is no problem in an ideal� failure�free environment� it
imposes certain constraints on the capabilities of an actual system� which is viable only if
it permits protocols tolerant to failures� In a system with failures the consensus problem
becomes a central issue of multiprocessor synchronization and coordination� Solutions which
guarantee that each process decides after a certain number of its own steps� regardless of the
other processes� relative speeds� are called wait�free� Wait�freedom is a desirable property
in concurrent systems� since it helps in taking advantage of the inherent parallelism in the
system by ensuring that no process may be blocked by others which might be slow� preempted�
swapped out� delayed without warning by interrupts� moreover� it implies maximumtolerance
to processor crash and napping failures�

As expected� such a fundamental problem received the attention of many researchers� as a
result� many faces of the problem have been studied� In ��	
 and �	�
 it has been proven that
in completely asynchronous systems �message passing and shared memory� respectively� not
even one processor crash can be tolerated by a deterministic consensus protocol� In �

 the
result is generalized for message passing systems� several critical parameters are identi�ed
and it is examined how they a�ect the number of faults that can be tolerated by a consensus
protocol� In ���
 shared memory data objects are partially classi�ed according to the number
of processes that can reach consensus in a wait�free manner using them� Recently� three
groups with ��
� ���
 and �		
� concurrently and independently have proven a conjecture �rst
stated in ��
� that even in the case when the agreement condition is weakened so that the
decision values produced may di�er� there is no protocol to tolerate k failures� where k is the
maximum number of distinct values that may be chosen as decisions� Of particular interest
was the introduction of algebraic and combinatorial topology in the study of these problems
����� 		� ��� ��
�� On the other hand� since in the asynchronous model the fault�tolerant
consensus problem cannot be solved deterministically� solutions that have been given employ
randomization or assume some form of synchrony� For a survey and for detailed references
to those works cf� ���
� �	�
�

If we want to sum these up� from the theoretical point of view� we have many surprising
negative results� while the interest in the problem remains high� This is because� on one
hand� it is interesting to develop a thorough understanding of the borders and relations
between classes of objects with respect to their synchronization power� on the other hand�
it is interesting to study more up�to�date architectures� which provide more fundamental
synchronization primitives than just atomic reads and writes� Besides� it is easily noticeable
that there is an importantmiddle ground between the completely asynchronous and completely
synchronous extreme� this middle ground is reasonable for modeling real concurrent systems�
As a result� there is an increasing interest in the past few years in research towards de�ning
and designing new architectures �e�g� the transactional memory ���
� or exploiting the
properties of already existing ones �which are not all present in the theoretical models��
in order to implement wait�free shared data objects ����� 	� �
� to mention but a few��



�� The Computation Model �

��� Results and comparison with previous work

Following the direction mentioned above� in this work we consider the wait�free consensus
problem in an �in�phase� multiprocessor system ���

�� In the same system model the
wait�free clock synchronization problem has been earlier studied in ���
� Since by today�s
technologymultiprocessor computers have large numbers of processors and since the probability
of a crash increases with the number of processors in the system� it is vitally important to
design multiprocessor systems that tolerate faults�

In an �in�phase� multiprocessor system processors share a common clock pulse� in the
duration of a pulse a processor reads the shared data of one processor� does some local
computation and updates its own shared data� �It should be pointed out that a processor
cannot modify the contents of registers owned by other processors�� It is possible that
processes in this system operate at very di�erent speeds� i�e� miss pulses because of preemption�
interrupts� page faults� or even processor crashes� So� although in a step a process atomically
reads and writes� and� therefore� 	�process wait�free consensus is solvable ����
�� due to pulse
misses and possible processor crashes� it is not obvious whether the n�process consensus
problem can be solved wait�free in the system� This work presents a solution for the wait�free
consensus problem with n processes in an �in�phase� multiprocessor system� thus answering
an open question stated in ���
 and showing that this system model�architecture is strong
enough to support deterministic n process fault tolerant agreement� The protocol ensures
that a process will reach decision within n�n� ���	� � steps of its own in the worst case� or
within n � � steps when no process misses a pulse�

To the best of our knowledge no solution to this problem has been given before� Previous
results that could serve as solutions can be found in ��� �� �
� Those protocols are for the
the asynchronous model� which supports only read�write atomically� and guarantee decision
in exponential� O�n�� and O�nlog�n� expected number of steps� respectively� but at the
cost of randomization� On the other hand� the n process wait�free consensus protocols
presented in ���
 require some form of multi�writer read�modify�write or more sophisticated
primitives �augmented queue� memory�to�memory�swap�� the system model studied here
does not provide that directly� Besides� the three protocols presented in �

 as part of
a thorough analysis of the cases when consensus is solvable in message�passing systems�
cannot be translated into solutions for our system model� Protocols E	 and E� �of �

�
assume synchronous processes �no napping faults� and totally ordered messages �not just
FIFO channels�� respectively� Protocol E� relies much on the nature of synchronous message
communication� i�e� that a process which had a long napping failure receives all the messages
sent to it during that time interval as soon as it resumes execution� In our model a process
has to make n � � steps to learn about shared variable modi�cations� during that time it
might su�er a new napping fault and this might be repeated unbounded many times�

�� The Computation Model

The system consists of n processes which are identi�ed by distinct identity numbers� denoted
by P�� � � � � Pn� The processes communicate via a set of single�writer� multi�reader atomic
registers� Each one owns a subset of these registers� The owner of a register can write the



�� Description of the Protocol �

register while all the other processes can read it� A step by a process Pk consists of the
following actions� �i� read by Pk of the shared registers owned by some process Pk� �k �� k���
�ii� transition of Pk �s local state �program counter� local variables�� and �iii� update of its
own shared registers�

We consider �in�phase� multiprocessor systems� in which all processors share a common
clock pulse� Each pulse is a �possibly empty� set of process names� the set of processes that
make a step in the pulse� Each process can make at most one step in one pulse� if it does
not make a step in some pulse it will be said to miss that pulse� A con�guration is a tuple of
process states and values of the shared variables� A system execution is a sequence c���c��� � � �
of alternating pulses �denoted by �x� and con�gurations �denoted by cx�� consecutive pulses
are indexed with consecutive integers� Each con�guration ci in a system execution is derived
from its directly preceding con�guration ci�� by the state transitions and the shared variable
updates of the processes that make a step in pulse �i� the reads of shared registers that occur
in pulse �i return the respective values of ci��� while the updates of the shared registers in
the same pulse take place in unison to derive ci� For any pulse �j in any system execution E
and for any process Pk � let work�Pk� �j� denote the number of steps that Pk made from the
beginning of E �pulse ��� until �and including� pulse �j �

In the consensus problem each process Pk is given an input value vk and is required to
return an output value v�k � we call the step when this happens the return step of Pk� If
Pk makes its return step in some pulse �j � it makes no more steps in subsequent pulses in
the execution� if at some pulse in an execution Pk has not made its return step yet� it is
called undecided in that pulse� A wait�free consensus protocol should satisfy the following
requirements for every system execution�

Wait�freedom There should be a bounded number T such that� there is no process Pk and
pulse �j such that Pk is undecided in �j and work�Pk� �j� � T �

Validity For each process Pk � its output value v�k should equal the input value vk� of some
process Pk� of the system�

Consistency For any processes Pk and Pk� with output values v�k and v�k� it should be
v�k � v�k� �

�� Description of the Protocol

The protocol is described in C�like pseudocode in �gures � and 	� We have adopted several
conventions� like using capital case names for shared variables and capital boldface for calls to
read�write shared registers� The following paragraphs describe the protocol more intuitively�

Each process Pk �k �� �� �rst plays a game with P�� If it wins it is called dominant �in
the set fP�� ���� Pkg� and writes that information on its DOMk shared register� Subsequently�
the �nal decision is reached through stages in which partial decisions are made inductively�
Let D���proc denote the decision that would be taken if the system consisted only of processes
P�� � � � � Pproc� The protocol tries to follow the inductive rule� D���n is the input value of Pn�
if Pn is dominant� otherwise� D���n � D����n���� with D���� � V AL�� the input value of P��
Each process tries to �nd D���proc for proc � �� � � � � n� After a process Pk makes a partial
decision for D���proc� it writes the value v decided and the process identity proc on its DECk



�� Description of the Protocol �

var �V AL�� DOM�� D SET�� DEC��� � � � �
�V ALn� DOMn� D SETn� DECn�� �valtype� boolean� ���n� valtype� 	


� Shared var�s	 Initially all 
 �null� �� �� null� �


DECIDE�k� val� 
� process Pk with input value val �

var proc� d set� d set p � ���n 	 
� Initially 
 �� �� � �


dom� dom p� rech� boolean 	 
� Initially 
 �� �� � �

dec� dec p� val p� valtype 	


� Local variables are globally binded in the module �


proc READ�check�i� 
� Read Pi�s registers as �rst action in a step	 check for decisions �

begin

READ �val p� dom p� d set p� dec p� from �V ALi� DOMi� D SETi� DECi� 	
if d set p � i then d set �
 d set p	 dec �
 dec p 	 
� copy �partial� decision �


end

proc UPDATE�� 
� Update own var�s as last action of step �

begin

WRITE �val� dom� d set� dec� to �V ALk� DOMk� D SETk� DECk� 	
end

proc recheck�l � ���n� dec tmp� valtype�
var i � ���n 	
begin

for �i �
 �	 i � l	 i� �� do
if i �
 k do
READ�check�i� 	
if d set � l then proc �
 i �
 d set 	 
� advance current process ptr �

if �i 
 l � � or i 
 l � � and k 
 l � �� and d set � l then d set �
 l	 dec �
 dec tmp 	
UPDATE�� 	

endif

end for

end

Figure �� Protocol DECIDE� �a� Shared Variables and auxiliary procedures

and D SETk shared registers� respectively� Let Dk�proc� � v denote that mapping� which
is the estimation of Pk for D���proc� Pk will �nally return its Dk�n�� Since processes might
miss pulses and are� therefore� asynchronous� deviations from the rule for deciding D���proc

are allowed� so that a fast process Pk� can meet the wait�free requirement when P� and Pproc

are so slow that the result of the game between them is not known at the time that Pk� needs
to �nd out D���proc� The deviation is that the fast process Pk� �arbitrarily� considers that
Pproc is not dominant and sets Dk�proc� � Dk�proc� ��� Since this is done by a fast process�
i�e� early enough� that information is available in the respective shared registers� for the slow



�� Description of the Protocol �

proc SafePhase�k� 
� Estimate D���k
 decision if system consited only of P���Pk �

begin

READ�check�proc� 	 
� step S��k� dominance in fP�� � � � � Pkg� �check presence of P�� �

if d set � � then proc �
 d set 	
else if val p 
 null then dom 
 � 	
if dom and k 
 � then d set �
 �	 dec �
 val 	
UPDATE�� 	
for �� � proc	 proc � k	 proc� �� do

READ�check�proc� 	
if d set � proc then proc �
 d set 	 
� advance current process ptr �

else if ��dom� then d set �
 proc 	

if dom p then dec �
 val p 	 
� else dec 
 Dk�proc� 
 Dk�proc� �� �

end if 	
if proc 
 k � � and d set � k then d set �
 proc �
 k 	

if dom then dec �
 val 	
end if 	
UPDATE�� 	

end for

end

begin 
� Main body of procedure DECIDE �

if k 
 � then dec �
 val 	 
� Step S��k� announce presence �

UPDATE�� 	
if k �
 � then SafePhase�k� 	
for �� � proc	 proc � n	 proc��� do

READ�check�proc� 	
if d set � proc then proc �
 d set 	 
� advance current process ptr �

else if dom p then

if k 
 � then d set 
 proc	 dec �
 val p 	
else dec tmp �
 val p	 rech �
 � 	 
� should recheck for �deviate� decisions �


else d set 
 proc 	 
� consider proc not dominant ��deviate� decision� �

UPDATE�� 	
if rech then recheck�proc� dec tmp�	 rech �
 � 	

end for

return�dec� 	
end

Figure 	� Protocol DECIDE� �b� Procedure SafePhase�k� and main body of DECIDE

processes to �nd out about the deviation from the rule� and� therefore� decide consistently�
Naturally� each process� in each one of its steps� checks whether a �nal decision or a more
advanced �than the one it knows so far� partial decision is reached and adopts it� thus
advancing its process scanning pointer� i�e local variable proc�

The game between P� and an arbitrary Pk is played as follows� Each process �including
P��� as its �rst action of the protocol �announcement or�� step� simply announces its



�� Description of the Protocol �

participation in the game by writing its input value on its V ALk register� In its next step� each
Pk �k �� �� reads the register of P� and becomes dominant only if it reads that P� has not made
its announcement step yet �i�e� if VAL� � null�� in all other cases Pk looses the game� P�
plays with each Pproc in fP�� � � � � Png� one at a step and in that order �except when advancing
its local variable proc�� by checking whether Pproc is dominant� if not� Pproc will never become
dominant� since it will read that P� has already made its announcement step� Thus� in that
case the partial decision is D���proc � D����proc��� and P� sets D��proc� � D��proc � ���
Otherwise �if Pproc is dominant�� P� safely �for reasons that become clear later in this
section� concludes that D���proc � V ALproc and sets D��proc� � V ALproc�

Each process Pk �k �� �� follows a protocol of 	 stages� �rst� using procedure SafePhase�k�
it estimates the partial decisionD���k and then continues forD����k���� � � � � D���n� After making
an observation� we �rst describe the second phase� to give the intuition in a more clear way�

Observation � If a process Pk is not dominant and reads DOMk� � �� then it knows that
Pk� will not become dominant in that execution� because P� has made its announcement step�

Suppose that Pk has an estimation �from procedure SafePhase�k�� of the partial decision
D���k� Then� for each proc � k � �� � � � � n� it estimates D���proc �in that order except from
advances of the local variable proc� as follows� if it reads DOMproc � �� i�e� that Pproc is
not dominant� then� only if Pk itself is not dominant� it can safely make a conclusion� namely
that Pproc will never become dominant �by observation ��� otherwise� it cannot conclude
in a wait�free manner �i�e� without waiting for P� and�or Pproc to make a step� anything
about this future� Therefore� it arbitrarily considers Pproc not dominant and writes that
Dk�proc� � Dk�proc � �� �by leaving its DECk shared register unchanged and updating
only its D SETk into proc�� This implies that any other process P �

k �k
� � proc�� which will

possibly later read that Pproc is dominant� before feeling free to decide Dk��proc� � V ALproc�
it will have to recheck for earlier� deviate decisions about D���proc� among processes with
identity Px� s�t� x � proc �i�e� among processes that might have had to decide about that
with insu�cient information�� Note that P� need not recheck for deviations in decisions for
any D���proc if it reads that Pproc is dominant� if such a decision was made� this would have
happened before the �rst step of Pproc� therefore before the ��step of P� itself� by a process
Px� s�t� x � proc� Thus� P� would have read that decision before reading Pproc�s registers�

Now� let�s see what the �rst phase is� In procedure SafePhase�k�� if Pk becomes dominant�
in which case it should be D���k � VALk� it only has to check whether a fast process in
fP�� � � � � Pk��g has earlier made a deviate decision about D���k� If Pk is not dominant it has
to estimate D����k���� In both cases it su�ces for Pk to scan once the shared registers of each
one of the processes in fP�� � � � � Pk��g� If from a process Pproc it reads DOMproc � �� then
it knows that Pproc will never become dominant �by observation �� and decides Dk�proc� �
Dk�proc� ��� Otherwise� if Pproc is dominant� it decides Dk�proc� � V ALproc� It does not
have to recheck for earlier� deviate decisions for D���proc� because if there was any� Pk would
have read it before reading Pproc�s registers �by an argument similar to the one in the previous
paragraph��



�� Correctness and Performance of the Protocol 	

�� Correctness and Performance of the Protocol

For what follows in this section� we need some auxiliary notation�terminology� Consider an
arbitrary system execution E�

� A process Pk maps a value v to the set f�� � � � � procg in E if there exists a con�guration
such that DECk � v and D SETk � proc� we denote this mapping by Dk�proc� and say that
Pk decides this value v for the set f�� � � � � procg� This might happen either because Pk copies
that decision from the shared register of some other process �in READ check� or because
Pk computes that decision �in SafePhase on in the main body of DECIDE�� Note that
Pk in its return step in E returns Dk�n�� In analogy with consistency for the �nal output
value� we say that the decisions for a set f�� � � � � procg are consistently made in E by the
processes of a set P � if for any two Pk � Pk� � P that decide for f�� � � � � procg� it holds that
Dk�proc� � Dk��proc��

� If s and s� are steps by processes� s � s� denotes that s precedes s�� while sk�s� denotes
that s either precedes or is concurrent with s� in E� the latter is equivalent with ��s� � s��
The step of Pk in which it reads Pproc�s shared registers for the �rst time� not during procedure
recheck� is denoted by Sproc�k� Furthermore� S��k denotes the announcement� or ��step of
Pk �

� A process Pk is dominant in E� if in the con�guration after S��k �and� henceforth in all
subsequent con�gurations in E� it is DOMk � ��

Lemma � �Wait�freedom� In a system with n processes� in any execution� each process Pk

makes its return step after having made at most n�n� ���	 � � steps�

Proof� �Sketch� Each process Pk decides Dk�k� in k steps of its own� for each Dk�x�
�k � x � n� it needs in the worst case �i�e� if recheck is necessary� �� �x� �� steps of its
own� Summing this all up� we have that in the worst case Pk terminates using DECIDE in

k �
nX

x�k��

�x� 	� � n�n� ���	� k�k � ���	

steps of its own� The largest value is when k � 	 �because P� never rechecks and terminates
in at most n steps� and equals n�n � ���	 � � steps� �

Lemma � �Validity� In each execution each process which makes a return step� outputs a
value that equals the input value of some process in the execution�

Proof� �Sketch� A process Pk that terminates returns the value Dk�n� that decides and
holds in its DECk shared variable� That value came either from a copy from some process
Pk� �s DECk� shared variable� or from an assignment to DECk of the input value V ALproc

of a process Pproc� In the latter case the lemma is straightforward� in the former case� if we
trace back the origin of the value held in DECk� � by the same argument� we will �nd that it
is an input value of some process in that execution� �



�� Correctness and Performance of the Protocol 


Lemma � �Consistency� In a system with n processes the decisions for all sets f�� � � � � pg
�� � p � n� are consistently made by the processes of the set fP�� � � � � Png� in every system
execution�

Proof� �Sketch� This can be proven by induction on the number p�

Consider an arbitrary execution E in a system with n processes� For p � � the lemma
holds because for any process Pproc in fP�� � � � � Png� in order to decide Dproc�� it should be
S��proc � S���� which implies that the input value of P� is available in its V AL� shared
variable� therefore� for each Pproc that decides for f�� � � � � �g� it will be Dproc��� � VAL��
Assume the lemma holds for all p � k� we will show that it also holds for p � k � �� From
the induction hypothesis we know that the decisions for f�� � � � � kg are consistently made by
the processes of the set fP�� � � � � Png� In order to prove that the decisions for f�� � � � � k� �g
are also consistently made by the processes of the set fP�� � � � � Png� there are two cases to be
considered�

Case �	 Pk�� is not dominant in E� Each Pproc � fP�� � � � � Pkg � fPk��� � � � � Png that makes
Sk���proc in E� reads DOMk�� � � and� therefore� can only possibly decide Dproc�k � �� �
Dproc�k�� Besides� Pk�� itself will also decide Dk���k � �� � Dk���k�� Since the decisions
for f�� � � � � kg are consistently made by the processes in fP�� � � � � Png� the same follows in this
case for the decisions for f�� � � � � k� �g�

Case 
	 Pk�� is dominant in E� There are two possibilities�

� Each Pproc in fP�� � � � � Pkg � fPk��� � � � � Png that executes Sk���proc and decides for
f�� � � � � k � �g� reads DOMk�� � �� and� therefore� sets Dproc�k � �� � V ALk���
similarly� Pk�� will set Dk���k � �� � VALk��� Therefore� in this case the decisions
for f�� � � � � k� k� �g are consistently made by the processes in fP�� � � � � Png�

� Some Pproc in fP�� � � � � Pkg� which executes Sk���proc and decides for f�� � � � � k � �g�
reads DOMk�� � �� Clearly� proc �� � and proc �� k � �� otherwise� the dominance of
Pk�� would be contradicted� Pproc computes Dproc�k � �� � Dproc�k�� It holds that�

Sk���prock�S���k � �� �Pk�� is dominant but Pproc reads DOMk�� � ��
S���k� ��k�S��� �Pk�� is dominant in E�
S���k� ��� Sproc��k� ��k�Sk��k � �� �� � proc � k�
S���� Sproc��� Sk���� �� � proc � k � ��

Since in Sk���proc process Pproc computes Dproc�k � �� � Dproc�k�� the above imply
that P� and Pk�� will copy that decision from Pproc�s shared register in their Sproc��
and Sproc��k � �� steps� respectively� i�e� before the steps in which they would have to
decide for f�� � � � � k� k� �g�

For any Pproc� in fP�� � � � � Pkg that executes Sk���proc
� and decides for f�� � � � � k � �g�

we have either that �a� Pproc� reads DOMk�� � � and� therefore� sets Dproc��k � �� �
Dproc��k�� or that �b� Pproc� reads DOMk�� � � and executes recheck� In the latter
case� since Pproc� Pproc� read from DOMk�� values �� �� respectively� it holds that



�� Correctness and Performance of the Protocol ��

Sk���prock�S���k � ��� Sk���proc
�

Moreover� from the protocol we have that

Sk���proc
� � frecheck�k� �� VALk��� steps by Pproc�g

Since Pproc in Sk���proc computes Dproc�k��� � Dproc�k�� the above imply that Pproc�

will copy that decision from Pproc�s shared register during recheck�

For any Pproc�� in fPk��� � � � � Png that executes Sk���proc
�� and decides for f�� � � � � k��g�

we have the following� �a� if Pproc�� is dominant in E� since k � � � proc��� from
the protocol it follows that Pproc�� may only copy Dproc���k � �� from a process in
fP�� � � � � Pkg� �b� if Pproc�� is not dominant in E and reads DOMk�� � �� it will decide
Dproc���k � �� � Dproc���k�� if it reads DOMk�� � � then we have the following about
precedence relations of certain steps of these processes in E�

Sk���prock�S���k � �� �Pk�� is dominant but Pproc reads DOMx�� � ��
S���k� ��k�S��� �Pk�� is dominant in E�
S���� S���proc��� �Pproc�� is not dominant in E�
S���proc���� Sproc��proc���� Sk����proc��� �since � � proc � k � ��

Since Pproc in Sk���proc computes Dproc�k� �� � Dproc�k�� the above imply that in its
Sproc��proc

��� step� Pproc�� � will copy that decision into its DECproc�� �

Since the decisions for f�� � � � � kg are consistently made by the processes in fP�� � � � � Png�
the same follows in this case for the decisions for f�� � � � � k� �g�

�

Considering the requirements from a solution to the wait�free consensus problem� the
previous lemmas imply the following theorem�

Theorem � TheDECIDE protocol correctly implements a wait�free solution to the consensus
problem in an in�phase multiprocessor system with n processes� with T � n�n � ���	 � 	�

Conclusions

For the n�process consensus problem we have given a solution that tolerates processor crash
and napping failures in an in�phase multiprocessor system� thus showing that this system
model has a nice property� which is useful for fault�tolerant multiprocessor coordination and
synchronization� Besides fault�tolerant consensus and clock synchronization� it is interesting
to solve other problems e�ciently and fault�tolerant in this system model� moreover� it would
be useful to implement these algorithms�



References ��

References

�� K� Abrahamson On Achieving Consensus Using a Shared Memory� Proceedings of
PODC ����� pp� 	
����	�

	� Juan Alemany and Edward W� Felten Performance Issues in Non�Blocking
Synchronization on Shared Memory Multiprocessors� Proceedings of PODC ���
� pp�
�	������

�� James Aspnes� Maurice Herlihy Wait�free data structures in the Asynchronous
PRAM� Proceedings of SPAA�
�� ������
�

�� James Aspnes� Maurice Herlihy Fast Randomized Consensus Using Shared Memory�
Journal of Algorithms ��� pp� ������� ��

���

�� James Aspnes� Orli Warts Randomized Consensus in Expected O�n log� n�
Operations Per Processor� Proceedings of FOCS ���
� pp� ��������

�� Greg Barnes A Method for Implementing Lock�Free Shared Data Structures�
Proceedings of SPAA ���
� pp� 	���	���

�� Elisabeth Borowsky� Eli Gafni Generalized FLP Impossibility Results for t�resilient
Asynchronous Computations� Proceedings of STOC ���
� pp� 
������

�� Soma Chaudhuri Agreement Is Harder Than Consensus� Set Consensus Problem in
Totally Asynchronous System Systems� Proceedings of PODC ����� pp� �����	��


� Danny Dolev� Cynthia Dwork� Larry Stockmeyer On the Minimal Synchronism
Needed for Distributed Consensus� Journal of the ACM� vol� ��� No� �� January �
���
pp� ���
��

��� Shlomi Dolev� Jennifer L� Welch Wait�free clock synchronization� Proceedings of
PODC �
�� pp� 
������

��� M�J� Fischer The Consensus Problem in Unreliable Distributed Systems �A Brief
Survey�� YALEU�DCS�RR�
�
� June �
���

�	� Michael Fischer� Nancy Lynch and Michael Paterson Impossibility of
Distributed Consensus with One Faulty Process� Journal of ACM� Vol� �	� No� 	� April
�
��� pp� ������	�

��� Maurice Herlihy A Methodology for Implementing Highly Concurrent Data Objects�
Proceedings of ACM PPoPP ����� pp� �
��	���

��� Maurice Herlihy Wait�Free Synchronization� ACM Transactions on Programming
Languages and Systems� Vol� ��� No� �� January �

�� pp� �	����
�

��� Maurice Herlihy� J�E�B� Moss Transactional Memory� Architectural Support for
Lock�Free Data Structures� Proceedings of ISCA ���
�

��� Maurice Herlihy and Sergio Rajsbaum Set Consensus Usibg Arbitrary Objects�
Proceedings of PODC ����� pp��	������

��� Maurice Herlihy and Nir Shavit The Asynchronous Computability Theorem for
t�resilent Tasks� Proceedings of STOC ���
� pp� �����	��

��� Maurice Herlihy and Nir Shavit The Asynchronous Computability Theorem for



References ��

Wait�free Computation� Proceedings of STOC �����

�
� K� Hwang Advanced Computer Architectures� Parallelism� Scalability�
Programmability� McGraw�Hill� Inc� �

��

	�� Michael C� Loui and Hosame H� Abu�Amara Memory Requirements for Agreement
among Unreliable Asynchronous Processes� Advances in Computing Research� Vol� �
��
���� pp� �������

	�� Nancy A� Lynch and Isaac Saias Distributed Algorithms� Lecture Notes
MIT�LCS�RSS �� Research Seminar Series

		� Michael Saks and Fotios Zaharoglou Wait�Free k�set Agreement is impossible�
The topology of Public Knowledge� Proceedings of STOC ���
� pp� ��������


