
Real-Time Sonar Beamforming on a MasPar Architecture

Jose Salinas, W. Robert Bernecky
Systems Architecture and Software Development Branch

Naval Undersea Warfare Center Division Newport
Code 2153, Bldg. 80

New London, CT 06320

Abstract

This paper presents a novel approach for per.$orming
real-time sonar beamforming on linear sensor aways
using the MasPar SIMD architecture. The beamfonning
problem is defined as a three dimensional solution space
by generating a cube structure with sonar array elements
as one dimension, the required beams in another
dimension, and the time samples in the third dimension.
The given approach maps the problem cube into the
MasPar structure using a modified one-to-one mapping
and uses two MasPar Fortran 90 intrinsic army
functions to generate the solutions to the beams.
Simulation results are provided for different array a d
beam sizes.

1. Introduction

As the capacity of commercial parallel processing
architectures continues to increase, research in the area
of parallel algorithm mapping has become increasingly
important. This is especially true of many applications
which require large amounts of computations, data, and
IO rates [4]. When dealing with real time applications,
it is also imperative that results be computed within
predetermined time deadlines. One such type of
application is sonar beamforming [2,5].

Beamforming is defined as the process of generating a
set of beam patterns (or beams) with some directionality
properties by manipulating a set of signal values read in
from a sensor array structure [1,3]. In the past, time-
domain beamforming was accomplished by buffering the
sensor signals and introducing a set of time delay
circuits in the beamformer hardware to compensate for
the time delays between separated elements listening to
the same sound source [6,7].

Traditionally, beamforming has required customized
hardware tailored to a particular sonar array in order to
achieve the required performance. However, as the size
of new array designs continues to increase, the cost of
designing, manufacturing, and maintaining
beamforming hardware has become economically
unattractive, One solution is to use COTS computer
systems for these applicatons. Since a large number of
the computations involved in computing the beams of
an array are independent and disjoint, commercial fine

grained parallel architectures are very well suited for
complex beamforming algorithms [2].

This paper focuses on implementing a beamformer
algorithm for use in a linear array of transducer elements
on a commercial MasPar SIMD system. A cyclic
parallel mapping approach is used to map the three
dimensional cube into the structure of the MasPar
machine.

2. Problem definition

2.1 Beamforming model and assumptions

Figure 1 shows the model used for beamforming on
linear arrays of transducer elements. The model consists
of a single unique signal sound source (S) located at an
infinite distance from a linear array of n transducer
elements. S is modeled as a sinuosoidal sound wave
traveling with a velocity c, a frequency f , and
wavelength The sound speed c is assumed to be
approximately 1530 m/s but can vary depending on
propagation factors.

Wavefront

Propagation
Direction

0 1 2 3 n-2

Transducer
Elements

Figure 1 : Beamforming model.

Within the array, an inter-element separation d is
defined as half the wavelength (U21 of S . Since S is
assumed to be at an infinite distance, wavefronts
arriving at the array will be parallel to each other and
form a planar wavefront.

In this case, all sensors are assumed to have equal
response curves for all signal values. An ideal
transmission medium is also assumed for the signal
propagation. The output signal of the array consists of
the value from each transducer element output at the
array sampling frequency.

226
U.S. Government Work Not Protected by U.S. Copyright

If S is located at an angle which is not perpendicular
to the array, the signal wavefronts will reach the array
sensors at different times proportional to the angle of
arrival, 8. Time-domain beamforming consists of
delaying the input sensor values by introducing a time
delay for each element so that the maximum array
response for a particular bearing is achieved when these
values are added. Since a signal received at the array
elements consists of coherent values, the maximum
sensitivity of the array for a particular direction is
achieved when the outputs of the sensors are added in
phase.

When dealing with sonar array systems, multiple
beams can be computed in parallel. Typically, the
number of beams computed is one more than the
number of sensors using Cosine spacing (i.e. the
separation between two consecutive beams is the inverse
Cosine of a value between -1 and 1). This generates
beams with closer spacing at 8=90 degrees to account
for narrower beams at the broadside look direction.

2.2 Beamforming Domain Cube

The beamforming problem is bounded by three
variables: the number of array elements, the number of
beams to generate, and the amount of storage needed to
hold the buffer values for each element at the particular
array sampling frequency. A three dimensional cube
representation is derived using each of these three
variables as different dimensions of the cube stored in a
buffer structurc.

Using this structure, the beamforming problem is
defined as a set of beamforming operations on the cube.
Each cube intersection point, v , , ~ , ~ , in the cube
represents the input values for beam j, at time k for the
transducer element i .

The beam values are computed by adding the set of
sensor values at some point in the time buffer to achive
the required directionality for that beam. Beams in a
linear array are completely independent, therefore,
computations can be done across different element x
time "rows" of the cube in parallel.

