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Abstract 

This paper presents a novel approach for per.$orming 
real-time sonar beamforming on linear sensor aways 
using the MasPar SIMD architecture. The beamfonning 
problem is defined as a three dimensional solution space 
by generating a cube structure with sonar array elements 
as one dimension, the required beams in another 
dimension, and the time samples in the third dimension. 
The given approach maps the problem cube into the 
MasPar structure using a modified one-to-one mapping 
and uses two MasPar Fortran 90 intrinsic army 
functions to generate the solutions to the beams. 
Simulation results are provided for different array a d  
beam sizes. 

1. Introduction 

As the capacity of commercial parallel processing 
architectures continues to increase, research in the area 
of parallel algorithm mapping has become increasingly 
important. This is especially true of many applications 
which require large amounts of computations, data, and 
IO rates [4]. When dealing with real time applications, 
it is also imperative that results be computed within 
predetermined time deadlines. One such type of 
application is sonar beamforming [2,5]. 

Beamforming is defined as the process of generating a 
set of beam patterns (or beams) with some directionality 
properties by manipulating a set of signal values read in 
from a sensor array structure [1,3]. In the past, time- 
domain beamforming was accomplished by buffering the 
sensor signals and introducing a set of time delay 
circuits in the beamformer hardware to compensate for 
the time delays between separated elements listening to 
the same sound source [6,7]. 

Traditionally, beamforming has required customized 
hardware tailored to a particular sonar array in order to 
achieve the required performance. However, as the size 
of new array designs continues to increase, the cost of 
designing, manufacturing, and maintaining 
beamforming hardware has become economically 
unattractive, One solution is to use COTS computer 
systems for these applicatons. Since a large number of 
the computations involved in computing the beams of 
an array are independent and disjoint, commercial fine 

grained parallel architectures are very well suited for 
complex beamforming algorithms [2]. 

This paper focuses on implementing a beamformer 
algorithm for use in a linear array of transducer elements 
on a commercial MasPar SIMD system. A cyclic 
parallel mapping approach is used to map the three 
dimensional cube into the structure of the MasPar 
machine. 

2. Problem definition 

2.1 Beamforming model and assumptions 

Figure 1 shows the model used for beamforming on 
linear arrays of transducer elements. The model consists 
of a single unique signal sound source (S) located at an 
infinite distance from a linear array of n transducer 
elements. S is modeled as a sinuosoidal sound wave 
traveling with a velocity c, a frequency f ,  and 
wavelength The sound speed c is assumed to be 
approximately 1530 m/s but can vary depending on 
propagation factors. 

Wavefront 
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Figure 1 : Beamforming model. 

Within the array, an inter-element separation d is 
defined as half the wavelength (U21 of S .  Since S is 
assumed to be at an infinite distance, wavefronts 
arriving at the array will be parallel to each other and 
form a planar wavefront. 

In this case, all sensors are assumed to have equal 
response curves for all signal values. An ideal 
transmission medium is also assumed for the signal 
propagation. The output signal of the array consists of 
the value from each transducer element output at the 
array sampling frequency. 
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If S is located at an angle which is not perpendicular 
to the array, the signal wavefronts will reach the array 
sensors at different times proportional to the angle of 
arrival, 8. Time-domain beamforming consists of 
delaying the input sensor values by introducing a time 
delay for each element so that the maximum array 
response for a particular bearing is achieved when these 
values are added. Since a signal received at the array 
elements consists of coherent values, the maximum 
sensitivity of the array for a particular direction is 
achieved when the outputs of the sensors are added in 
phase. 

When dealing with sonar array systems, multiple 
beams can be computed in parallel. Typically, the 
number of beams computed is one more than the 
number of sensors using Cosine spacing (i.e. the 
separation between two consecutive beams is the inverse 
Cosine of a value between -1 and 1). This generates 
beams with closer spacing at 8=90 degrees to account 
for narrower beams at the broadside look direction. 

2.2 Beamforming Domain Cube 

The beamforming problem is bounded by three 
variables: the number of array elements, the number of 
beams to generate, and the amount of storage needed to 
hold the buffer values for each element at the particular 
array sampling frequency. A three dimensional cube 
representation is derived using each of these three 
variables as different dimensions of the cube stored in a 
buffer structurc. 

Using this structure, the beamforming problem is 
defined as a set of beamforming operations on the cube. 
Each cube intersection point, v , , ~ , ~ ,  in the cube 
represents the input values for beam j, at time k for the 
transducer element i .  

The beam values are computed by adding the set of 
sensor values at some point in the time buffer to achive 
the required directionality for that beam. Beams in a 
linear array are completely independent, therefore, 
computations can be done across different element x 
time "rows" of the cube in parallel. 

