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Abstract

Insertions and deletions of small circular DNA strands
into long linear DNA strands are phenomena that hap-
pen frequently in nature and thus constitute an attractive
paradigm for biomolecular computing. This paper presents
a new model for DNA-based computation that involves cir-
cular as well as linear molecules, and that uses the opera-
tions of insertion and deletion. After introducing the formal
model we investigate its properties and prove in particular
that the circular insertion/deletion systems are capable of
universal computation. We also give the results of an experi-
mental laboratory implementation of our model. This shows
that rewriting systems of the circular insertion/deletion type
are viable alternatives in DNA computation.

1 Introduction

Early models of DNA recombination, the splicing sys-
tems, have already been defined by [4]. They aimed to de-
scribe the action of restriction enzymes and ligases on DNA
molecules which resulted in cleavage and reassociation of
DNA strands. Almost a decade later, [1] reported the first
experiment that practically used DNA molecules for compu-
tation. The experiment consisted in finding a laboratory so-
lution of an instance of the Directed Hamiltonian Path Prob-
lem solely by manipulation of DNA strands in test tubes.
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Since then, research in DNA computing has embraced
both theoretical studies of models of DNA computation and
experiments giving DNA solutions to mathematical prob-
lems, [3], [5], [6], [8].

In particular, [9] proposed a model of DNA computa-
tion based on insertions and deletions that could be imple-
mented in the laboratory by using a technique called PCR
site-specific oligonucleotide mutagenesis.

Insertions and deletions of small circular strands of DNA
into/from long linear strands happen frequently in all types
of cells and constitute also one of the methods used by some
viri to infect a host. We investigate here a generalization of
insertions and deletions of words that aims to model these
processes. (Note that circular DNA strings have been stud-
ied in the literature in the context of the splicing system
model in [5], [11], [14], [15].)

Given a pair (x; y) of words called a context and a pair of
words (�; �) called a guide, the circular contextual guided
insertion of the circular string �v into the linear string u
is performed as follows. First, the circular word �v is lin-
earized by cutting it between � and � (provided �� occurs
as a subword in v) and reading it clockwise starting from �
and ending at �. The resulting linear strand is then inserted
into u, between x and y. If xy does not occur as a subword
in u no insertion can take place.

The (x; y)-deletion of v from u accomplishes the exci-
sion of the linear strand v from u, provided v occurs in u
flanked by x on its left side and by y on its right side.

We study closure properties of some well-known lan-
guage families under various types of circular insertions.
Moreover, we prove that every Turing machine can be sim-
ulated by a system based entirely on circular insertions and



linear deletions. Finally, we describe an experimental lab-
oratory implementation of a rewriting system based in cir-
cular insertions and deletions. This proves the feasibility of
performing computations in vitro by means of circular inser-
tions and deletions.

Throughout this paper, X represents an alphabet (a fi-
nite nonempty set), � represents the empty word (the word
containing 0 letters), �v represents a circular string v (a set
containing every circular permutation of the linear string v).
The length of a word v, denoted by jvj, is the number of
occurrences of letters in v, counting repetitions. For a lan-
guage L, by �L we denote the set of all words �v where
v 2 L. For further formal language definitions and nota-
tions the reader is referred to [12], [13].

2 Circular contextual guided insertions

Besides being fundamental in formal language theory,
the operations of insertion and deletion have recently be-
come of interest in connection with the topic of biomolec-
ular computing. The insertion operation has been studied in
[7] as a generalization of catenation. Given words u and v,
the insertion of v intou consists of all words that can be ob-
tained by inserting v in an arbitrary position of u:

u � v = fu1vu2j u = u1u2; u1; u2 2 X
�g:

In the context of bimolecular computing, the insertion
operation is too nondeterministic to model the type of inser-
tions occurring in DNA strands. Consequently, a modified
version, contextual insertion, was defined in [9] to capture
the fact that insertions of DNA strands are context-sensitive.
Given a pair of words (x; y) 2 X�, called a context, the
(x; y)- contextual insertion of v into u is defined as

u
(x;y)
 � v = fu1xvyu2j u1; u2 2 X

�; u = u1xyu2g:

Contextual insertion models insertion of linear DNA
strands into linear DNA strands. To formalize insertion of
circular DNA strands we define circular contextual inser-
tion as follows. Given a pair (x; y) 2 X��X� called a con-
text, the circular (x; y)-contextual insertion of �v, v 2 X�

into u 2 X� is defined as

u
(x;y)
 � �v = fu1xv

0yu2ju = u1xyu2; v
0 2 �v; u1; u2 2 X

�g:

In other words, the circular (x; y)-contextual insertion of
�v into u consists of inserting, between the subwords x and
y ofu, of each of the linear words representing a circular per-
mutation of v. Note that if u does not contain xy as a sub-
word then the result of the circular (x; y)-contextual inser-
tion of any word into u is the empty set. The cardinality of

u
(x;y)
 � �v ranges thus from 0 to the number of occurrences
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Figure 1. Graphical representation of a circu-
lar insertion in the context (x; y), where the
circular string is cut at the site (A;B).

of xy in u times jvj (the number of circular permutations of
v).

We can extend the circular contextual insertion to the sit-
uation where we are given apriori a list of contexts instead
of a single one. Given a set C � X� �X� of contexts, we
define the circular C-contextual insertion of �v into u as:

u
C
 � �v =

S
v02�vfu1xv

0yu2j(x; y) 2 C; u =
u1xyu2; u1; u2 2 X�g:

Defining circular insertions this way allows inserting any
of the circular permutations of the circular string. If we talk
in terms of DNA strands, this entails being able to cut a cir-
cular string at any position, followed by its insertion into the
linear strand. In practice, however, circular DNA strands
can only be cut by restriction enzymes provided the recog-
nition site of the enzyme is present. To make our operations
closer to the reality of DNA strand bio-operations we mod-
ify our definition to only allow cutting of the circular strands
at designated sites.

Formally, we introduce a guide setG, which is a set of lo-
cations at which circulars string may be cut and read clock-
wise to produce linear strands. By using this refinement, the
circular insertion becomes:

u
C;G
 � �v = fu1x�w�yu2j(x; y) 2 C; (�; �) 2 G; u =

u1xyu2; �v = ��w�; u1; u2; w 2 X�g:

The existence of a guide set allows thus for more control
over the insertion operation and makes the formal model a
more accurate reflection of the biological reality of the inser-
tion of plasmids (circular DNA strands) into linear DNA. A
graphical example of this operation can be seen in Fig. 1 .

A circular insertion scheme is a triple I = (X;C;G)
where X is an alphabet, C � X� �X� is a context set and
G � X� �X� is a guide set. (Both C and G are finite.)

Definition 1 Given two words u; v 2 X�, the circular con-
textual guided insertion of �v into u according to the circu-
lar insertion scheme I is defined as:
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u
I
 � �v = fu1x�w�yu2j(x; y) 2 C; (�; �) 2 G; u =

u1xyu2; �v = ��w�; u1; u2; w 2 X
�g:

Informally, the insertion of �v into u according to the in-
sertion scheme I = (X;C;G)means that the circular strand
�v may be cut at a certain location specified by the guide set
G; the linear strand obtained by reading the circular strand
clockwise from the location of the cut may then be inserted
into u at a position specified by the context set C.

The definition can easily be generalized to languages. If
I = (X;C;G) is a circular insertion scheme and L1; L2 �
X� are two languages, the circular insertion of �L2 intoL1,
according to I, is defined as

L1
I
 � �L2 =

[

u2L1;v2L2

u
I
 � �v

Note that if the context set C equals f�; �g then the in-

sertion u
I
 � �v is in fact context-free, in the sense that in-

sertion is allowed irrespective of any subwords occurring in
the target word u. Similarly, if the guide setG equals f�; �g
then cutting the circular word �v is restriction free, i.e., we
can cut it at any point.

