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Abstract— This paper proposes a method for optimizing 
bandwidth usage in Software Defined Networks (SDNs) based on 
OpenFlow. Flows of small packets presenting a high overhead, as 
the ones generated by emerging services, can be identified by the 
SDN controller, in order to remove header fields that are 
common to any packet in the flow, only during their way through 
the SDN. At the same time, several packets can be multiplexed 
together in the same frame, thus reducing the number of sent 
frames. Four kinds of small-packet traffic flows are considered 
(VoIP, UDP and TCP-based online games, and ACKs from TCP 
flows). Both IPv4 and IPv6 are tested, and significant bandwidth 
savings (up to 68 % for IPv4 and 78 % for IPv6) can be obtained 
for the considered kinds of traffic. 

Keywords— Software Defined Networks, multiplexing, traffic 
optimization, compression 

I. INTRODUCTION 
Software Defined Networks (SDNs) are a new approach to 

networking, based on the radical separation of the control and 
data planes, connected by open interfaces, and including the 
direct programmability of the control plane. This allows for a 
logically centralized control of the network as a whole, 
bringing the possibility of dealing with the network as a single 
and programmable entity. This is especially interesting in 
current highly virtualized environments, most notably in cloud 
computing, because it allows managing network resources in a 
much more flexible and efficient way, making the network able 
to provide a QoS level adequate to the nature of each flow. 
OpenFlow [1] is the most extended and consolidated standard 
for SDNs. 

At the same time, emerging real-time services (e.g. VoIP, 
online gaming) are becoming more and more popular on the 
Internet. Their interactivity requirements make them send high 
rates of small packets (average payloads of tens of bytes). In 
addition, services using TCP also generate large amounts of 
ACK packets without payload. For example, up to 56 % of the 
sent packets are ACKs for certain online games [2]. This also 
happens when a file is downloaded, and a flow of ACKs is sent 
to the origin of the communication. As an example, a 3 Mbps 
file download using packets of 1,500 bytes, may generate 125 

ACKs per second, using the typical TCP parameters (e.g. an 
ACK sent every 2 downloaded packets). 

These high rates of tiny packets translate into an inefficient 
usage of network resources, so there is a need for mechanisms 
able to reduce the network overhead introduced by these low 
efficiency flows. Bandwidth savings and packet per second 
reductions are interesting for network operators, since they 
may alleviate the traffic load in their networks. 

Header compression techniques able to save bandwidth for 
long-term flows using small packets through the public Internet 
were developed long ago [3]. They are based on the fact that 
many header fields are the same for every packet in a flow 
(NOCHANGE fields). They also reduce the number of bits of 
increasing fields (e.g. sequence numbers), by sending the 
difference with the previous value (DELTA). They need to 
define a context, i.e. a set of variables synchronized between 
the sender and the receiver; and a context identifier has to be 
added to every packet. The desynchronization between sender 
and receiver may result in a burst of erroneous packets. 

The compression and decompression of the headers implies 
additional processing in the nodes. In addition, the most recent 
header compression techniques [4] provide a more robust 
synchronization between the sender and the receiver, including 
a set of advanced features that imply a higher computation cost 
[3]. 

Furthermore, header compression presents another 
limitation: compressed packets can only traverse a single 
Layer-3 hop, since they do not include a standard header. One 
solution is to compress and decompress them at each 
intermediate node. Another option is to use an end-to-end 
tunnel, so as to avoid the additional processing caused by 
compression and decompression, but in this case the tunneling 
overhead cancels the savings obtained by header compression. 

A solution proposed in [5] is to jointly use multiplexing, 
header compression and tunneling. Thus, a number of header-
compressed packets belonging to different flows can be 
multiplexed together in the same frame, in order to share the 
tunnel overhead, which becomes relatively smaller as the 
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number of packets multiplexed in the same frame grows. This 
combination allows the packets to travel end-to-end through a 
public network while maintaining a good header reduction rate; 
as an additional benefit, the amount of packets per second 
traversing intermediate nodes is significantly reduced, by a 
factor equivalent to the average number of multiplexed 
packets. 

In order to join a number of packets to be sent together, a 
period is defined in the device performing the multiplexing 
process. A multiplexed frame is released at the end of the 
period, so the longer the period, the higher the number of 
multiplexed packets and the higher the savings. However, a 
tradeoff appears, since this multiplexing latency has to be 
maintained under a threshold in order to grant the delay 
requirements of the service. 

