
Optimization of Low-efficiency Traffic in OpenFlow
Software Defined Networks

Jose Saldana1, Fernando Pascual2, David de Hoz1, Julián Fernández-Navajas1, José Ruiz-Mas1, Diego R. Lopez2,
David Florez2, Juan A. Castell2, Manuel Nuñez2

1I3A, University of Zaragoza
Ada Byron Building, 50018, Zaragoza, Spain

e-mail: {jsaldana, dhoz, navajas, jruiz}@unizar.es

2Telefonica I+D
Don Ramon de la Cruz 82-84, 28006 Madrid, Spain

e-mail: {fpb, diego, dflorez, jacl, mns}@tid.es

Abstract— This paper proposes a method for optimizing
bandwidth usage in Software Defined Networks (SDNs) based on
OpenFlow. Flows of small packets presenting a high overhead, as
the ones generated by emerging services, can be identified by the
SDN controller, in order to remove header fields that are
common to any packet in the flow, only during their way through
the SDN. At the same time, several packets can be multiplexed
together in the same frame, thus reducing the number of sent
frames. Four kinds of small-packet traffic flows are considered
(VoIP, UDP and TCP-based online games, and ACKs from TCP
flows). Both IPv4 and IPv6 are tested, and significant bandwidth
savings (up to 68 % for IPv4 and 78 % for IPv6) can be obtained
for the considered kinds of traffic.

Keywords— Software Defined Networks, multiplexing, traffic
optimization, compression

I. INTRODUCTION
Software Defined Networks (SDNs) are a new approach to

networking, based on the radical separation of the control and
data planes, connected by open interfaces, and including the
direct programmability of the control plane. This allows for a
logically centralized control of the network as a whole,
bringing the possibility of dealing with the network as a single
and programmable entity. This is especially interesting in
current highly virtualized environments, most notably in cloud
computing, because it allows managing network resources in a
much more flexible and efficient way, making the network able
to provide a QoS level adequate to the nature of each flow.
OpenFlow [1] is the most extended and consolidated standard
for SDNs.

At the same time, emerging real-time services (e.g. VoIP,
online gaming) are becoming more and more popular on the
Internet. Their interactivity requirements make them send high
rates of small packets (average payloads of tens of bytes). In
addition, services using TCP also generate large amounts of
ACK packets without payload. For example, up to 56 % of the
sent packets are ACKs for certain online games [2]. This also
happens when a file is downloaded, and a flow of ACKs is sent
to the origin of the communication. As an example, a 3 Mbps
file download using packets of 1,500 bytes, may generate 125

ACKs per second, using the typical TCP parameters (e.g. an
ACK sent every 2 downloaded packets).

These high rates of tiny packets translate into an inefficient
usage of network resources, so there is a need for mechanisms
able to reduce the network overhead introduced by these low
efficiency flows. Bandwidth savings and packet per second
reductions are interesting for network operators, since they
may alleviate the traffic load in their networks.

Header compression techniques able to save bandwidth for
long-term flows using small packets through the public Internet
were developed long ago [3]. They are based on the fact that
many header fields are the same for every packet in a flow
(NOCHANGE fields). They also reduce the number of bits of
increasing fields (e.g. sequence numbers), by sending the
difference with the previous value (DELTA). They need to
define a context, i.e. a set of variables synchronized between
the sender and the receiver; and a context identifier has to be
added to every packet. The desynchronization between sender
and receiver may result in a burst of erroneous packets.

The compression and decompression of the headers implies
additional processing in the nodes. In addition, the most recent
header compression techniques [4] provide a more robust
synchronization between the sender and the receiver, including
a set of advanced features that imply a higher computation cost
[3].

Furthermore, header compression presents another
limitation: compressed packets can only traverse a single
Layer-3 hop, since they do not include a standard header. One
solution is to compress and decompress them at each
intermediate node. Another option is to use an end-to-end
tunnel, so as to avoid the additional processing caused by
compression and decompression, but in this case the tunneling
overhead cancels the savings obtained by header compression.

A solution proposed in [5] is to jointly use multiplexing,
header compression and tunneling. Thus, a number of header-
compressed packets belonging to different flows can be
multiplexed together in the same frame, in order to share the
tunnel overhead, which becomes relatively smaller as the

This work has been partially financed by Project TAMA, Government of
Aragon; European Social Fund; Project Catedra Telefonica, University of
Zaragoza.

550

number of packets multiplexed in the same frame grows. This
combination allows the packets to travel end-to-end through a
public network while maintaining a good header reduction rate;
as an additional benefit, the amount of packets per second
traversing intermediate nodes is significantly reduced, by a
factor equivalent to the average number of multiplexed
packets.

In order to join a number of packets to be sent together, a
period is defined in the device performing the multiplexing
process. A multiplexed frame is released at the end of the
period, so the longer the period, the higher the number of
multiplexed packets and the higher the savings. However, a
tradeoff appears, since this multiplexing latency has to be
maintained under a threshold in order to grant the delay
requirements of the service.

This reduction in the header-to-payload rate of the small-
packet flows is also desirable in SDNs. In this context, the
contribution of the present paper is the proposal of an
optimization method for providing significant bandwidth
savings in an Openflow-based SDN, with three main
advantages: i) the tunneling layer is not necessary, since the
SDN provides it in a natural way; ii) the avoidance of the use
of standard header compression techniques [3] which require a
context synchronization between the sender and the receiver;
and iii) multiplexing reduces the number of frames, so a
number of Ethernet fields (header, inter-frame gap) are only
sent once instead of being required for each packet. Four kinds
of small-packet traffic flows will be considered (VoIP, UDP
and TCP-based online games, and ACKs from TCP flows).

The remainder of the article is as follows: the next section
summarizes the related work. The proposed method is
described in detail in Section III. The saving results are
presented in Section IV and the paper ends with the
conclusions.

II. RELATED WORK
The combination of multiplexing and compression was first

proposed in [5], by the use of Enhanced Compressed RTP [6],
PPPMux [7] and L2TPv3 [8] protocols, with the aim of
reducing the overhead of VoIP flows using RTP. In [9] another
multiplexing method for VoIP was proposed, with the idea of
maintaining a good quality level. The extension of [5] for other
real-time services not based on RTP has also been proposed
recently [10], taking into account that some services (e.g.
certain online game genres) present a traffic profile consisting
of high rates of small UDP packets [11], very similar to that of
VoIP. However, an end-to-end tunnel is required to send
compressed packets through the public Internet.

The use of header compression techniques within an
OpenFlow SDN was first proposed in [12], with the aim of
reducing overhead, and saving the compress-decompress delay
at each hop. The controller would play the role of establishing
the end-to-end tunnel. In order to avoid decompressing in each
hop, L2 information was used in order to route the packet. By
means of Openflow, packets compressed with standard
techniques were still able to be correctly routed.

As remarked in [13], focused on IPv6 extension headers,
Openflow 1.1 introduced the possibility of extensible matches,
actions, messages and errors, thus allowing two controllers or
switches to agree on different syntaxes when matching flows.
Thus, different sets of fields can be selected for matching a
flow. This feature is interesting, since additional fields can be
included in the tuple that Openflow uses for defining a flow,
and the value of these fields will be stored on the controller.

The effect of the required additional delay has also been
explored: in real-time services it may have an influence on
subjective quality. In [14] this effect was explored with VoIP;
in [15] a subjective quality estimator for a UDP-based game
was used; and in [16] the effect on a TCP-based game was
studied. In addition, if a flow of TCP ACKs is multiplexed, the
additional delay may have an impact on TCP dynamics, taking
into account that this protocol is RTT-based. In [17] the effect
of this delay on TCP was explored, showing the conditions in
which the throughput obtained by multiplexed flows may be
penalized.

The method proposed in the present paper is able to
significantly reduce the overhead in an Openflow-based SDN.
It multiplexes a number of packets, but it does not require the
use of standard header compression techniques based on
context synchronization. In contrast, it only removes the fields
that are the same for every packet on the flow. Since they are
stored in the controller, they can be avoided when sending a
compressed packet. Finally, it does not require a tunneling
protocol, since the SDN itself is able to provide it.