Depending on whether or not the insertion is context-free
and/or the cutting is restriction-free, we can have four differ-
ent types of circular insertion.

If C = G = f(�; �)g then we call the context-free
guide-free operation simply circular insertion and in this

case L1
I
 � �L2 amounts to L1  � circ(L2), where

circ(L2) = fuvjvu 2 L2g and  � is the insertion oper-
ation defined at the beginning of this section.

If G = f(�; �)g then L1
I
 � �L2, amounts to the

contextual insertion, [9], of circ(L2) into L1 and is conse-
quently called circular contextual insertion.

If C = f(�; �)g then the operation becomes a circular
guided insertion of �L2 into L1.

Finally, if neither C nor G equal f�; �g, we obtain the
circular contextual guided insertion.

3 Closure properties of families of languages
under circular insertion

In this section we study closure properties of some well-
known families of languages under various types of circular
insertion. A language family L is said to be closed under
a binary operation � if for any two languages L1; L2 2 L,
L1 � L2 is also in L. Let REG,CF,CS,RE denote the fam-
ilies of regular languages, context-free languages, context-
sensitive languages and recursively enumerable languages
respectively.

With the biological motivation in mind, the operation of
circular insertion can be thought of as consisting of two dis-
tinct phases. In the first phase, a circular string is cut at some

location to form a linear string. The second phase involves
inserting the newly generated linear string into a specific lo-
cation on a previously existing linear string.

To show that a given family of languages is closed un-
der circular insertion, it suffices thus to show that it is closed
under cyclic permutation (the first phase), and also under
linear insertion (the second phase). As it is known that
REG,CF,CS and RE are closed under cyclic permutation [2],
and under ordinary insertion [7], it follows that they are
closed also under circular insertion (C = G = f�; �g).

As REG, CF, CS, RE are all closed under contextual in-
sertion [9] and circular permutation, it follows that they are
closed under circular contextual insertion (G = f�; �g) as
well.

To show the closure of the above families under circular
guided insertion (C = f�; �g), we need an additional no-
tion. Given L � X� and G � X� � X� we define the
circular closure of L guided by G as

circG(L) = f�w0�j�w0� 2 �w;w 2 L; (�; �) 2 Gg:

Lemma 1 For any G, circG(L) � circ(L).

Lemma 2 circG(L) = circ(L) \ (
S

(�;�)2G �X��):

Proof: Suppose v 2 circG(L). By Lemma 1, v 2
circ(L). Furthermore, since v is of the form �w0� for some
(�; �) 2 G, it also belongs to

S
(�;�)2G�X

��. Thus v 2
circ(L) \ (

S
(�;�)2G �X��) and circG(L) � circ(L) \

(
S

(�;�)2G �X��).
Assume now that v 2 circ(L)\ (

S
(�;�)2G �X��). This

implies that v 2 circ(L) and moreover v is of the form
�X�� for some (�; �) 2 G. Since v 2 circ(L), there ex-
ists w 2 L such that v 2 �w. As (�; �) 2 G, v now meets
the definition of an element in circG(L). Thus, circG(L) �
circ(L) \ (

S
(�;�)2G�X

��). |

Corollary 1 REG,CF,CS,RE are closed under guided cir-
cular closure.

Proof: It follows from Lemma 2 and the closure of
REG,CF,CS and RE under circular closure and intersection
with regular languages|

Proposition 1 REG,CF,CS,RE are closed under circular
guided insertion (C = f(�; �)g).

Proof: Let L1; L2 be two languages in one of the above
families, and I = (X;C;G) be an insertion scheme with
C = f�; �g. The closure of the REG, CF, CS, RE under
guided circular closure follows from the equality

L1
I
 � �L2 = L1  � circG(L2);

Corollary 1, and the closure of REG,CF,CS and RE under
(linear) insertion [7]. |
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Proposition 2 REG,CF,CS,RE are closed under circular
guided contextual insertion.