This reduction in the header-to-payload rate of the small-
packet flows is also desirable in SDNs. In this context, the 
contribution of the present paper is the proposal of an 
optimization method for providing significant bandwidth 
savings in an Openflow-based SDN, with three main 
advantages: i) the tunneling layer is not necessary, since the 
SDN provides it in a natural way; ii) the avoidance of the use 
of standard header compression techniques [3] which require a 
context synchronization between the sender and the receiver; 
and iii) multiplexing reduces the number of frames, so a 
number of Ethernet fields (header, inter-frame gap) are only 
sent once instead of being required for each packet. Four kinds 
of small-packet traffic flows will be considered (VoIP, UDP 
and TCP-based online games, and ACKs from TCP flows). 

The remainder of the article is as follows: the next section 
summarizes the related work. The proposed method is 
described in detail in Section III. The saving results are 
presented in Section IV and the paper ends with the 
conclusions. 

II. RELATED WORK 
The combination of multiplexing and compression was first 

proposed in [5], by the use of Enhanced Compressed RTP [6], 
PPPMux [7] and L2TPv3 [8] protocols, with the aim of 
reducing the overhead of VoIP flows using RTP. In [9] another 
multiplexing method for VoIP was proposed, with the idea of 
maintaining a good quality level. The extension of [5] for other 
real-time services not based on RTP has also been proposed 
recently [10], taking into account that some services (e.g. 
certain online game genres) present a traffic profile consisting 
of high rates of small UDP packets [11], very similar to that of 
VoIP. However, an end-to-end tunnel is required to send 
compressed packets through the public Internet. 

The use of header compression techniques within an 
OpenFlow SDN was first proposed in [12], with the aim of 
reducing overhead, and saving the compress-decompress delay 
at each hop. The controller would play the role of establishing 
the end-to-end tunnel. In order to avoid decompressing in each 
hop, L2 information was used in order to route the packet. By 
means of Openflow, packets compressed with standard 
techniques were still able to be correctly routed. 

As remarked in [13], focused on IPv6 extension headers, 
Openflow 1.1 introduced the possibility of extensible matches, 
actions, messages and errors, thus allowing two controllers or 
switches to agree on different syntaxes when matching flows. 
Thus, different sets of fields can be selected for matching a 
flow. This feature is interesting, since additional fields can be 
included in the tuple that Openflow uses for defining a flow, 
and the value of these fields will be stored on the controller. 

The effect of the required additional delay has also been 
explored: in real-time services it may have an influence on 
subjective quality. In [14] this effect was explored with VoIP; 
in [15] a subjective quality estimator for a UDP-based game 
was used; and in [16] the effect on a TCP-based game was 
studied. In addition, if a flow of TCP ACKs is multiplexed, the 
additional delay may have an impact on TCP dynamics, taking 
into account that this protocol is RTT-based. In [17] the effect 
of this delay on TCP was explored, showing the conditions in 
which the throughput obtained by multiplexed flows may be 
penalized. 

The method proposed in the present paper is able to 
significantly reduce the overhead in an Openflow-based SDN. 
It multiplexes a number of packets, but it does not require the 
use of standard header compression techniques based on 
context synchronization. In contrast, it only removes the fields 
that are the same for every packet on the flow. Since they are 
stored in the controller, they can be avoided when sending a 
compressed packet. Finally, it does not require a tunneling 
protocol, since the SDN itself is able to provide it. 

III. PROPOSED METHOD 
In this section the method for optimizing the packets is 

presented. We will use the word “optimized” when referring to 
compressed packets. Three steps are considered, which are 
explained subsequently. 

A. Removing header fields present in the Openflow tuple 
Under Openflow 1.0 [1] all the switches in a management 

domain are connected to a central controller, and each packet is 
associated to a flow by means of a 12-field tuple (Fig. 1), 
which is used for assigning the output port at each switch 
consequently. 

When a flow traverses a path within an OpenFlow SDN, 
the IP and TCP tuple fields of all the packets are the same for 
all the tables of the switches of that path, and also in the 
controller. Thus, the IP and TCP protocol fields already 
included in the tuple are not necessary for switching decisions 
but only for matching the packets with a flow. Thus, if we 
remove these fields and we substitute them by a flow identifier 
(FID), the packet can travel in an optimized manner within the 
SDN. A new value of the protocol field of PPP could be 
defined, in order to flag the packet as optimized (Fig. 2): it 
begins with the FID, plus the compressed IP and TCP headers 
(i.e. the fields not present in the tuple), and the payload. 

SA,DA,Prot,ToS
In port

SA, DA, type
Ethernet IP TCP

Sport, DPortID, prio
VLAN

 

Fig. 1. Tuple of Openflow 1.0. 
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This would have some similarities with MPLS or other 
technologies in which labels are used for identifying a flow 
across the network. However, the idea of a generic FID would 
make our solution agnostic of the underlying technology. 
Another advantage with respect to those technologies is that in 
an SDN the controller has an overall view, so the ingress and 
egress points of the tunnel can be dynamically defined 
according to traffic requirements. 