2.3 SIMD mapping 

By defining the beamforming problem as a cube, a 
mapping of the cube to a MasPar array can be derived 
using a modified one-to-one mapping approach. The 
mapping consists of assigning each cube value v of 
the cube to the local memory of a PE in the PE array 
(either in a register or in memory). In the case of the 
MasPar system, the 2D array of PES is assigned to the 
"faces" (element x beam slices) of the cube in a one-to- 
one manner using a cyclic approach. Subsequent slices 
corresponding to other time indices will get mapped to 
subsequent locations in the PE memory. Hence, each 
PE at (i,j) will contain the input values for the entire 
time buffer for sensor i and beamj. 

V f k  

When the number of beams or elements is larger than 
the size of the PE array, a cyclic mapping approach 
will map values on the PES using more than one beam 
x element value per PE. Values not covered by the 
initial mapping will be mapped on to subsequent 
memory layers in the same one-to-one approach. This 
will guarantee the entire problem space is covered by the 
smaller PE array. 

3. General beamforming algorithm 

A general parallel beamforming algorithm based on 
the problem cube is shown in Table 1. The algorithm 
consists of a main infinite loop which reads in the 
sensor values of the array, computes the beams, and 
outputs the results. Array values for each sensor are 
read into the algorithm at the array sampling frequency, 
therefore, the beam computations have to be performed 
in real time before the next set of values is available at 
the next time step. Additionally, each of the sensor 
values can be multiplied by an optional shading 
;oefficient which modifies the beam pattern. 

Table 1: General SIMD algorithm. 
.. initialize current time 
! .  compute the initial delay values for each 

lo forever 
element X beam combination 

3. read in sensor values from the array 
4. multiply sensor values by shading 

5. insert values into the problem cube at 
coefficient (if applicable) 

the current time index and spread to 
at all beam positions 

d o  f o r  each sensor position 
do for each beam 

6. compute the position of the 
value corresponding to the 
delay for the current beam and 
element 

position 
7. retrieve the value at that 

end do 
8. add all the sensor values retrievec 

to generate the beam value for the 
current beam 

end do 
9. output all the beam values 
10. update current time (using a circular 

11. update the delay values for each beam 
buffer approach) 

x element combination 
?nd do 

Once the values have been read in, they are 
distributed across all the beam indices. This will assure 
all the beams have access to the same input values 
during the beam computations. Forming each beam 
consists of adding the input value for all the sensors 
corresponding to the time index which gives the 
maximum response at the current bearing. These values 
are then retrieved and make up the beam partial sum 
values. The final beam results are computed by adding 
the set of values retrieved. 
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If this algorithm is executed sequentially, the 
computational complexity for each iteration of the main 
loop depends on the the two nested loops. Given a set 
of n array elements and a set of m beams, the 
computational complexity of each iteration is given by 
O( nm ). If m is defined as n+l, then the running time 
becomes O( n2 ). 

4. Algorithm on the MasPar 

Once the mapping of the cube on the SIMD machine 
has been implemented. The beamforming computations 
can be applied to the mapped values to generate the 
beams. An intrinsic data movement instruction and an 
array reduction function were used for implementing the 
input spreading and partial sum additions. This 
algorithm is described in Table 2 using pseudo Fortran 
90 code. 

Table 2: MasPar algorithm. 
I. initialize variable: TIME 
2. intialize arrays: CUBE, SHADE-COEFF, 

3 .  compute initial delay values for each 
PARTIALLSUM, RESULTS 

element x beam combination and store in 
DELAY-VALUES 

4 .  CUBE( :, 0, TIME ) = input values from 
30 forever 

the array in parallel 

SHADE-COEFF -- if applicable 
6. CUBE(:,:, TIME) = SPREAD( A, dim = 2, 

copies = MaxBeams ) 
7. PARTIAL-SUM = CUBE ( : , : , 

DELAY-POSITION) 

5. CUBE(:,O, TIME ) = CUBE(:,O,TIME) * 

8. RESULTS = SUM( PARTIAL-SUM, dim = 1 ) 
9. output RESULTS in parallel 
10. update TIME, DELAY-POSITION (using 

circular buffer approach) 

This algorithm uses the two built-in MasPar Fortran 
90 functions: SPREAD and SUM. The main data 
structure is the CUBE array. This is a 3D array with 
elements x beams x time dimensions which holds the 
input values for each element and beam combination for 
up to MAX-TIME samples. A TIME scalar variable is 
used to keep track of the current time in the procedure as 
well as to index into the time dimension of the CUBE 
array. The SHADE-COEFF array is a one dimensional 
array which contains the optional shading coefficients 
for each of the elements. The initial delay for each of 
the sensors and beams is given by the two dimensional 
DELAY-POSITION array. This array depends on the 
physical position of the element within the array and the 
bearing of the beam. Beam partial sums are stored in 
the PARTIAL-SUM array. Finally the RESULTS 
array is a one dimensional array which is used to output 
the set of beams. 

