
NASA-CR-202185

Research Institutefor Advanced Computer Science
NASA Ames Research Center

Impact of Load Balancing on Unstructured
Adaptive Grid Computations for

Distributed-Memory Multiprocessors

Andrew Sohn

Rupak Biswas
Horst D. Simon

RIACS Technical Report 96.15 July 1996

To al)pcar in tim Proce¢'d_ngs of 8th IEEE ,S'ympos_um on Paralbl and I)_sh'tbuh'd Procts.s_ng,
New Orleans, Louisiana, O('tol)(_r 23 26, 1996

Impact of Load Balancing on Unstructured
Adaptive Grid Computations for

Distributed-Memory Multiprocessors

Andrew Sohn

Rupak Biswas
Horst D. Simon

The R<'search lnstit.ut+e of Advanced (:omt)ut.cr Science is operated by Universities Space R+vs<,arch

Association, "Fhc American (:ity Building, Suit_" 212, (!olttmbia, M I) 21044, (410) 730-2656

Work report¢'d hcr¢'in was supported by NASA via (_ont.ract NAS 2-13721 between NASA and l.hc Uniw'rsiti¢'s

Space Rcs_,arch Association (USRA). Work was performed at the R,es_'arch Institutc for Advanced Cornput_'r

Science (RIA(IS), NASA Ames R_'s_'arch (!¢,nter, Moffett Field, ('A 94035-1000.

Impact of Load Balancing on Unstructured Adaptive Grid Computations for

Distributed-Memory Multiprocessors

Andrew Sohn

CIS Dept., New Jersey Institute of Technology, Newark, NJ 07102, sohn@cis, nj it. edu

Rupak Biswas

RIACS, NASA Ames Research Center, Moffett Field, CA 94035, rbi swas @nas. nasa. gov

Horst D. Simon

NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, simon Ca nersc, gov

Abstract

The computational requirements for an adaptive solution

of unsteady problems change as the simulation progresses.
This causes workload imbalance among processors on a

parallel machine which, in turn, requires significant data

movement at runtime. We present a new dynamic load-

balancing framework, called JOVE, that balances the work-

load across all processors with a global view. Whenever the

computational mesh is adapted, JOVE is activated to elimi-
nate the load imbalance. JOVE has been implemented on an

IBM SP2 distributed-memory machine in MPl for portabil-

ity. Experimental results for two model meshes demonstrate
that mesh adaption with load balancing gives more than a

sixfold improvement over one without load balancing. We

also show that JOVE gives a 24-fold speedup on 64 proces-
sors compared to sequential execution.

1. Introduction

Unsteady flow computations in complex three-

dimensional domains is a challenging task. It is particularly

daunting when dynamic mesh adaption is used on unstruc-

tured grids. The computatiotml requirements for such prob-

lems are extremely large both ira terms of processing time
and in-core memory, and can only be satisfied by large-

scale machines [6, 8]. During a typical adaptive, unsteady

computational fluid dynamics (CFD) calculation, the un-
structured meshes are locally refined and/or coarsened to

capture important flow features. As a result, the computa-

tional intensity is not only time dependent, but also varies

spatially over the problem domain.
A parallel implementation of such computational meth-

ods on distributed-memory mactmtes typically requires two

steps [8, 12]. First, the computational mesh is partitioned
into smaller submeshes. Second, the partitioned submeshes

are assigned to processors based on a mapping strategy.

While this static partitioning and mapping approach is ad-

equate for CFD calculations that do not change in com-
putational intensity over time, it is grossly inefficient for

unsteady, adaptive calculations. This is because as the com-

putational behavior changes, some processors may have a lot
more work than others. The imbalance in the processor loads

implies that the initial partitioning of the mesh is no longer

acceptable. It is thus imperative that the amount of work as-

signed to each processor be balanced at runtime to increase

processor utilization and improve performance [4, 8].