III. PROPOSED METHOD
In this section the method for optimizing the packets is

presented. We will use the word “optimized” when referring to
compressed packets. Three steps are considered, which are
explained subsequently.

A. Removing header fields present in the Openflow tuple
Under Openflow 1.0 [1] all the switches in a management

domain are connected to a central controller, and each packet is
associated to a flow by means of a 12-field tuple (Fig. 1),
which is used for assigning the output port at each switch
consequently.

When a flow traverses a path within an OpenFlow SDN,
the IP and TCP tuple fields of all the packets are the same for
all the tables of the switches of that path, and also in the
controller. Thus, the IP and TCP protocol fields already
included in the tuple are not necessary for switching decisions
but only for matching the packets with a flow. Thus, if we
remove these fields and we substitute them by a flow identifier
(FID), the packet can travel in an optimized manner within the
SDN. A new value of the protocol field of PPP could be
defined, in order to flag the packet as optimized (Fig. 2): it
begins with the FID, plus the compressed IP and TCP headers
(i.e. the fields not present in the tuple), and the payload.

SA,DA,Prot,ToS
In port

SA, DA, type
Ethernet IP TCP

Sport, DPortID, prio
VLAN

Fig. 1. Tuple of Openflow 1.0.

551

This would have some similarities with MPLS or other
technologies in which labels are used for identifying a flow
across the network. However, the idea of a generic FID would
make our solution agnostic of the underlying technology.
Another advantage with respect to those technologies is that in
an SDN the controller has an overall view, so the ingress and
egress points of the tunnel can be dynamically defined
according to traffic requirements.

The authors of [12] proposed an end-to-end header
compression scheme in an SDN context. However, our
proposal does not formally use header compression techniques
[3], but it only removes NOCHANGE fields. The compression
of DELTA fields is not considered, since it would only provide
a marginal increase of the savings, at the cost of the appearance
of compressed headers with a variable size, the processing
required for the compression and decompression of these
fields, and the potential context desynchronization.

With Openflow 1.0, the skipped fields account for 13 bytes
per packet for IPv4/TCP. Considering a 3-byte FID, 10 bytes
per packet can be saved, i.e. 25 % of the header, which may
imply a significant bandwidth reduction for services using
small packets.

B. Removing other fields
But Openflow 1.1 and subsequent versions also allow

switches and controllers to agree on different flow matching
syntaxes, in order to avoid a too rigid match structure [13].
Taking advantage of this fact, we consider, as a second step of
our proposal, the inclusion in the tuple of other NOCHANGE
fields of Transport and Network layers. Although these fields
are not required for identifying the flow, including them in the
tuple would make it possible to remove them from all the
packets, thus allowing even higher header compression ratios.
As a counterpart, we can expect a slight increase of the storage
requirements of the ingress and egress switches, and the
controller, but it would only mean 40 bytes per flow.
Furthermore, fields belonging to well-known application layer
protocols can also be included in the tuple. As an example,
RTP is often used for services based on small packets (VoIP),
so removing RTP fields with a constant value, may imply
significant savings for these flows.

C. Multiplexing a number of packets in a single frame
Finally, taking advantage of its programmability, the SDN

controller could be able to match groups of flows sharing a
common path segment within the SDN. In this case, packets
belonging to different flows could be multiplexed together and
sent as a single Eth frame (Fig. 3) in all the hops of the path.
This would require the use of a multiplexing protocol between
the ingress and egress switches of the common path. PPPMux
[7] can be used for multiplexing.

PayloadNative
headers

Payload
Compressed

headers
FID

SDN controller

Ingress
EgressIP TCP TCPIP IP TCPTCPIP

Optimization within SDN

Fig. 2. Scheme of the header compression within the SDN.

