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Abstract

Performance penalties due to synchronization are a common concern in parallel programming. This
paper describes a technique for avoiding such penalties when they occur in shared data structures. This
technique may be used with a segment of code in which two updates are required for any element of
a shared array and the values stored in the array are known a priori. Traditional approaches enforce
the correct ordering of write operations using locks, but this can be time-consuming and drastically
reduce the benefits of using a parallel machine. Instead, we propose using an optimistic approach where
the solution is calculated without any locks, during which statistics on memory writes are kept. These
statistics can then be used to determine whether the calculation resulted in a correct answer or if the
answer should be recalculated due to incorrect ordering of write operations. This scheme is tested on an
implementation of the Mgller-Plesset perturbation theory energy calculation for closed-shell molecules
and significant speedups are shown, as demonstrated on an SGI PowerChallenge.

1 Introduction

Shared memory parallel machines are often chosen as target platforms for porting existing applications
due to the relative simplicity of the programming model. However, in developing an application on such a
system it is necessary to find formulations of the solutions that admit to sufficient parallelism and are not
overshadowed by synchronization and communication requirements. In accessing shared data structures we
are primarily concerned with ensuring that data dependencies are honored thereby avoiding data hazards
(e.g., read-after-write). This is usually achieved via the use of mutual exclusion locks at a considerable
expense in execution time performance. The resulting overhead often precludes the application of parallel
processing techniques to improve the performance of computationally intensive applications. However, in
certain applications data races may occur infrequently in practice, while being relatively easy to detect
after they have occurred. In such applications, parallel computation may proceed optimistically assuming
that hazards will not occur. If the occurrence of a hazard is detected, the result may then be recomputed,
possibly guaranteeing correctness via the use of locks. When the cost of hazard detection and the frequency
of occurrence are sufficiently low, substantial performance improvements over serial execution become
possible. This paper presents an evaluation of an implementation of such an approach for an application
from the domain of computational chemistry.



The computational chemistry application that we have parallelized in this research is the calculation
of the second-order Mgller-Plesset perturbation theory energy for closed-shell molecules. The majority of
the computational effort in the serial implementation can be found in two components: trans and mbpt.
The component trans utilizes a very large array that is accessed with no predictable pattern. Each element
of the array is updated twice with addition operations: first to an initial value of zero, and second to a
non-zero value. If elements of the array are locked to enforce correct sequences of write operations, the
overhead of the locks becomes prohibitive. However, if the entire array is locked for each write, parallelism
is inhibited. If no synchronization is enforced, two processors may try to update a value simultaneously,
resulting in an incorrect value. By maintaining a count of the number of additions to zero values and
the number of additions to non-zero values it can be determined whether a hazard actually occurred. In
practice such hazards rarely occur. Since the calculation is highly parallel, re-running this portion of the
application when an error is detected is relatively inexpensive.

Examples of optimistic computation can be found in many areas of computing. In parallel discrete
event simulation, events can be executed optimistically as they are received. Corrective action is taken
when a violation of causality constraints between event execution is detected. In the implementation of
direct mapped cache memories, entries are assumed to be available in the cache and are fetched in parallel
with the access checks performed on the cache directory. The cache access is prevented from completing
and a cache miss is generated if the access checks indicate that the required cache line is actually not
present [HB84]. A simple strategy for branch prediction in pipelined processors is to assume that branches
are not taken (or taken) and to continue fetching instructions. If the branch decision is subsequently found
to be in error, the instructions in the pipeline are flushed and prevented from completing. All of these
examples lead to significant improvements in computing system performance be exploiting the behavior
of application programs. This paper describes the successful application of an optimistic approach to
the synchronization of a shared memory implementation of an important application in computational
chemistry.

The following section describes the structure of the application and the nature of the computation.
Section 3 discusses our parallelization approach and section 4 evaluates the success of our algorithms. The
paper concludes with a final description of the future directions of this work.

2 An Example from Computational Chemistry

2.1 Overview: The Second-Order Mgller-Plesset Perturbation Theory Energy Calcu-
lation for Closed-Shell Molecules

In the quantum mechanical study of a molecule, it is generally necessary to begin with the Hartree-Fock
self-consistent-field (SCF) method [Roo51]. However, the SCI approach fails to consider the correlation of
electronic motion. Thus, one of the first steps beyond SCI is the calculation of the second-order Mgller-
Plesset perturbation theory energy (MP2) [MP34], which does include electronic correlation. However, it
is well-known in the field of electronic structure theory that the calculation of this MP2 correlation energy
can be extremely computationally demanding, requiring significant CPU time and memory. This motivates
the search for parallel formulation.