Balancing the runtime computational load, however, is

usually very difficult due to several reasons. These include a
reliable measurement of the computational load, the amount
of runtime data movement, and the minimization of inter-

processor communication. Various methods on dynamic
load balancing have be.en reported to date by numerous re-

searchers; however, most of them lack a global view of

loads across processors. A systematic way of measuring

loads across all processors and then utilizing that informa-
tion to balance the workload are needed for a method to be

applicable to a variety of realistic applications. For example,
the local detection and balancing of loads only among neigh-

boring processors may be inadequate for large scientific ap-

plications as it could leave some processors unbalanced. At
the same time, the redistribution of processor loads must be

efficient so as not to signi ficantly delay the main application.

If parallel CFD is to be successfld on distributed-memory
multiprocessors for practical problems, it is essential that

a dynamic load balancing method be developed in a such
way that all necessary modules can be combined together

to collectively act as a coherent tool. Our purpose is to
build such ml envirolmmnt for runtime load balancing with

unstructuredmeshadaptionforunsteadyCFDapplications.
Thedynamicloadbaiancer, called .lOVE, is intended to

satisfy these requirements. It performs its task by compar-

ing the computational gain for a balanced workload against

the communication penalty arising from the data redistribu-

tion. Each time the computational mesh is adapted, JOVE
decides, based on the information collected from all proces-

sors, whether repartitioning will be beneficial. If data move-

merit is expensive compared to the computational gain, the
mesh is not repartitioned and the CFD simulation continues

without interruption. If, on the other hand, JOVE deter-

mines that the cost of data movement is compensated by the

improved load balance, the CFD application is interrupted
to redistribute the data based on the new partitioning. The

numerical simulation is then restarted.

JOVE possesses three novel features. First, a dual graph

representation of the computational mesh is used to keep

the complexity and connectivity constant during the course

of an adaptive computation. Second, a new inertial spectral
mesh partitioning method 19l is introduced that performs
both faster and better than Recursive Spectral Bisection [7].

Finally, accurate metrics for the computational gain and the
communication cost are developed to measure and balance

the processor loads between successive adapted grids.

2. Background

2.1. Unstructured tetrahedral mesh adaption

CFD problems are usually represented as a grid of ver-
tices and elements. Flowfield solutions are typically stored

at the vertices while an element represents some compu-

tation associated with it. During an adaptive calculation,

the unstructured mesh is locally refined and/or coarsened to

capture important flow features. The mesh adaption scheme
used in this work is 3D_TAG [2] which has an edge-based

data structure; that is, each tetrahedral element is defined

by its six edges rather than by its four vertices. This edge
data structure makes the mesh adaption procedure capable

of performing anisotropic refinement and coarsening.

At each mesh adaption step, tetrahedral elements are tar-

geted for coarsening, refinement, or no change by comput-

ing an error indicator for each edge. Edges whose error

values exceed a user-specified upper threshold are targeted

for bisection. Similarly, edges whose error values lie be-

low another user-specified lower threshold are targeted for

removal. Only three subdivision types are allowed for each
tetrahedral element. The !:8 isotropic subdivision is im-

plemented by adding a new vertex at the mid-point of each

of the six edges. The 1:4 and 1:2 subdivisions can result

either because the edges of a parent tetrahedron tire targeted

anisotropically or because they are required to form a valid
cotmectivity for the new mesh. When an edge is bisected,

the solution vector is linearly interpolated at the mid-point

from the two points that constitute the original edge.

Mesh refinement is performed by first setting a bit flag to

one for each edge that is targeted for subdivision in every

element that shares it. The edge markings for each element

are then combined to form a binary pattern. Elements whose

patterns do not match the allowed types are continuously

upgraded until none of the edges shows any further change.
Each element is then independently subdivided based on its

binary pattern. Special data structures are used in order to
ensure that this process is computationally efficient.

Mesh coarsening also uses the edge-marking patterns.
If a child element has any edge marked for coarsening,

this element and its siblings are removed and their parent

element is reinstated. The parent edges and elements are

retained at each refinement step so they do not have to be

reconstructed. Reinstated parent elements have their edge-

marking patterns adjusted to reflect that some edges have

been coarsened. The mesh refinement procedure is then

invoked to generate a valid mesh.