E

E

IPv4 header: 20 bytes

TCP header: 20 bytes Inter-frame gap: 12 bytes

PPP Common header: 1 byte

PPPMux header: 2 bytes

T

IP

Payload

IPTwo Eth/IPv4/TCP
frames with
P=20bytes:

T P E IP T P

T P IP T P GIP F

G

F GF

One Eth PPP frame including the two packets:

E Eth header: 26 bytes*

G

FID: 3 bytes

F Eth FCS: 4 bytes

P

PH

M

FID

M

FID

M

PH

FID

* The Eth header includes 4 bytes of VLAN 802.1Q

Fig. 3. Scheme of two frames multiplexed together (real scale).

552

Finally, the egress switch will use the information stored in
the controller, in order to get the value of the original fields
corresponding to each flow (using the FID). Thus, it will be
able to rebuild the packets to their native form and send them
as non-compressed individual frames.

IV. RESULTS
In this section, we present the bandwidth savings which can

be obtained using this traffic optimization method. The savings
are measured as the difference between the number of bytes
required at Eth level when using the optimization method with
respect to the native Openflow protocol. They are obtained as a
function of the number of multiplexed packets N. We have to
consider the Eth Inter-frame gap in the calculations, since it
also limits the throughput of the network.

Since the time for sending the compressed and the native
traffic is the same, we can define Bandwidth Savings (BS) as:

native

optimized

native

optimized

Bytes

Bytes

Bandwidth

Bandwidth
BS 11 (1)

Bytesnative is defined as (see Fig. 3) the sum of the sizes of
the Eth header (E), the native network and transport headers
(NH), the expected size of the payload (E[P]), and the Eth
trailer (T) and inter-frame gap (G):

 Bytesnative = N • (E+NH+E[P]+T+G) (2)

And the expected size of the multiplexed packet will be the
sum of:

 Ethernet header (E).

 Common header: The PPP headers (PH).

 Multiplex header: The size of the PPPMux separator
included at the beginning of each multiplexed packet
(N•M).

 The flow identifier of each packet (N•FID).

 The compressed Network and Transport level headers
(N•CH).

 The payload of each packet (N• E[P]).

 The Ethernet trailer (T).

 The inter-frame gap (G).

 Bytesoptimized = E+PH+N • (M+FID+CH+E[P])+T+G (3)

If we substitute (3) and (2) in (1), we obtain the bandwidth
savings, which can be divided into a fixed and a variable term
(which depends on the number of multiplexed packets). The
fixed term, which is the asymptote of the bandwidth savings,
can be expressed as:

GTPENHE

PECHFIDM

][

][
1 (4)

And the term which depends on the number of packets,
giving us an idea of how the common header is shared between
the multiplexed packets, is:

GTPENHE

GTPHE

N

][

1
 (5)

Regarding the reduction in the amount of packets per
second, the results are similar to those reported in [10], i.e. a
reduction by a factor of N.

In order to evaluate the performance gains of this approach,
four different traffic patterns have been tested:

a) VoIP using IP/UDP/RTP (40 bytes header for IPv4 and
60 for IPv6) and G.729 codec with 2 samples per packet (20
bytes payload) every 20 ms.

b) Client-to-server flows of a UDP-based online game [11]
(28 or 48 bytes header), with 24.65 packets per second, and an
average payload of 41.09 bytes.

c) Client-to-server flows of a TCP-based online game [2]
(40 or 60 bytes header) of 9.51 packets per second with an
average payload of 8.74 bytes.

d) IPv4/TCP ACKs of 40 or 60 bytes.

Table I enumerates the fields that present a static behavior

for the considered traffic patterns, and can be considered as
NOCHANGE. Other fields may also be selected depending on
the application and the service (e.g. in VoIP or TCP ACKs
using IPv6, the field Payload Length could also be avoided,
since it is fixed).

The value of the asymptote (4) for the different traffic
patterns is shown in Table II. As a consequence of the
compression of the headers and multiplexing, which reduces
the total amount of Eth frames, up to 72 % of bandwidth can be
saved if IPv4 is used. When using IPv6, this figure rises up to
81%. The savings for all the flows are above 50%. The ACKs
flow is the one that obtains the best savings, due to the absence
of payload. In the case of the UDP-based game, the header-to-
payload ratio is the lowest, so it is the pattern which shows the
lowest savings.