Parallelization of this application is relatively straightforward and can be achieved via domain decom-
position. However, exploiting this parallelism is a significant challenge due to heavy demands on memory
resources and unpredictable memory reference patterns. Due to these irregular access patterns, a shared
memory solution appears preferable, although message passing implementations have been studied [MD95].
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Figure 1: Structure of the program before parallelization, including the sort between trans and mbpt.

There have been some previous attempts to study the parallelization of similar electronic structure
theory calculations. Watts and Dupuis examined the same application as part of the HONDO quantum
chemistry program in 1988 [WD88] using the Loosely Coupled Array of Processors (LCAP) systems [Cle85,
CCD*84] at IBM in the mid-1980s. Their implementation also used shared memory and they reported a
modest speedup; however, the implementation was only useful for the native system and was limited in its
ability to be scaled to larger machines. Further, the LCAP system never evolved beyond the experimental
stages, so the parallel application was of limited use to the general scientific community. In a recent
paper, Marquez and Dupuis [MD95] published the current efforts with MP2 in the HONDO program,
which includes an implementation with the Parallel Virtual Machine (PVM) [GBD*94] programming
environment. They parallelized a greater portion of the MP2 problem than presented here, but did not
eliminate the communications bottleneck generated by the domain decomposition. Their overall speedups
are excellent, but on the more data-oriented portions of the computation the distributed memory platform
encounters significant performance penalties due to inter-processor communications. As a result, these
portions of the computation do not realize as significant an improvement as some of the others. In contrast,
our approach has been to avoid the excessive communication overhead resulting from domain decomposition
by creating a shared memory implementation and utilizing an optimistic approach to synchronizing access
to shared data structures.

2.2 Mathematical Formulation

The Mgller-Plesset energy calculation computes the second order perturbation theory energy for a closed-
shell molecule. The energy can be written as:
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where ¢ and j are doubly-occupied molecular orbitals and @ and b are unoccupied molecular orbitals for
a given molecule. (There are no singly-occupied orbitals for this calculation, as we are working with only
closed-shell molecules.) The notation (ia|jb) represents a two-electron integral over spatial orbitals, in
Mulliken notation, for a particular 4, j, a, and b, and ¢ is the energy of orbital £[SO89], [Wil87].

2.3 Structural Description of the Computation
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Figure 2: Structure of rdtwo before parallelization.

The computation proceeds in two primary stages (see Figure 1). The first is a transformation function
(trans) which sets up the two-electron integral matrix for use in the second stage by transforming the two-
electron integrals from the atomic orbital (AO) basis to the molecular orbital (MO) basis. The function
trans itself is decomposed into two main blocks, rdtwo and trans_two.

The function rdtwo reads in a large file containing the AO basis functions and performs a pre-trans-
formation. The initial structure of rdtwo is as shown in Figure 2. Each iteration performs a computation
of time complexity O(h?m?3), where h is the number of irreducible representations and m is the number
of orbitals per irreducible representation [Cot90]. A and m are generally small numbers; A is a maximum
of 8, and m is on the order of 10! to 102, with a maximum of approximately 200. The size of the input
file varies according to the number of basis functions; the problems we dealt with here utilized under 1000
buffers of data (where a buffer is 2980 doubles, read in as a block), but much larger cases are typical. The
function trans_two performs the actual transformation, beginning from the intermediate matrices produced
by rdtwo and producing a complete two-electron integral matrix. The function trans is of time complexity
O(h*m?®) at its deepest point, where A and m have typical values described above.

The energy calculation is performed in the second stage (mbpt, see Equation 1). The function trans
produces values for the numerator and the orbital energies are provided for the denominator. In the original
application the output of trans was sorted prior to computation in mbpt, but this proved inefficient in the
parallel application, as the added expense of an indirect memory access per element was less than the
total time required for the sort. In a parallel implementation, much of the expense is eliminated by the
parallelization, so the effort involved in eliminating the sort operation was more beneficial than it would
have been in the serial application. The function mbpt is of time complexity O(N?%n?), where N is the
number of doubly-occupied MQO’s and n is the number of unoccupied MQO’s.