2.3 SIMD mapping

By defining the beamforming problem as a cube, a
mapping of the cube to a MasPar array can be derived
using a modified one-to-one mapping approach. The
mapping consists of assigning each cube value v of
the cube to the local memory of a PE in the PE array
(either in a register or in memory). In the case of the
MasPar system, the 2D array of PES is assigned to the
"faces" (element x beam slices) of the cube in a one-to-
one manner using a cyclic approach. Subsequent slices
corresponding to other time indices will get mapped to
subsequent locations in the PE memory. Hence, each
PE at (i,j) will contain the input values for the entire
time buffer for sensor i and beamj.

V f k

When the number of beams or elements is larger than
the size of the PE array, a cyclic mapping approach
will map values on the PES using more than one beam
x element value per PE. Values not covered by the
initial mapping will be mapped on to subsequent
memory layers in the same one-to-one approach. This
will guarantee the entire problem space is covered by the
smaller PE array.

3. General beamforming algorithm

A general parallel beamforming algorithm based on
the problem cube is shown in Table 1. The algorithm
consists of a main infinite loop which reads in the
sensor values of the array, computes the beams, and
outputs the results. Array values for each sensor are
read into the algorithm at the array sampling frequency,
therefore, the beam computations have to be performed
in real time before the next set of values is available at
the next time step. Additionally, each of the sensor
values can be multiplied by an optional shading
;oefficient which modifies the beam pattern.

Table 1: General SIMD algorithm.
.. initialize current time
! . compute the initial delay values for each

lo forever
element X beam combination

3. read in sensor values from the array
4. multiply sensor values by shading

5. insert values into the problem cube at
coefficient (if applicable)

the current time index and spread to
at all beam positions

d o f o r each sensor position
do for each beam

6. compute the position of the
value corresponding to the
delay for the current beam and
element

position
7. retrieve the value at that

end do
8. add all the sensor values retrievec

to generate the beam value for the
current beam

end do
9. output all the beam values
10. update current time (using a circular

11. update the delay values for each beam
buffer approach)

x element combination
?nd do

Once the values have been read in, they are
distributed across all the beam indices. This will assure
all the beams have access to the same input values
during the beam computations. Forming each beam
consists of adding the input value for all the sensors
corresponding to the time index which gives the
maximum response at the current bearing. These values
are then retrieved and make up the beam partial sum
values. The final beam results are computed by adding
the set of values retrieved.

227

If this algorithm is executed sequentially, the
computational complexity for each iteration of the main
loop depends on the the two nested loops. Given a set
of n array elements and a set of m beams, the
computational complexity of each iteration is given by
O(nm). If m is defined as n+l, then the running time
becomes O(n2).

4. Algorithm on the MasPar

Once the mapping of the cube on the SIMD machine
has been implemented. The beamforming computations
can be applied to the mapped values to generate the
beams. An intrinsic data movement instruction and an
array reduction function were used for implementing the
input spreading and partial sum additions. This
algorithm is described in Table 2 using pseudo Fortran
90 code.

Table 2: MasPar algorithm.
I. initialize variable: TIME
2. intialize arrays: CUBE, SHADE-COEFF,

3 . compute initial delay values for each
PARTIALLSUM, RESULTS

element x beam combination and store in
DELAY-VALUES

4 . CUBE(:, 0, TIME) = input values from
30 forever

the array in parallel

SHADE-COEFF -- if applicable
6. CUBE(:,:, TIME) = SPREAD(A, dim = 2,

copies = MaxBeams)
7. PARTIAL-SUM = CUBE (: , : ,

DELAY-POSITION)

5. CUBE(:,O, TIME) = CUBE(:,O,TIME) *

8. RESULTS = SUM(PARTIAL-SUM, dim = 1)
9. output RESULTS in parallel
10. update TIME, DELAY-POSITION (using

circular buffer approach)

This algorithm uses the two built-in MasPar Fortran
90 functions: SPREAD and SUM. The main data
structure is the CUBE array. This is a 3D array with
elements x beams x time dimensions which holds the
input values for each element and beam combination for
up to MAX-TIME samples. A TIME scalar variable is
used to keep track of the current time in the procedure as
well as to index into the time dimension of the CUBE
array. The SHADE-COEFF array is a one dimensional
array which contains the optional shading coefficients
for each of the elements. The initial delay for each of
the sensors and beams is given by the two dimensional
DELAY-POSITION array. This array depends on the
physical position of the element within the array and the
bearing of the beam. Beam partial sums are stored in
the PARTIAL-SUM array. Finally the RESULTS
array is a one dimensional array which is used to output
the set of beams.

The first steps initializes all the necessary arrays in
the procedure before any beamforming computations are
done. An infinite loop computes the set of beams for
the current time at each iteration. Input values are read

into the first row of the CUBE array in parallel at the
position corresponding to the current time as shown in
Figure 2(a). An optional shade coefficient multiplication
can also be done at this stage.

ElemNa
Cum",

lnpul
VdVC

(a) (b)
Figure 2: (a) Array input value in CUBE,

(b) distribution of values across the
beams.