The first steps initializes all the necessary arrays in 
the procedure before any beamforming computations are 
done. An infinite loop computes the set of beams for 
the current time at each iteration. Input values are read 

into the first row of the CUBE array in parallel at the 
position corresponding to the current time as shown in 
Figure 2(a). An optional shade coefficient multiplication 
can also be done at this stage. 

ElemNa 
Cum", 

lnpul 
VdVC 

(a) (b) 
Figure 2: (a) Array input value in CUBE, 

(b) distribution of values across the 
beams. 

Once the values have been stored in the first row, the 
elements are distributed to the rest of the beams using a 
SPREAD function. The function will take as input an 
array and replicate it across a given dimension. In this 
case, the input values consist of the array element 
values which need to be copied along the beam 
dimension. The SPREAD function will use the MasPar 
built-in MPL (MasPar Programming Language) 
communication instructions to accomplish the data 
transfer as shown in Figure 2(b). 

Once all the beam rows have the new input values, 
the delayed element values can be retrieved in parallel 
using the element delays indices computed in the 
initialization phase and stored in the 
DELAY-POSITION array. For each element x beam 
position, the DELAY-POSITION values will be used 
to index into the CUBE array along the time dimension 
using a table lookup approach as shown in Figure 3. 
The PARTIAL-SUM array will be used for storing the 
delay values retrieved. 

The final stage is to compute the beam results using 
the values in the PARTIAL-SUM array. The array 
reduction function SUM is used to add the delay values 
along the element dimension and storing the results in 
the RESULTS array. This array will contain the beam 
values for the current time which are then output from 
the beamforming procedure in parallel. 

The final step is to update the TIME variabg and 
DELAY-POSITION array. The TIME variable can be 
updated by adding 1 or resetting to 0 if it has passed the 
index limit of the time dimension of the CUBE array. 
Similarly, all the DELAY-POSITION values are 
updated by 1 or reset to 0 in parallel if the position is 
greater than the maximum time index. A test and reset 
approach is implemented for updating the TIME variable 
and DELAY-POSITION array to reduce execution time. 

For the complexity analysis, the main bottlenecks of 
the algorithm are the two built-in functions SPREAD 
and SUM. These functions cannot be done in constant 
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time and depend on the size of the array. All other steps 
can be done in O(1) time. Assuming an efficient 
implementation of these functions, then the SUM and 
SPREAD functions can be accomplished in U( log n ). 
Hence, the total complexity for the main loop body is 
given by O( log n ). 

5. Performance results 

The beamforming algorithm was executed on a 64 x 
64 MasPar MP-2 machine. Several different 
combinations of beams and elements were used with a 
simulated signal source. The computations were 
executed for 100,000 iterations and the average 
execution time computed. These results are given in 
Table 3. 

The best execution time was achieved for array sizes 
and beam numbers less than or equal to the size of the 
machine (i.e. 64 x 64). Since the mapping used for the 
algorithms was a one-to-one mapping of element and 
beam values to PE elements, the execution time for 
arrays which are smaller than the maximum size of the 
machine is the same as for arrays which are the size of 
PE array. Similarly, if the problem is larger than the 
size of the PE array and is a multiple of the machine 
size, then PES will have to do more than one 
computation for each element x beam combination, 
hence, the performance will degrade accordingly. 

Table 3: Performance results 
Elements I Beams I Time (psec) 

32 I 32 I 152 
64 I 64 I 152 
65 65 774 

I 128 I 128 I 60 1 I 
192 I 192 I 1117 
256 256 1571 

The worst performance was achieved for arrays which 
are not a multiple of the machine. In these cases, the 
compiler used array masking in order to compute 
operations on the array which are mapped to a subset of 
the PES. If the array x beam combination is not a 
power of 64, then dummy elements and beams can be 
inserted to improve the beamforming performance. 

6. Conclusion 

This paper introduced a novel approach for 
performing time-domain beamforming on linear sonar 
arrays using a MasPar SIMD architecture. The approach 
is based on mapping the beamforming problem into a 
set of operations on a 3 dimensional cube structure 
composed of all element x beam x time values needed 
for computing the beams in parallel. A MasPar MP-2 
system was used to implement the beamforming 
algorithm using the built-in functions for array 
communication and arithmetic provided by the MasPar 
Fortran 90 language to achieve all the beamforming 
computations in parallel. Simulation results were 
provided for different element and beam combinations. 
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