—= FOR [ O(h"m? ] do:

®] #C

create K matrix
Oo(hm?)

*K, *C

create L matrix
O(h'm’)

*L

fill in TFM values
O(h'm)

*TFM

Figure 3: Structure of trans_two before parallelization.

3 Parallelization Approach: Optimistic Computation

The functions trans and mbpt are implemented using a multiprocessor threads package, Cthreads [MEG94],
which supports thread-based parallelism and provides portability between a variety of shared-memory
multiprocessor and uniprocessor platforms. Our implementation platform was an SGI PowerChallenge
12-processor shared memory machine. The initial code was based on the Psi 2.0 suite of computational
quantum chemistry programs[JSSt94]. Both trans and mbpt are structured such that parallelization can
be achieved via data decomposition.

3.1 Parallelization of trans

The basic structure of trans before parallelization is based on the Saunders-van Lenthe algorithm
[SvL.83]. The function transis composed of two segments, input processing (rdtwo) and the two-electron
integral transformation (trans_two). The structure of trans_two is illustrated in Figure 3. At the core of
trans_two is a series of nested loops that modify the elements of a large four-dimensional matrix, TFM.
The computation produces multiple updates to each matrix element, i.e. each element accumulates the
sum of values computed over more than one iteration.

However, due to the nature of the computation each matrix element is updated exactly twice and all
matrix elements are initialized to zero. The element update appears as shown below:
if (ij == k1)
TFM[ijk1] += 2.0 * (L[1t][kt] + L[kt]1[1t]);

else
TFM[ijk1] += (L[1t][kt] + L[kt][1t]);

Parallelization of this computation was relatively straightforward (see Figure 4). The program spawns
multiple, concurrently executing threads, including one master thread and multiple slave threads. Each
thread runs on a distinct processor and executes a set of outer loop iterations. The number of iterations
per thread is chosen to balance the granularity of the computation. Since we are working with shared
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Figure 4: Structure of trans_two after parallelization.

memory, we allocate TF M to reside in shared memory along with any common input data. However, any
other data that is written within the inner loop of trans, including most intermediate arrays, is made local
to each thread.

While TFM is globally shared, individual processors may cache the matrix elements. We can ensure
that all updates occur in order on the main memory copy of the elements by serializing updates to the
complete matrix. This approach clearly precludes any performance via parallel computation of matrix
values. However, we can exploit application characteristics to realize a more efficient and highly parallel
implementation.

3.1.1 A Simple Example of Optimistic Execution

The following simple example illustrates our approach. Suppose that there are two threads updating a
single array A in shared memory. All elements of A are initially zero, and exactly two new values will be
added to each value in A. Suppose that A is five elements long, and that the updates occur in each thread
in the order shown in case 1 of Table 1.

Each thread reads the values in A at the beginning of a given cycle, and updates and writes a value to A
at the end of a cycle. When thread 1 caches elements 1 (the first time), 4, and 0, the values will be 0 prior
to update. However, elements 1 (the second time) and 3 are non-zero before being updated. We will call
the first case a “zero-write” and the second a “non-zero-write”. Thread 1 records the number of zero-writes
(3) and non-zero-writes (2). Thread 2 will find as it caches its values that elements 2, 4, and 3 are zero.
Thus three zero-writes and two non-zero-writes are recorded for thread 2. As each thread completes, its
local counters are summed in the master thread, resulting in 6 zero-writes and 4 non-zero-writes. Since
each element should have been updated twice (once as a zero-write and once as a non-zero-write) the two
counts should be equal. Inequality denotes the occurrence of a hazard and incorrect computation. We
can see from the table that the both threads attempted to update A[4] simultaneously. When this occurs
in parallel execution, only one thread’s operation will be successful, which is why the results are deemed
unsafe. It is not possible to determine which element value is incorrect, only that some element value is



Case 1 Case2

Time || Thread 1 | Thread 2 A Thread 1 | Thread 2 A

init 00000 00000
0 Al] A2l [0xx00 | A[lL Al2] [0xx00
1 A2l | 0xx00 A[2] [0xx00
2 Al4] Al4] 0xx0x Al4] 0xx0x
3 AJ0] A[3] XX XXX AJ0] Al4] xxx0x
4 A1) XX X XX All] A[3] X X XXX
5 A[0] XX XXX AJ0] XX XXX
6 A3] XX X XX A3] XX XXX

Table 1: An example of memory accesses for two threads on an array A. “x” denotes a non-zero value

stored in the array, indicating at least one write update has occurred.

incorrect. This is why the matrix must be recomputed.