2.2. Dynamic load balancing

A parallel implementation of CFD methods on multi-

processors requires the computational mesh to be divided

into smaller grids, each of which is then assigned to a pro-

cessor. The degree of connectivity and the computational

intensity of individual elements determine how they should

be grouped to form the subgrids. This partitioning must
be done in a way that approximately balances the computa-

tional workload among processors.

Figure 1 shows how mesh adaption adversely affects

processor loads. To simplify the presentation, a small two-

dimensional example is used. The mesh shown in Fig. l(a)

consists of 18 triangular elements. Assuming that four pro-

cessors are used and that the computational intensity is uni-
form for all elements, the mesh is initially divided into four

subgrids by applying graph partitioning. Processors P0 and
PI are assigned five elements each, while processors P2 and
P3 have four elements each.

Changes in the computational mesh due to adaption

makes parallel CFD difficult. As the numerical simula-

tion progresses, some regions of the grid may contain more
elements due to refinement while other regions may contain

fewer due to coarsening. Figure l(b) clearly indicates this

"after one refinement step. PO still has 5 elements; however,

P1, P2, and P3 have 13, 12, and 6 elements, respectively.

The mesh adaption will cause PI and P2 to perform more
than twice the work of PO. Obviously, there is a severe load

imbalance. If another adaption step is performed, the im-

balance is likely to become even more critical, resulting in

poor performance. In the extreme case, the use of a parallel
machine would offer little advantage over sequential ones.

Figure 1. Initial and adapted meshes showing

the need for dynamic load balancing. Also

shown are the dual graph and the computa-

tional weights on the adapted mesh.

As the two snap shots shown in Fig. 1 suggest, it is ex-

tremely important to dynamically repartition the new grid;

however, it is not straightforward as there are many tech-

nical issues involved. Repartitioning must be quick so that

there is no significant delay in the CFD calculation. Post-

partitioning steps must then be able to estimate the compu-
tational gain and the communication cost to decide whether

the new partitions are worth accepting.

3. JOVE: The dynamic load balancing scheme

3.1. Overview

It has been shown that dynamic load balancing is ab-

solutely necessary for unsteady adaptive CFD calculations.

Figure 2 gives an overview of our approach to dynamic load
balancing. The system consists of three modules: the load
balancer JOVE, a CFD flow solver [l, 12] and the 3D_TAG

mesh adaptor [2]. Details of the CFD solver are beyond

the scope of this paper, except to note that it generates error

values for each edge that are then used by 3D_TAG to refine
and/or coarsen the mesh.

if (Pre_eval(new) -- NOK) {
Partition(new);
comp,comm -

Evaluate(old,new);
if (comp > comm)

Move(old,new);
}

Figure 2. Dynamic load balancing framework.

The first step of JOVE is Pre_eval (new) which de-
termines if the new mesh warrants further action in terms of

repartitioning mid processor reassignment. The objective is

to rapidly decide whether the mesh has changed significantly

enough to consider repartitioning. If pre_eval (new)
recommends repartitioning, the Partition (new) step

divides the new mesh into subgrids. A new inertial spectral

bisection algorithm [9] is used to rapidly update a partition

from one grid to the next. The Evaluate(old, new)

step consists of assigning partitions to processors such that
the communication cost for data migration is minimized. It

calculates two numbers: the computational gain cornp that

would be achieved by having a balanced partitioning, and
the communication cost comm of actually moving all the

data to correctly map partitions to processors. If comp is

larger than comrn, it is advantageous to use the new parti-

tioning. In that case, the CFD simulation is interrupted while
all the necessary data is redistributed based on the processor

assignments. The CFD calculation is then restarted on the

new partitions. Otherwise, the new partitioningis discarded
and JOVE waits for the next adapted mesh.