The authors of [12] proposed an end-to-end header 
compression scheme in an SDN context. However, our 
proposal does not formally use header compression techniques 
[3], but it only removes NOCHANGE fields. The compression 
of DELTA fields is not considered, since it would only provide 
a marginal increase of the savings, at the cost of the appearance 
of compressed headers with a variable size, the processing 
required for the compression and decompression of these 
fields, and the potential context desynchronization. 

With Openflow 1.0, the skipped fields account for 13 bytes 
per packet for IPv4/TCP. Considering a 3-byte FID, 10 bytes 
per packet can be saved, i.e. 25 % of the header, which may 
imply a significant bandwidth reduction for services using 
small packets. 

B. Removing other fields 
But Openflow 1.1 and subsequent versions also allow 

switches and controllers to agree on different flow matching 
syntaxes, in order to avoid a too rigid match structure [13]. 
Taking advantage of this fact, we consider, as a second step of 
our proposal, the inclusion in the tuple of other NOCHANGE 
fields of Transport and Network layers. Although these fields 
are not required for identifying the flow, including them in the 
tuple would make it possible to remove them from all the 
packets, thus allowing even higher header compression ratios. 
As a counterpart, we can expect a slight increase of the storage 
requirements of the ingress and egress switches, and the 
controller, but it would only mean 40 bytes per flow. 
Furthermore, fields belonging to well-known application layer 
protocols can also be included in the tuple. As an example, 
RTP is often used for services based on small packets (VoIP), 
so removing RTP fields with a constant value, may imply 
significant savings for these flows. 

C. Multiplexing a number of packets in a single frame 
Finally, taking advantage of its programmability, the SDN 

controller could be able to match groups of flows sharing a 
common path segment within the SDN. In this case, packets 
belonging to different flows could be multiplexed together and 
sent as a single Eth frame (Fig. 3) in all the hops of the path. 
This would require the use of a multiplexing protocol between 
the ingress and egress switches of the common path. PPPMux 
[7] can be used for multiplexing. 

 

PayloadNative
headers

Payload
Compressed

headers
FID

SDN controller

Ingress
EgressIP TCP TCPIP IP TCPTCPIP

Optimization within SDN

  

 
Fig. 2. Scheme of the header compression within the SDN. 
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Fig. 3. Scheme of two frames multiplexed together (real scale). 
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Finally, the egress switch will use the information stored in 
the controller, in order to get the value of the original fields 
corresponding to each flow (using the FID). Thus, it will be 
able to rebuild the packets to their native form and send them 
as non-compressed individual frames. 

IV. RESULTS 
In this section, we present the bandwidth savings which can 

be obtained using this traffic optimization method. The savings 
are measured as the difference between the number of bytes 
required at Eth level when using the optimization method with 
respect to the native Openflow protocol. They are obtained as a 
function of the number of multiplexed packets N. We have to 
consider the Eth Inter-frame gap in the calculations, since it 
also limits the throughput of the network. 

Since the time for sending the compressed and the native 
traffic is the same, we can define Bandwidth Savings (BS) as: 

 

 
native

optimized

native

optimized

Bytes

Bytes

Bandwidth

Bandwidth
BS  11 (1) 

 

Bytesnative is defined as (see Fig. 3) the sum of the sizes of 
the Eth header (E), the native network and transport headers 
(NH), the expected size of the payload (E[P]), and the Eth 
trailer (T) and inter-frame gap (G): 

 

 Bytesnative = N • ( E+NH+E[P]+T+G ) (2) 
 

And the expected size of the multiplexed packet will be the 
sum of: 

 Ethernet header (E). 

 Common header: The PPP headers (PH). 

 Multiplex header: The size of the PPPMux separator 
included at the beginning of each multiplexed packet 
(N•M). 

 The flow identifier of each packet (N•FID). 

 The compressed Network and Transport level headers 
(N•CH). 

 The payload of each packet (N• E[P]). 

 The Ethernet trailer (T). 

 The inter-frame gap (G). 
 

 Bytesoptimized = E+PH+N • ( M+FID+CH+E[P] )+T+G (3) 
 

If we substitute (3) and (2) in (1), we obtain the bandwidth 
savings, which can be divided into a fixed and a variable term 
(which depends on the number of multiplexed packets). The 
fixed term, which is the asymptote of the bandwidth savings, 
can be expressed as: 

 

 
GTPENHE

PECHFIDM






][

][
1  (4) 

And the term which depends on the number of packets, 
giving us an idea of how the common header is shared between 
the multiplexed packets, is: 

 

 
GTPENHE

GTPHE

N 




][

1
 (5) 

 

Regarding the reduction in the amount of packets per 
second, the results are similar to those reported in [10], i.e. a 
reduction by a factor of N. 