Now suppose that execution proceeds as in case 2. In this case, thread 1 will detect zero-writes on
elements 1, 4, and 0 and non-zero-writes on elements 1 and 3. Thread 2 will detect zero-writes on elements
2 and 3 and non-zero-writes on elements 2, 4, and 0. The main thread will collect final counts of 5
zero-writes and 5 non-zero-writes, which indicates that every element had exactly one zero-write and one
non-zero-write. At that point it can be asserted that the matrix has been correctly updated and that the
computation can proceed.

It would be impossible for the count of non-zero-writes to be higher than that of zero-writes. Further-
more, the difference in the counter values must be some multiple of 2: a missing update decrements one
counter and increments the other.

3.1.2 Extension of the Approach

This example can be easily extended to much larger matrices and many more threads as long as each
element of the matrix at issue is updated exactly twice (or not at all, in which case the element does not
contribute to zero-writes or non-zero-writes). We characterize this approach as an “optimistic” execution,
as we implicitly assume that there will be no hazards and perform hazard dectection on completion. By
having eliminated what would have been necessary locks on either the entire array or on individual elements
of the array, we have significantly sped up computation. In practice, we have found that the occurrence of
a hazard necessitating re-computation is quite rare. Detailed performance results are presented in section
4.1.

A special case arises if any of the values we are adding to an array element is 0. Suppose in case 2
that thread 1 adds the value 0 to A[1] on the first zero-write. The second update will then be incorrectly
recorded as a zero-write. It is incorrect since zero-writes are intended to record the first update of an array
element and non-zero-writes record the second update. The simple solution to this case is to decrement
the zero-write counter. The second update will then be recorded as a zero-write and both counters must
still be equal for hazard free operation. If a thread is adding a zero value to a non-zero entry, no special
accounting needs to be performed; it can be recorded as a non-zero-write element.

Finally, we have the case of both updates to an element being zero. This case can be handled by
updating the element with a special notation, e.g., negative numbers if all matrix elements are positive
values or extremely large values if all matrix elements are small values. A second update with a zero can



be recorded as a non-zero update and the original approach will be correct. (If two threads try to write
the out-of-range value to the same location at the same time, it will show up as a potential error in the
final accounting, so no check needs to be performed on the entire array to reset the value to a true 0.)

We can also generalize the optimistic approach to fit any case where the values stored in the array are
known a priori. In this case, two copies of the array must be maintained. Instead of comparing the stored
value to 0 before an update, one can compare it to the a priori value, and, if the values match, record that
operation as a zero-write. In this case, we could still use special values in multiple 0 value updates, and
the non-zero-write would need to restore the value from the a priori values array before performing the
update operation. However, this more general situation would be extremely costly in terms of memory (in
our largest test case, we would require an additional 176 MB of memory), although performance should
not otherwise be affected.

This approach cannot be generalized to fit any case where the values stored in the final array are
updated more than twice. For example, consider the case where exactly three writes are performed on
any element. Even though we would expect the final count of non-zero-writes to be exactly twice the final
count of zero-writes, this would only detect conflicts between a zero-write and a non-zero-write. If two
non-zero-writes were attempted at the same time, both would still be accounted for in the non-zero count,
and no error would be detected.

3.1.3 Application of the Optimistic Approach to trans_two

We are able to apply the optimistic method to trans_two. TFM is the array in question, initially zero in
every element. This particular calculation was designed so that no element would have a final value of 0,
i.e., the original designers of the application were able to avoid expending CPU time calculating a value
of 0. Thus we never encounter the situation where two 0 values are written to a single location, so we are
able to use the original method of handling 0 values being added in zero-write cases.

The final segment of code for calculating T FM values is as follows:

if (ij == k1) {
gd->TFM[ijk1] += 2.0 * (L[1t][kt] + LLkt][1t]);
}
else {
if (gd->TFM[ijk1] == 0) {
tmp = L[1t][kt] + LIkt]1[1t];
if (tmp == 0) /#* remove self and other half from accounting */
local_zeroes--;
else {
gd—->TFM[ijkl] = tmp;
local _zeroes++;
}
}
else {
local _nonzeroes++;
gd->TFM[ijk1] += (L[1t][kt] + LIkt]1[1t]);
}
}

Separate counters for zero-writes and non-zero-writes are maintained in each thread, and the final
counts are added to a global counter as each thread completes execution.