3.2. Dual graph representation

The dual graph representation of the initial mesh is one of
the key features of this work. CFD flow solvers usually solve
for the solution variables at the vertices of the computational

mesh. A parallel implementation requires a partitioning of

the computational mesh such that each element belongs to

a unique partition. Communication is required across faces

that are shared by adjacent tetrahedral elements residing on

different processors. Hence for the purposes of partitioning,
we consider the dual of the original CFD mesh (cf. Fig. 1).
The tetrahedral elements of the CFD mesh are the vertices

of the dual graph. An edge exists between two dual graph

vertices if the corresponding elements share a face in the
original mesh. A graph partitioning of the dual graph thus

yields an assignment of tetrahedra to processors.

Each dual graph vertex has two parameters associated
with it. The computational weight, Wcomp, is a measure

of the workload for the corresponding element of the CFD

mesh. The communication weight, l/)comm, measures the

cost of moving the element from one processor to another.

The connectivity pattern mid the Wcomp determine how dual

graph vertices should be grouped to form partitions that
minimizes the disparity in the partitionweights. The w

determine how partitions should be assigned to processors
such that the cost of data movement is minimized.

The most significant advantage of using a dual graph is

that its complexity and connectivity remains unchangeddur-

ing the course of an adaptive computation. This is because

the vertices of the dual graph correspond to the elements of
the initial CFD mesh. The partitioning mid load-balancing

times therefore depend only on the initial problem size. New

grids obtained by mesh adaption are translated to the two

weights, wcomr mid Wcomm, for every element in the initial

CFDmesh.ThenormalizedWcomp values greater than unity
are shown for the dual graph vertices in Fig. 1(b).

3.3. Preliminary evaluation of adapted meshes

The objective of the Pre_eval (new) step in JOVE is

to rapidly determine if the dual graph with a new di stribution

of computational weights should be considered for reparti-

tioning. If projecting the new values of Wcomp on the current
partitions indicates that they are adequately load balanced,

there is no need to repartition the mesh. In that case, JOVE

terminates and the CFD application continues uninterrupted

on the current partitions.

A proper metric is required to measure the load imbal-

ance. If Wm_ is the sum of the wcomp on the most heavily-

loaded processor, and W,,g is the average load across all
processors, the average idle time for each processor is

(Wm_ - W, vs). This is an exact measure of the load im-
balance. The mesh is repartitioned if the imbalance factor

Wmu/W, vg is greater than a user-specified threshold.

3.4. Dynamic inertial spectral mesh partitioning

If the preliminary evaluation step determines that the
dual graph with a new weight distribution is unbalanced,

JOVE invokes the mesh partitioning procedure. Several

partitioning algorithms are available for unstructured grids;

however, a new procedure that combines the high quality of

spectral methods [7] with an efficient update strategy is used.
This dy_mmic spectral bisection algorithm [91 is based onthe

center of inertia of the unpartitioned dual graph vertices and

utilizes information from the initial spectral partitioning. It

is thus capable of rapidly updating a partition from one grid

to the next. The following algorithm explains the method:

for (i-0; i <iog(npart); i++) /* npart = #partitions */

for 0"-0; j < 2i; j++) {

Find an inertial vector of the unpartitioned vertices
Construct an inertial matrix using the inertial vector

Symmetrize the inertial matrix

Find the eigenvectors of the inertial matrix
Project vertex coordinates on eigenvector 0

Sort projected coordinates

Divide the unpartitioned vertices into two sets
}

3.5. Similarity metric construction for evaluation

The objective of the evaluation step is to map new par-

titions to processors such that the communication cost for

redistributing data is minimized. It begins by computing a

similarity measure S that indicates how the communication

weights of the new partitions are distributed over the old

partitions. It is represented as a matrix where S,./is the sum
of the communication weights of all the dual graph vertices

that have moved from old partition i to new partition j.

Consider, for example, a dual graph that generates the

measure S in Fig. 3(a) after a repartitioning among eight

processors. Only the non-zero entries are shown. Note
that there are only three non-zero entries in the first row.

This means that the vertices in old partition 0 have been

distributed over new partitions 0, 1, and 3. Also, it would

cost 389 to move those vertices in old partition 0 that are

common to new partition 0, 510 to move those that are
common to new partition 1, and 120 to move those that are

common to new partition 3.