Once the values have been stored in the first row, the
elements are distributed to the rest of the beams using a
SPREAD function. The function will take as input an
array and replicate it across a given dimension. In this
case, the input values consist of the array element
values which need to be copied along the beam
dimension. The SPREAD function will use the MasPar
built-in MPL (MasPar Programming Language)
communication instructions to accomplish the data
transfer as shown in Figure 2(b).

Once all the beam rows have the new input values,
the delayed element values can be retrieved in parallel
using the element delays indices computed in the
initialization phase and stored in the
DELAY-POSITION array. For each element x beam
position, the DELAY-POSITION values will be used
to index into the CUBE array along the time dimension
using a table lookup approach as shown in Figure 3.
The PARTIAL-SUM array will be used for storing the
delay values retrieved.

The final stage is to compute the beam results using
the values in the PARTIAL-SUM array. The array
reduction function SUM is used to add the delay values
along the element dimension and storing the results in
the RESULTS array. This array will contain the beam
values for the current time which are then output from
the beamforming procedure in parallel.

The final step is to update the TIME variabg and
DELAY-POSITION array. The TIME variable can be
updated by adding 1 or resetting to 0 if it has passed the
index limit of the time dimension of the CUBE array.
Similarly, all the DELAY-POSITION values are
updated by 1 or reset to 0 in parallel if the position is
greater than the maximum time index. A test and reset
approach is implemented for updating the TIME variable
and DELAY-POSITION array to reduce execution time.

For the complexity analysis, the main bottlenecks of
the algorithm are the two built-in functions SPREAD
and SUM. These functions cannot be done in constant

228

time and depend on the size of the array. All other steps
can be done in O(1) time. Assuming an efficient
implementation of these functions, then the SUM and
SPREAD functions can be accomplished in U(log n).
Hence, the total complexity for the main loop body is
given by O(log n).

5. Performance results

The beamforming algorithm was executed on a 64 x
64 MasPar MP-2 machine. Several different
combinations of beams and elements were used with a
simulated signal source. The computations were
executed for 100,000 iterations and the average
execution time computed. These results are given in
Table 3.

The best execution time was achieved for array sizes
and beam numbers less than or equal to the size of the
machine (i.e. 64 x 64). Since the mapping used for the
algorithms was a one-to-one mapping of element and
beam values to PE elements, the execution time for
arrays which are smaller than the maximum size of the
machine is the same as for arrays which are the size of
PE array. Similarly, if the problem is larger than the
size of the PE array and is a multiple of the machine
size, then PES will have to do more than one
computation for each element x beam combination,
hence, the performance will degrade accordingly.

Table 3: Performance results
Elements I Beams I Time (psec)

32 I 32 I 152
64 I 64 I 152
65 65 774

I 128 I 128 I 60 1 I
192 I 192 I 1117
256 256 1571

The worst performance was achieved for arrays which
are not a multiple of the machine. In these cases, the
compiler used array masking in order to compute
operations on the array which are mapped to a subset of
the PES. If the array x beam combination is not a
power of 64, then dummy elements and beams can be
inserted to improve the beamforming performance.

6. Conclusion

This paper introduced a novel approach for
performing time-domain beamforming on linear sonar
arrays using a MasPar SIMD architecture. The approach
is based on mapping the beamforming problem into a
set of operations on a 3 dimensional cube structure
composed of all element x beam x time values needed
for computing the beams in parallel. A MasPar MP-2
system was used to implement the beamforming
algorithm using the built-in functions for array
communication and arithmetic provided by the MasPar
Fortran 90 language to achieve all the beamforming
computations in parallel. Simulation results were
provided for different element and beam combinations.

7. References

[l] A. B. Baggeroer, "Sonar Signal Processing," i n
Applications of Digital Signal Processing, A. V.
Oppenheim, Ed., Prentice-Hall, Englewood Cliffs, NJ,
1978.

[2] W. R. Bemecky, "Linear Time-Domain Beamformer for
a Spherical Array Using SIMD," NUWC-NPT Technical
Report, 1995.

[3] B. Blesser and J. M. Kates, "Digital Processing i n
Audio Signals," in Applications of Digital Signal
Processing, A. V. Oppenheim, Ed., Prentice-Hall,
Englewood Cliffs, NJ, 1978.

[4] D. Foster, Designing and Building Parallel Programs,
Addison-Wesely, New York, 1995.

[SI R. Kneipfer, "Beamforming - An Overview of Its
History and Status," NUWC-NPT Technical Report,
1992.

[61 J. A. Nuttall, " Adaptive-Adaptive Narrowband Subarray
Beamforming," NUWC-NPT Technical Memorandum,
1994.

[7] N. L. Owsley, "Sonar array processing," in Array
Signal Processing, ch. 3, S. Haykin, Ed., Prentice-
Hall, Englewood Cliffs, NJ, 1985.

I 256 I 512 I 298 1 I

229