3.2 Parallelization of mbpt

mbpt was structured as follows:



FOR each doubly-occupied orbital i
FOR each unoccupied orbital a
calculate ia position
FOR each doubly-occupied orbital j
calculate ja position
FOR each unoccupied orbital b
calculate ib, jb positions
calculate iajb, ibja positions
EMP2 += TFM[iajb] * (2 * TFM[iajb] - TFM[ibjal)
/ (e[i]l + e[j] - elal - e[bD)
END FOR
END FOR
END FOR
END FOR
Parallelization of mbpt was straightforward. TF M, the eigenvalue array e, and an array KM P2 (to
store partially summed M P2 values) are shared data. A number of threads are needed to process outer
loop iterations in parallel, each writing to only one element of M P2 and avoiding the use of locks. Each

thread signals termination to a main thread, where the final summation is computed.

The current implementation uses on-the-fly lookup as a more efficient alternative to pre-sorting prior
to mbpt. Therefore in the above code, references to ¢, j, a, and b inside the loops are to be considered the
lookup of those values.

4 Performance Evaluation

We tested our application on an SGI Power Challenge with twelve 75 MHz R8000 processors, 2 GB of
RAM, and 3.5 GB of disk space. The SGI PowerChallenge is a shared-memory, bus-based architecture
machine. Each node has a 16 KB data cache and a 16 KB instruction cache as well as a 4MB secondary
data/instruction cache. Memory is 8-way interleaved for improved access times. The R8000 is a 64-bit
architecture; however, this application was run in 32-bit mode because of the inherent design of the PSI
libraries.

Some additional testing was performed on a 64 processor KSR-2, which is a NUMA (non-uniform
memory accesss) distributed shared memory, cache-only architecture with an interconnection network that
consists of hierarchically interconnected rings, each of which can support up to 32 nodes. FEach node
includes 32 MB of main memory used as a local cache and a higher performance 0.5 MB sub-cache. CPU
clock speed is 40 MHz. The results of this testing are not explicitly presented here, but we refer to some of
the more interesting points in order to observe the scalability of the algorithm and the effects of different
memory systems on this application.

Our testing was performed using various basis sets for water. The water problem can range from fairly
small (under a dozen basis functions) to quite large (hundreds of basis functions), and solutions are well-
known. The size of the basis set determines both the size of the input files and the approximate execution
time.

In this study, we used five basis sets for timing the sequential and parallel versions. These are illustrated
in Table 2: i) a triple-zeta plus two sets of polarization functions on all atoms, TZ2P [Huz65, Dun71], ii)
a TZ2P plus a single set of f-type functions on the oxygen atom and a single set of d-type functions on
the hydrogen atoms, TZ2P+f [Huz65, Dun71], iii) a correlation-consistent polarized-valence double-zeta
basis set, cc-pVDZ on the hydrogen atoms with a cc-pV quadruple-zeta basis set on the oxygen, cc-pVQZ,
which we call cc-pV1 [Dun89], iv) a cc-pV triple-zeta basis set, cc-pVTZ on the hydrogen atoms with a
cc-pVQZ basis set on the oxygen, which we call cc-pV2 [Dun89], and v) a cc-pV 5-zeta basis set, cc-pV5Z
on the oxygen atom with a double-zeta plus a single set of d-type functions on the hydrogen atoms, which



Number of Size of
Basis Set | Functions TFM
T72P 44 490,545
TZ2P+f 66 2,445,366
cc-pV1 80 5,250,420
cc-pV2 100 12,753,775
cc-pV3 115 22,247,785

Table 2: Characteristics of the test cases.

TZ2P | TZ2P+f | cc-pV1 | cc-pV2 | cc-pV3
Sequential | 0.1250 0.623 1.324 3.095 5.181
Parallel 0.0964 0.468 1.043 2.444 4.291

Table 3: Memory allocation and initialization times in seconds for trans_two.

we call cc-pV3 [Dun89]. These basis sets were chosen strictly for their representative sizes.

The most significant memory demand came from TF M, as described above. The size, in terms of
double precision floating point numbers (8 bytes), of the array for each basis set is shown in Table 2.

4.1 Performance of the Optimistic Algorithm

The overall speedup of trans_two is limited by the setup time required, the number of iterations (i.e.,
repetition of the core calculations due to detected errors) necessary for hazard-free computation, and the
speedup of a single iteration. Although it required no repetitions, the memory demands of the sequential
version were so significant that the setup time would have been comparable to that of the parallel version.
In practice, sequential setup time is generally higher than parallel setup time, as shown in Table 3, although
setup time was relatively insignificant in all cases.

For a fixed problem, the number of updates is fixed. As the number of processors increases, the
probability of simultaneous updates to the same element by two processors increases, i.e., the probability
of a hazard increases. We did not see a rise in the number of hazards as the problem size itself increased;
this result is not unreasonable, as we are increasing the total number of writes while keeping the number
of threads constant. In the vast majority of cases, only a single iteration was required; in the worst case,
which occurred quite rarely, four iterations were needed. The average number of iterations required for a
given number of processors and a given basis set was less than or equal to 2.

Performance of a single repetition was extremely good, as shown in Figure 5. Speedup was close to
linear in all cases. It is expected that the linearity would continue until the number of useful processors
(equal to the maximum number of threads as allowed by the algorithm) had been exceeded, at which point
we would see a natural decline in performance.

4.2 Scalability of Optimistic Execution

Performance of the work portion of trans_two remained quite good for smaller numbers of processors,
and an excellent speedup was possible with every basis set. However, the increasing number of repetitions
required for the larger processor sets, as shown in Table 4, degraded the speedup (see Figure 6). However,
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Figure 5: Speedup of a single repetition vs. number of processors in trans_two.
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Figure 6: Speedup of trans_two work vs. number of processors.

Number of | Avg. passes | Probability | Max. passes
Processors | through code | of a hazard | through code
1 1.00 0.00 1
3 1.06 0.06 2
6 1.10 0.10 2
9 1.42 0.26 4
12 1.52 0.40 4

Table 4: Probabilities and costs of the optimistic approach for increasing processor set sizes.

11



total run time continued to decrease as the number of processors increased, with a few exceptions. This
shows that we are able to use a large number of processors effectively, although peak utilization is reached
on smaller processor sets. However, if the number of processors were increased beyond the 12 available
to us on the SGI we would expect to see more repetitions necessary on average and performance could
become quite poor.

Our tests on the KSR-2 confirm this; as the number of processors increased, we saw that considerably
more repetitions of trans_two were necessary. The speedups remained good for larger processor sets, since
our speedups were superlinear to begin with, but peak speedup was seen at 10 or 15 processors. This shows
that we are incapable of utilizing a larger number of processors even though we are able to create many
threads, each doing a relatively small amount of work. If we have fewer threads, each doing more work but
with less likelihood of a memory hazard, we waste less processing time overall. Our results indicate that
the optimistic approach is very useful, but a more coarse-grained approach to a problem will yield better
results. A fine-grained approach results in more failures and diminishing returns.

It is useful to note that peak performance on a small processor set does not limit the applicability
of this approach. It is anticipated that typical workstations within the next decade will have multiple
processors available for use by a single programmer. It is very likely that those who program scientific
applications will be using this type of machine and not a massively parallel system for their applications,
so to see excellent performance only up to six or nine processors would still be of use for applications in
the genre we are recommending.

4.3 Performance of rdiwo

Timing results for rdtwo and speedups for the same are plotted in Figure 7 and Figure 8. We chose only
to run this portion of the code for the four smallest basis sets; in larger cases the memory requirements of
the input file became prohibitive. Parallelization of the I/O segment of rdtwo and integration of the 1/0
segment with the work segment (as in the sequential version) would overcome this difficulty; however, this
was beyond the scope of our current work.

As is apparent from the graphs, our algorithm was very successful for parallelizing the work portion of
rdtwo. We observed slightly sub-linear speedups for all processor set sizes and basis sets. It appears that
if the number of processors were increased, the larger cases would continue to show a substantial speedup.

4.4 Effects of the Memory Model on mbpt Performance

As mbpt consists almost entirely of memory accesses and requires only minimal computation, the memory
model of the underlying architecture substantially affects performance of this segment of the program.
The SGI is a uniform memory access (UMA) shared memory machine. Because of this, data remains
equidistant to all nodes, so the access times for elements of TFM are consistent regardless of where a
given element was calculated initially. Memory access is extremely efficient on the SGI, so the sequential
version of mbpt was not very time-consuming (less than 1 s) in any of our test cases. Therefore parallel
results of this segment of code were not particularly interesting. However, in all but the two smallest cases
we see a decline in total run time for mbpt as the number of processors increased, as shown in Figure 9,
and the speedup over the sequential case was slightly greater than 1 in most cases.