3.6. Processor reassignment

A new partition j with the largest value of Sij is called

the dominant partition for old partition i. This is because
the communication cost for moving data can be minimized

by mapping the processor assigned to an old partition to

its corresponding dominant partition. The shaded entries in
Fig. 3(a) indicate the largest computational weight for each

of the old partitions. These are called the dominant weights.

A serious problem is evident by inspecting the dominant

weights in Fig. 3(a). Even though every old partition has

a dominant partition, every new partition is not necessarily
dominant. This affects the new partitions in two ways. First,

some new partitions are not dominant at all; their processor

assignment entries are marked with an 'X'. Second, some

new partitions are dominant for more than one old partition;

their processor assignment entries are marked with a '?'.

Our goal is to assign each processor a unique partition.

Thus, the dominant partitions need to be rearranged so that

there is exactly one dominant weight in every row and

column of the similarity matrix S. Processor assignment

then simply consists of mapping each dominant partition to
the processor to which the old partition was originally as-

signed. However, this rearrangement constitutes a difficult

optimization problem [10]. Due to runtime constraints, a

suboptimal solution is obtained in linear time. The follow-

ing algorithm ensures that each new partition is designated
as dominant for exactly one old partition:

for (i-0; i < apart; i++) /* npart: #partitions */

for (j=l; j < ndp[i]; j++) { /* ndp[i]: #dom wghts */
Find min dominant weight S, from new partition i

Find max non-dominant weight Stk from old partition l

such that ndp[k] < 1
Mark S, non-dominant and Stk dominant

ndp[k]=l

}

The ironer loop is executed only for those partitions that

have more than one dominant weight. Applying the above

New Partitions

El

II

Ill
Processors

New Partitions

P_OCeSSOI_

Figure 3. The similarity matrix (a) before and

(b) after processor reassignment.

•algorithm to the similarity matrix in Fig. 3(a) generates the

new processor assignment shown in Fig. 3(b). In general,
our method is also applicable if the number of partitions is

an integer multiple of the number of processors.

3.7. Computational gain vs. communication cost

The computational gain of repartitioning is proportional

to the decrease in the load imbalance achieved by running

the adapted mesh on the new partitions rather than on the

old partitions. Recall from Sec. 3.3 that the average load

imbalance for each processor is given by (Wm_ - Wa,,g).
The decrease in the amount of load imbalance due to the rtew

partitioning oll P processors is therefore P(Wm°_ - Wm"_),

where w°_d.-max and Wm"_ are the sum of the computational

weights on the most heavily-loaded processor for the old

and new partitionings, respectively. If it requires Titer/tsecs
to run one iteration of the CFD flow solver on one element

of the original mesh, and if it is expected that the next

mesh adaption will occur alter Nadapt iterations of the flow

solver, the total computational gain for the new partitioning

• " max Newis PViterNadapt(w°ld -- [Vmnax).

Calculating the communication cost is more complicated.
Thc si mi Iarit y mat ri x obt ai ned after processor reassignment

determines how data is to be redistributed. Models such as

LogP [3] capture communication behavior with various pa-
rameters. We, however, use a model based on the similarity

matrix and two machine-dependent parameters: the remote-

memory latency time Tllatand the message setup time T_t,p.

Ttat is the time required for memory-to-memory copying of

a word, and applies to every dual grid vertex that is moved.

T_t,p is the time required to prepare message headers, load

the message buffer, and so on, and applies to each set of

vertices that is moved from one processor to another.
Consider the similarity matrix in Fig. 4. Old partition 0

is distributed over new partitions 0, 1, and 3. However, data

has to be moved only to partitions0 and 3 because new parti-

tion 1 is assigned to P0, the same processor that old partition

0 was assigned to. This means that a total of 509 computa-
tional elements have to be moved from P0. Moreover, since

the elements have to be sent to P4 and P7, the setup time

for moving two sets of data also has to be included in the

total cost. If the CFD and mesh adaption algorithms require
M words of storage per computational element, and if C
and N are the total number of elements and sets of elements

to be moved, respectively, the total communication cost for

mapping new partitions to processors is CM_at + NTsetup.