In order to evaluate the performance gains of this approach, 
four different traffic patterns have been tested: 

a) VoIP using IP/UDP/RTP (40 bytes header for IPv4 and 
60 for IPv6) and G.729 codec with 2 samples per packet (20 
bytes payload) every 20 ms. 

b) Client-to-server flows of a UDP-based online game [11] 
(28 or 48 bytes header), with 24.65 packets per second, and an 
average payload of 41.09 bytes. 

c) Client-to-server flows of a TCP-based online game [2] 
(40 or 60 bytes header) of 9.51 packets per second with an 
average payload of 8.74 bytes. 

d) IPv4/TCP ACKs of 40 or 60 bytes. 
 
Table I enumerates the fields that present a static behavior 

for the considered traffic patterns, and can be considered as 
NOCHANGE. Other fields may also be selected depending on 
the application and the service (e.g. in VoIP or TCP ACKs 
using IPv6, the field Payload Length could also be avoided, 
since it is fixed). 

The value of the asymptote (4) for the different traffic 
patterns is shown in Table II. As a consequence of the 
compression of the headers and multiplexing, which reduces 
the total amount of Eth frames, up to 72 % of bandwidth can be 
saved if IPv4 is used. When using IPv6, this figure rises up to 
81%. The savings for all the flows are above 50%. The ACKs 
flow is the one that obtains the best savings, due to the absence 
of payload. In the case of the UDP-based game, the header-to-
payload ratio is the lowest, so it is the pattern which shows the 
lowest savings. 

TABLE I.  FIELDS CONSIDERED AS NOCHANGE FOR THE STUDIED 
PATTERNS 

IPv4 IPv6 TCP/UDP RTP 

Version Version Source Port Version 

IHL Traffic Class Dest. Port P 

DSCP Flow Label Data Offset X 

ECN Next Header Reserved CC 

Time To Live Hop Limit Urgent Pointer M 

Protocol Source Address  PT 

Source Address Dest. Address  SSRC id 

Dest. Address    
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TABLE II.  ASYMPTOTIC SAVINGS FOR THE STUDIED PATTERNS 

 VoIP UDP game TCP game TCP ACKs 

IPv4 62.75% 52.21% 65.02% 72.62% 

IPv6 72.13% 62.55% 74.95% 81.37% 
 

The variable term (5) reports the number of packets 
required for obtaining significant savings. In order to study its 
influence, we have built Fig. 4. It can be seen that high values 
of bandwidth savings are obtained not only when 20 packets 
are multiplexed, but we also obtain similar results for smaller 
numbers of packets (e.g. 10 packets); and even with 2 packets 
we can still save 40 % of bandwidth in some cases. These 
savings are even more significant if IPv6 is used (Fig. 4 b), 
since the overhead of this protocol is higher than that of its 
predecessor. In this case, bandwidth savings can reach 78 %. 

As a counterpart of savings, additional latency would be 
added to the multiplexed packets, caused by the retention time 
required in the ingress switch in order to get a number of 
packets before building the multiplexed frame. The proposed 
method should avoid the addition of delays which could impair 
user’s experience or may reduce the sending rate of TCP flows, 
as studied in [16]. 
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Fig. 4. Bandwidth savings for each pattern a) using IPv4; b) using IPv6. 

The influence of optimization techniques on subjective 
quality for real-time services has been explored [9], [14], [15] 
and it has been shown that user’s perceived quality can be 
maintained. The provision of a good quality is possible because 
of three facts: first, the high rates of the considered traffic 
patterns: VoIP generates a packet every 20 ms; inter-packet 
time for the studied games are 40 and 105 ms respectively; and 
a 100 pps ACK flow can be easily found on the Internet. 
Second, an upper bound can be put on the added delay, by the 
use of a suitable value of the multiplexing interval. For this 
aim, traffic classification based on flows’ statistics can be used 
to establish the interactivity requirements of a given flow [18]. 
Third, significant bandwidth savings are obtained even if only 
2 packets are multiplexed.   

Another counterpart would be the increase of the 
processing capacity required in the ingress and egress switches. 
However, this increase would be cancelled out over the 
network, since the number of frames to switch would be 
reduced in the intermediate elements. As a consequence, the 
processing capacity could be increased in the edge devices and 
reduced in the intermediate ones. 

V. CONCLUSIONS 
A method able to save bandwidth, and to reduce the 

amount of packets per second, for services using small packets 
in OpenFlow SDNs has been proposed, based on multiplexing 
together different flows sharing a common network path, and 
compressing packet headers. For this aim, the fields that are the 
same for all the packets in a flow are included in the Openflow 
tuple, and then avoided in the intermediate hops. 

Bandwidth savings up to 68 % for IPv4, and 78 % for IPv6 
can be obtained. As a counterpart, latency would be slightly 
increased, but the additional delay can be kept under tolerable 
limits for services sending high packet rates. 
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