TABLE I. FIELDS CONSIDERED AS NOCHANGE FOR THE STUDIED
PATTERNS

IPv4 IPv6 TCP/UDP RTP

Version Version Source Port Version

IHL Traffic Class Dest. Port P

DSCP Flow Label Data Offset X

ECN Next Header Reserved CC

Time To Live Hop Limit Urgent Pointer M

Protocol Source Address PT

Source Address Dest. Address SSRC id

Dest. Address

553

TABLE II. ASYMPTOTIC SAVINGS FOR THE STUDIED PATTERNS

 VoIP UDP game TCP game TCP ACKs

IPv4 62.75% 52.21% 65.02% 72.62%

IPv6 72.13% 62.55% 74.95% 81.37%

The variable term (5) reports the number of packets
required for obtaining significant savings. In order to study its
influence, we have built Fig. 4. It can be seen that high values
of bandwidth savings are obtained not only when 20 packets
are multiplexed, but we also obtain similar results for smaller
numbers of packets (e.g. 10 packets); and even with 2 packets
we can still save 40 % of bandwidth in some cases. These
savings are even more significant if IPv6 is used (Fig. 4 b),
since the overhead of this protocol is higher than that of its
predecessor. In this case, bandwidth savings can reach 78 %.

As a counterpart of savings, additional latency would be
added to the multiplexed packets, caused by the retention time
required in the ingress switch in order to get a number of
packets before building the multiplexed frame. The proposed
method should avoid the addition of delays which could impair
user’s experience or may reduce the sending rate of TCP flows,
as studied in [16].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B
an

dw
id

th
 s

av
in

g
pe

rc
en

ta
ge

number of packets

Bandwidth savings IPv4

VoIP
UDP game
TCP game
ACKs

 (a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B
an

dw
id

th
 s

av
in

g
pe

rc
en

ta
ge

number of packets

Bandwidth savings IPv6

VoIP
UDP game
TCP game
ACKs

 (b)

Fig. 4. Bandwidth savings for each pattern a) using IPv4; b) using IPv6.

The influence of optimization techniques on subjective
quality for real-time services has been explored [9], [14], [15]
and it has been shown that user’s perceived quality can be
maintained. The provision of a good quality is possible because
of three facts: first, the high rates of the considered traffic
patterns: VoIP generates a packet every 20 ms; inter-packet
time for the studied games are 40 and 105 ms respectively; and
a 100 pps ACK flow can be easily found on the Internet.
Second, an upper bound can be put on the added delay, by the
use of a suitable value of the multiplexing interval. For this
aim, traffic classification based on flows’ statistics can be used
to establish the interactivity requirements of a given flow [18].
Third, significant bandwidth savings are obtained even if only
2 packets are multiplexed.

Another counterpart would be the increase of the
processing capacity required in the ingress and egress switches.
However, this increase would be cancelled out over the
network, since the number of frames to switch would be
reduced in the intermediate elements. As a consequence, the
processing capacity could be increased in the edge devices and
reduced in the intermediate ones.

V. CONCLUSIONS
A method able to save bandwidth, and to reduce the

amount of packets per second, for services using small packets
in OpenFlow SDNs has been proposed, based on multiplexing
together different flows sharing a common network path, and
compressing packet headers. For this aim, the fields that are the
same for all the packets in a flow are included in the Openflow
tuple, and then avoided in the intermediate hops.

Bandwidth savings up to 68 % for IPv4, and 78 % for IPv6
can be obtained. As a counterpart, latency would be slightly
increased, but the additional delay can be kept under tolerable
limits for services sending high packet rates.

REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, J. Turner, “OpenFlow: enabling innovation in campus
networks,” in ACM SIGCOMM Computer Communication Review,
38(2), pp. 69-74, 2008.

[2] P. Svoboda, W. Karner, M. Rupp, “Traffic Analysis and Modeling for
World of Warcraft,” in Proc. IEEE International Conference on
Communications, ICC, Urbana-Champaign, IL, USA, 2007.