New Pamtions

G=4200 N=18

Processors

Figure 4. Calculating the total communication
cost from the similarity matrix.

The new partitioning and mapping are accepted if the

computational gain is greater than the communication cost.

The numerical simulation is then interrupted to properly

redistribute all the data based on the processor reassignment

obtained from the similarity matrix. This completes the load

balancing phase for one mesh adaption step.

4. Results and discussions

4.1. JOVE implemented on SP2

The load balancer JOVE, as described in Sec. 3, has been

implemented on the IBM SP2 distributed-memory multipro-

cessorinstalledat NASA Ames Research Center. The code

consists of approximately 3000 lines of C, with the parallel

activities implemented in Message-Passing Interface (MPI)

for portability. This does not include the 3D_TAG mesh

adaption procedure which is another 4000 lines of C code.
A master-worker parallel programming paradigm is used to

simplify the implementation.

4.2. Test meshes and adaption simulation

Two model unstructured meshes are used in the experi-

ments reported in this paper. The first mesh, called PARC, is

two dimensional and has 1240 triangular elements. The sec-
ond mesh, called BRICK, is three dimensional and has 2500

tetrahedral elements. Both are very small meshes, suitable

for investigating fundamental issues in load balancing with
reasonable execution times. Using realistic CFD meshes

consisting of about a million elements would unnecessarily

hinder our investigations as they have long execution times
even on large-scale machines. Small meshes, on the other

hand, allow us to look into the behavior of the load balancer
in a reasonable time frame with a wide range of different

parameters and settings.

The actual mesh adaption procedure has been simulated

in parallel while retaining its typical behavior. "l_vo funda-
mental issues need to be addressed in the simulation of mesh

adaption: vertex selection and adaption modeling. Vertex
selection refers to how and when dual graph vertices are

selected as candidates for adaption. Vertices are randomly

selected for adaption regardless of its partition number. At
each iteration, a vertex is adapted if its id modulo a pseudo-

random number lies within a certain range. Adaption mod-

eling refers to how much computation each vertex should

perform. Our adaption simulator is defined as three nested
loops with the innermost consisting of a floating point divi-

sion. Each loop has w iterations, where w is the weight of
the vertex. Therefore, if a vertex with weight w is selected

for adaption, its weight is set to w 3 and goes through w 3 iter-

ations of floating point divisions. We have done substantial

mesh adaption on realistic meshes in the past [5, 11] and
find that this model is suitable for our experiments.

4.3. Anatomy of the execution time

We discuss how and where the total execution time is

spent for each mesh adaption step. For typical, unsteady

CFD calculations, the mesh adaption and load balancing

phases are invoked several hundred times. However, it suf-
rices to investigate for some reasonable number of adaptions

to understand the behavior of the whole system. The execu-

tion time is measured for various steps and summarized into

four categories: adaption, partitioning, evaluation/decision,
and commm_ication. Note that the communication time is

a combination of several activities that include sending and

receiving weights, and redistributing dual graph vertices

among processors. Figure 5 shows the execution time pro-

file for the first 30 adaptions on the BRICK mesh using 16

and 64 processors.

10 4

_10 3

_10 2

._ tO j

i0 °

16 processors

104x]| adaption 64 processors

I0| .__ l_mtion
2.] evaluation

_" 10| _ communication

•_ 10

._ I0

io o 5 ib fs io 2's 30
Adaption step

Figure 5. Anatomic of total execution time for
BRICK mesh.

We can draw three major conclusions from the plots.

First, we rind that the partitioning and evaluation times are

small compared to the adaption and communication times.

It is also noteworthy that the partitioning and evaluation

times remain constant throughout the simulation. However,
as expected, the partitioningtime increases with the number

of processors. For example, the partitioning time is about

0.1 sees for 16 processors, but increases to 0.25 sees for 64

processors. This is not surprising because the master pro-
cessor needs more time to partition the grid into 64 subgrids

than into 16 subgrids.