Proof: Let L1; L2 be two languages in REG (respectively
CF,CS, RE) and let I = (X;C;G) be a circular insertion
scheme whereC;G � X��X� are the context respectively
the guide set. For each pair (x; y) 2 C denote

Lx;y = (X�x#yX�) \ (L1 q f#g);

where # is a new symbol not belonging toX andq denotes
the shuffle operation defined as

uq v = u1v1u2v2:::unvn; u = u1u2:::un;

v = v1v2:::vn; ui; vi 2 X
�; 1 � i � n; n � 1:

Note now that
[

(x;y)2C

Lx;y = fu1x#yu2ju = u1xyu2 2 L1;

(x; y) 2 C; u1; u2 2 X
�g:

If we consider the substitution defined by

s(#) = circG(L2)=f�g

s(a) = a for a 2 X; a 6= #

then we have

L1
I
 � �L2 = s(L2) if � 62 L2;

L1
I
 � �L2 = s(L2) [ [L1 \ (

[

(x;y)2C

X�xyX�)]

if � 2 L2:

The theorem now follows as REG,CF,CS and RE are
closed under shuffle, guided circular closure, �-free substi-
tution, intersection with regular languages and union. |.

Note that the closure properties of the families in the
Chomsky hierarchy under circular insertion, contextual cir-
cular insertion and guided circular insertion follow now
from Proposition 2. However, separate justifications were
given for each type of circular insertion as an illustration of
the proof techniques that can be used to prove other closure
properties.

4 Computing with circular insertions and
(linear) deletions

In the preceding section we have studied properties of
guided contextual circular insertions. As rewriting mech-
anisms, insertion-type rules alone cannot achieve the com-
putational power of Turing machines: some deletion-type
operations are needed. We will combine circular insertions

with linear deletions to obtain the necessary kit of rewriting
rules that can achieve Turing machine computational power.

In the style of [9], we define a circular insertion/deletion
system as a tuple

ID� = (X;T; I�; D;A)

where X is an alphabet, card(X) � 2, T � X is the termi-
nal alphabet, I� � (X�)5 is the finite set of circular inser-
tion rules, D � (X�)3 is the finite set of deletion rules, and
A � X+ is a linear strand called the axiom.

A circular insertion rule in I� is written as
(c1; g1; �x; g2; c2)I where (c1; c2) represents the con-
text of the insertion, �x is the string to be inserted and
(g1; g2) are the guides, i.e. the location where �x is cut.

A deletion rule in D is written as (c1; x; c2)D where
(c1; c2) represents the context of deletion and x is the string
to be deleted.

If u; v 2 X�, we say that u derives v according to ID�

and we writeu) v if v is obtained fromu by either a guided
contextual circular insertion or by a linear contextual dele-
tion, i.e.,

– either u = �c1c2�, v = �c1g1x
0g2c2� and I� con-

tains the circular insertion rule (c1; g1; �x; g2; c2)I where
g1x

0g2 2 �x, or
– u = �c1xc2�, v = �c1c2� and D contains the linear

deletion rule (c1; x; c2)D.
A sequence of direct derivations

u1 ) u2 ) : : :) uk; k � 0

is denoted by u1 )� uk and uk is said to be derived from
u1.

The language L(ID�) accepted by the circular inser-
tion/deletion system ID� is defined as

L(ID�) = fv 2 T �j v )� A;A is the axiom g

Recall that, [13], a rewriting system (S;X [ f#g; F ) is
called a Turing machine iff the following conditions are sat-
isfied.

(i) S and X [ f#g (with # 62 X and X 6= ;) are two
disjoint alphabets referred to as the state and tape alphabet.

(ii) Elements s0 2 S, [ 2 X, and a subset Sf � S are
specified, namely, the initial state, the blank symbol, and the
final state set. A subset Vf � X is specified as the final
alphabet.