[3] E. Ertekin, C. Christou, “Internet protocol header compression, robust
header compression, and their applicability in the global information
grid,” IEEE Communications Magazine, vol. 42, pp. 106-116, Nov.
2004.

[4] K. Sandlund, G. Pelletier, L-E. Jonsson, “The RObust Header
Compression (ROHC) Framework,” RFC 5795, 2010.

[5] B. Thompson, D. Wing, T. Koren, “Tunneling Multiplexed Compressed
RTP (TCRTP),” RFC4170. 2005.

[6] T. Koren, S. Casner, J. Geevarghese, B. Thompson, P. Ruddy,
“Enhanced Compressed RTP (CRTP) for Links with High Delay, Packet
Loss and Reordering,” RFC 3545, 2003.

[7] R. Pazhyannur, I. Ali, C. Fox, “PPP Multiplexing,” RFC 3153, 2001.
[8] J. Lau, M. Townsley, I. Goyret, “Layer Two Tunneling Protocol -

Version 3 (L2TPv3),” RFC 3931, 2005.
[9] R. M. Pereira, L.M. Tarouco, “Adaptive Multiplexing Based on E-model

for Reducing Network Overhead in Voice over IP Security Ensuring
Conversation Quality,” in Proc. Fourth international Conference on
Digital Telecommunications, Washington, DC, pp. 53–58, Jul. 2009.

554

[10] J. Saldana, J. Fernandez-Navajas, J. Ruiz-Mas, D. Wing, M. Perumal,
M. Ramalho, G. Camarillo, F. Pascual, D. R Lopez, M. Nunez, D.
Florez, J.A. Castell, T. de Cola, M. Berioli, “Emerging real-time
services: optimizing traffic by smart cooperation in the network,”
Communications Magazine, IEEE, vol.51, no.11, pp.127,136, Nov 2013.

[11] W. Feng, F. Chang, W. Feng, J. Walpole, “A traffic characterization of
popular on-line games,” IEEE/ACM Trans. Networking, vol 13, 3, pp.
488-500, Jun 2005.

[12] S. Jivorasetkul, M. Shimamura, K. Iida, “End-to-End Header
Compression over Software-Defined Networks: A Low Latency
Network Architecture,” in Proc. Int. Conf. on Intelligent Networking
and Collaborative Systems, Washington DC, USA, pp. 493-494, 2012.

[13] R.R. Denicol, E.L. Fernandes, C.E. Rothenberg, Z.L. Kis, “On IPv6
support in OpenFlow via Flexible Match Structures,” Nov 2011.

[14] J. Saldana, J. Fernandez-Navajas, J. Ruiz-Mas, J. Murillo, E. Viruete, J.
I. Aznar, “Evaluating the Influence of Multiplexing Schemes and Buffer

Implementation on Perceived VoIP Conversation Quality,” Computer
Networks (Elsevier), vol 56, Issue 7, pp. 1893-1919, May 2012.

[15] J. Saldana, J. Fernandez-Navajas, J. Ruiz-Mas, E. Viruete Navarro, L.
Casadesus, “Online FPS Games: Effect of Router Buffer and
Multiplexing Techniques on Subjective Quality Estimators,” Multimedia
Tools and Applications, Springer, 2012.

[16] J. Saldana, “The Effect of Multiplexing Delay on MMORPG TCP
Traffic Flows,” Consumer Communications and Networking
Conference, CCNC 2014. Las Vegas, pp 447-452, Jan 2014.

[17] J. Saldana, J. Fernandez-Navajas, J. Ruiz-Mas, “Can We Multiplex
ACKs without Harming the Performance of TCP?,” Consumer
Communications and Networking Conference, CCNC 2014. Las Vegas,
pp 921-922, Jan 2014.

[18] T. T. Nguyen, G. Armitage, P. Branch, S. Zander, “Timely and
continuous machine-learning-based classification for interactive IP
traffic,” IEEE/ACM Trans. on Networking, 20(6), pp 1880-1894, 2012.

555