Second, the mesh adaption and communication times
dominate the total execution time. In particular, the adaption

time is dominant when the number of processors is small,

as seen in Fig. 5(a). There is an order difference between

adaption and communication times. However, with 64 pro-

cessors, the two times are comparable (cf. Fig. 5(b)). This

trend is expected to continue as the number of processors
increases; that is, the communication time will dominate

when more processors are used. However, this is not alarm-

ing because the adaption time is artificially very small for

the model problems. The typical execution time for one

meshadaptionstepforrealisticproblemsisafewhundred
seconds,nottractions of a second [5]. Thus, in real appli-

cations, the adaption time will almost always be much more

than the communication time. The plots in Fig. 5 indicate

that for most parallel applications, an increase in the num-

ber of processors will substantially lower the adaption time

while increasing the communication time.

Finally, we have analyzed the execution time for only

30 adaptions. Full-scale, unsteady applications typically

require several hundred mesh adaption steps. As observed

from the plots, the execution time relentlessly increases as

the number of adaptions increases.

4.4. Effect of mesh adaption on data movement

Figure 6 shows the percentage of dual graph vertices that

are moved at runtime after each adaption. We present results
for both the PARC and the BRICK meshes..

,--, 80

 6ol

_ao!

"_ 20

>

80

----'60

¢,)

o
_4o

PARC mesh

t

a

rlw._

B

8 processors
16 processors
32 processors

-q- 64 processors

BRICK mesh

20 ¸

0 '
0 5 10 15 20 25 30

Adaption step

Figure 6. Percentage of dual graph vertices
that are moved.

The plots demonstrate that the PARC mesh incurs a lot
more relative data movement than the BRICK mesh. This

is because BRICK has more vertices than PARC. We 'also

lind that the amount of data movement increases with the

number of processors for both meshes. This explains the
increase in the communication time in Fig. 5.

86t .__ 8 processors PARCmesh

16 processors
32 processors

-_- 64 processors

e_
0
Z

8

2

o.i
o

BRICK mesh

Figure 7.
with and

l'0 1'5 2'0 25 30

Adaption step

Comparison of total execution times

without load balancing.

4.5. Impact of dynamic load balancing

Two sets of experiments were performed to measure the
effectiveness of JOVE. These represent the key results of

this paper. The same vertex selectionand adaption modeling

procedures were used with and without load balancing. Fig-
ure 7 illustrates the impact of load balancing on the total exe-
cution time. The plots show that when 8 processors are used

for the BRICK mesh, the load balancing gives more than a

threefold improvement over no load balancing. However,

with 64 processors, the improvement is almost sixfold. In

general, the results demonstrate that load balancing is highly
nondeterministic but shows some gain for BRICK when the

number of processors increases. This improvement is not

observed for PARC primarily because it is a very small

problem. We expect larger improvement for bigger meshes
because of increased computation-to-communication ratio.

Figure 8 demonstrates the implication of tiffs perfor-

mance improvement when the load balancer JOVE is used

with mesh adaption. When compared with the sequential
version, JOVE demonstrates a 24-fold speedup for 40 adap-

tion steps. For 10 adaptions, which is quite unrealistic, the

speedup is only about 10. We also see a typical phenomenon

of early saturation. However, the speedup consistently in-

creases with the number of adaptions. For real problems
with several hundred adaption steps, the speedup will in-

crease further as the curves in Fig. 8 suggest.

32

24

8

0
32

.__ 10 adaptions PARC mesh
20 adaptions

--*- 30 adaptions
40 adaptions

24

8

BRICK mesh

0 s f6 2a 32 g6 64
Number of processors

Figure 8. Parallel speedup of JOVE.

5. Conclusions

Dynamic load balancing for unstructured adaptive mesh

computations is a complex task, involving many procedures

and parameters. While typical load balancing schemes lo-

cally exchange information between neighboring proces-

sors, we have presented a new method called JOVE that

dynamically balances loads across processors with a global

view. JOVE has been implemented on an SP2 distributed-

memory muitiprocessor with approximately 3000 lines of

C code. Parallel activities have been implemented in MPI

for portability. We have used two model meshes for exper-

iments: one with 1240 elements, and the other with 2500

elements. While these meshes are small, they are suitable

for our investigations as the execution times are reasonable.

Two key observations can be made from the experiments

reported in this paper. First, the JOVE load balancing rood-

tile has given a sixfold improvement for mesh adaption,

when compared with no balancing regardless of the number

of processors. Second, JOVE has given a 24-fold speedup

on 64 processors, when compared with a sequential single-

processor version that has no parallel constructs. These

observations are based on the measurement of only 30 mesh

adaption steps. Results have indicated that performance will

improve with more adaptions and larger meshes.

We have also drawn some other conclusions that clarify

the behavior of load balancing for mesh adaption. Flint,

the partitioning and evaluation times are negligible com-

pared to the adaption and communication times, regardless

of the number of processors. This has indicated that even

the sequential version of the new inertial spectral partitioner

is indeed quite fast. Second, the adaption time decreases

while the communication time increases as the number of

processors is increased. This is somewhat expected, and our

future efforts will be focused on reducing the communica-

tion time. Finally, the number of vertices that are moved

due to repartitionlng does not appear to be a key factor that

affects the effectiveness of load balancing. We have found

that with 64 processors, performance still sustained a sixfold

improvement even when 25% of all vertices were moved.

These experimental results have consistently demon-

strated that the JOVE load balancer is effective for unstruc-

tured adaptive mesh computations. Our immediate goal is

to run JOVE on large meshes with several hundred adap-

tion steps that closely model full-scale experiments. We are

planning on applying this method to various realistic appli-

cations including helicopter aerodynamics, semiconductor

device modeling, and computational nanotechnology.

References

[1] T. J. Barth. A 3-d upwind euler solver for unstructured

meshes, lOth AIAA CFD Conf., AIAA-91-1548, 1991.
[2] R. Biswas and R. C. Strawn. A new procedure for dynamic

adaption of three-dimensional unstructured grids. Appl. Nu-

raer. Math., 13:437-452, 1994.
[3] D. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E. E.

Schauser, E. Santos, A. Subramonian, and T. von Eicken.

Logp: Towards a realistic model of parallel computation. In
4th ACM PPoPP, 1993.

[4] K. D. Devine and J. E. Flaherty. Dynamic load balancing

for parallel finite element methods with adaptive h- and p-
refinement. In 7th SIAM Conf. on Par. Proc. for Sci. Comput.,

pages 593-598, 1995.
[5] E.P.N. Duque, R. Biswas, and R. C. Strawn. A solution adap-

tive structured/unstructured overset grid flow solver with ap-

plications to helicopter rotor flows. 131h AIAA Appl. Aero.

Conf., AIAA-95-1766, 1995.
[6] P. Mehrotra, J. Saltz, and R. E. Voight. UnstructuredScien-

tific Computation on Scalable Multiprocessors. MIT Press,

1992.

[7] 1t. D. Simon. Partitioning of unstructured problems for par-

allel processing. Comput. Sys. in Engrg. , 2:135-148, 1991.
[8] 1I. D. Simon. Parallel Computational Fhtid Dynamics. M1T

Press, 1992.

[9] 11. D. Simon and A. Sohn. Dynamic inertial spectral parti-

tioning, in preparation.
[101 A. Sohn. Parallel n'aryspeculativec°mputati°n°f sinmlated

annealing. IEEE Trans. on Par. Dist. Sys., 6:997-1005, t995.
[11] R. C. Strawn, R. Biswas, and M. Garceau. Unstructured

adaptive mesh computations of rotomraft high-speed impul-

sive noise. J. of Aircraft, 32:754-760, 1995.
[121 V. Venkatakrishnan, 1I. D. Simon, and '1: J. Baah. A mimd

implementation of a parallel euler solver for unstructured

grids. J. of Supercomputing. 6:117-137, 1992.