The KSR-2, however, is a NUMA machine, and whether a memory element is local or non-local can
significantly affect access times of data. When the test cases became large enough that all of TFM could
not be stored on a single node, then the sequential case became very slow because of the number of non-
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Figure 7: Run time (seconds) vs. number of processors for rdtwo.
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Figure 8: Speedup vs. number of processors for rdtwo.
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Figure 9: Run time (seconds) vs. number of processors for mbpt.

local memory accesses. Parallelization in this case was very useful, as this allowed more memory references
to become local. Superlinear speedups (for example, a speedup of 230 on 30 processors) were observed
in some of the larger test cases (in particular, cc-pV2 and cc-pV3), and run times in those cases were
significantly reduced in all processor set sizes. It can be concluded, then, that memory structure plays a
significant role in the applicability of parallelization to a given algorithm.

4.5 Overall Performance

We summarize our results with the total run times and speedups shown in Figures 10 and 11. Paral-
lelization appears to be very successful in most cases, although on the larger processor sets speedup appears
to level off. As mentioned above, cc-pV3 does not even include the parallelized implementation of rdtwo.
Had we parallelized the I/O operation in rdtwo, this would no doubt be improved further.

For comparison purposes, we attempted to run a version that included locks around the critical section
of trans_two, using a different lock for each element of the matrix. This machine was incapable of allocating
enough locks for even the smallest test case, thus demonstrating the severe difficulties with this approach.
On the KSR-2 (which uses a slightly different implementation of Cthreads) the locking algorithm was able
to execute because many more locks are possible on this system; however, the total program ran an average
of 2941.71 seconds for the TZ2P+f case. This was nine times slower than the sequential version and 19
times slower than the parallel version, which is clearly unacceptable.

We also timed the sequential version of the code with the sorting of TF°'M between trans and mbpt. The
original authors of the code claimed that this reduced complexity and, by avoiding the many additional
memory references, saved time. This was not what we observed; TZ2P ran for an average of 11.13 s;
TZ2P+f ran 66.95 s on average, and cc-pV1 ran for 198.7 s, significantly slower than the sequential
program excluding the sorting operation.
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Figure 10: Run time (seconds) vs. number of processors for the whole program.
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Figure 11: Speedup vs. number of processors for the whole program.
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5 Future Directions

So far our efforts have been focused on applying the optimistic computation technique to a single applica-
tion. We believe that this algorithm represents a unique approach to addressing the limitations of shared
memory contention in specific instances. This particular application is comprised of many different com-
ponents, each with its own limitations, and our approach was only applied to a single segment of the code.
We would like to begin work on a new application whose behavior would better illustrate the usefulness of
our algorithm.

It would also be of great interest to study the extension of this technique. Currently our approach is only
useful when there are exactly two updates to any particular memory location. Straightforward approaches
to allow three or more writes without a lock would involve significant memory demands, undermining
the potential benefits of the algorithm. More creative approaches are necessary to apply the principles of
optimistic computation to similar applications employing large data sets.

6 Conclusions

This paper presents an optimistic technique for avoiding synchronization on shared data in parallel multi-
processor applications. This technique permits computations to be executed without explicit synchroniza-
tion, but then detects and corrects for shared memory access errors when they occur. A more conservative,
locking approach implemented for comparison purposes either fails to run or exhibits low performance on
modern shared memory platforms, due to its excessive use of operating system resources. This suggests
that optimistic approaches like the one presented in this paper may be of importance for other scientific
applications, as well.

The novel optimistic execution technique is used in a parallel implementation of the calculation of the
second-order Mgller-Plesset perturbation theory energy for closed-shell molecules. We examine the perfor-
mance of the main component, trans, for increasingly large basis sets on increasing numbers of processors.
Performance analysis indicates that for smaller systems, the parallelization is relatively expensive, partic-
ularly as larger and larger processor sets result in more memory conflicts, causing detection and correction
to occur frequently. Peak behavior is observed for most test cases at a processor set size of 9, although
improvements are possible beyond that number depending on the number of repetitions required in the
trans component of this code. Although scalability is limited, performance of the optimistic approach is
quite good for a reasonable number of processors.
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