(iii) The productions in F are of the forms

(1) sia ! sjb overprint
(2) siac ! asjc move right
(3) sia# ! asj[# move right and extend workspace
(4) csia ! sjca move left
(5) #sia ! #sj[a move left and extend workspace
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where si; sj 2 S and a; b; c 2 X. Furthermore, for each
si; sj 2 S and a 2 X, F either contains no productions
(2) and (3) (resp. (4) and (5)) or else contains both (2) and
(3) (respectively (4), (5)) for every c 2 X. For no si 2 S
and a 2 X, the word sia is a subword of the left side in two
productions of the forms (1), (3) and (5).

We say that a word sw, where s 2 S and w 2 (X [
f#g)� is final iff w does not begin with a letter a such that
sa is a subword of the left side of some production inF . The
language accepted by a Turing machine TM is defined by

L(TM ) = fw 2 V �

f j #s0w# )
� #w1sfw2# for some

sf 2 Sf ; w1; w2 2 X
� such that sfw2# is finalg

where) denotes derivation according to the rewriting rules
(1) – (5) of the Turing machine. A language is acceptable by
a Turing machine iff L = L(TM ) for some TM. It is to be
noted that TM is deterministic: at each step of the rewriting
process, at most one production is applicable.

Proposition 3 If a language is acceptable by a Turing ma-
chine TM, then there exists a circular insertion/deletion sys-
tem ID� accepting the same language.

Proof. Let TM be a Turing machine TM = (S;X [
f#g; F ) as described above. We will construct a cir-
cular insertion/deletion (shortly insdel) system ID� =
(N; T; I�; D; Y0) such that the language accepted by the ins-
del system is L(ID�) = L(TM ). The alphabet of ID�

is N = S [ X [ f#g [ fO;L;R; Y0; Y1; Y2g, where
O;L;R; Y0; Y1; Y2 are new symbols not appearing in S[X.
The terminal alphabet is T = Vf , the axiom is Y0, and the
guided contextual insertion and contextual linear deletion
rules are defined as follows.

(a) For each rule of the Turing machine TM , circular in-
sertion and deletion rules are added to the circular insdel sys-
tem in the following fashion, where a; b; c are letters in X,
x; y 2 X[X2[X3[f#g, z 2 X2[f#gX, and r; t 2 X�:

a1. For each rule (1) sia ! sjb (overprint) of F , we
add to the insdel system the rules (xsia; sj; �sjOb; b; y)I ,
(x; sia; sjOby)D and (zsj ; O; by)D.

Hence, if u = #rxsiayt#, then rule (1) of TM can be
simulated by the following derivation in ID�:

#rxsiayt# ) #rxsiasjObyt# )

#rxsjObyt# ) #rxsjbyt#

a2. For each rule (2) siac ! asjc (move right)
of F , we add to ID� the rules (xsia; sj; �sjR;R; cy)I ,
(x; si; asjRcy)D and (zasj ; R; cy)D.

Hence, if u = #rxsiacyt#, then rule (2) of TM can be
simulated by the following derivation in ID�:

#rxsiacyt# ) #rxsiasjRcyt# )

#rxasjRcyt# ) #rxasjcyt#:

a3. For each rule (3) sia# ! asj[# (move
right and extend workspace) of F , we add to ID� the
rules (xsia; sj; �sjR[; [;#)I, (x; si; asjR[#)D, and
(xasj ; R; [#)D.

If u = #rxsia#, then rule (3) of TM can be simulated
by the following derivation in ID�:

#rxsia# ) #rxsiasjRflat # )

#rxasjR[# ) #rxasj[#:

a4. For each rule (4) csia ! sjca (move left)
of F , we add to ID� the rules (x; sj; �sjL;L; csiay)I ,
(xsjLc; si; ay)D, (xsj ; L; cay)D.

Hence, if u = #rxcsiayt#, then rule (4) of TM can be
simulated by the following derivation in ID�:

#rxcsiayt# ) #rxsjLcsiayt# )

#rxsjLcayt# ) #rxsjcayt#:

a5. For each rule (5) #sia ! #sj[a (move
left and extend workspace) of F we add to ID�

the rules (#; sj; �sjL[; [; siay)I , (#sjL[; si; ay)D ,
(#sj ; L; [ay)D.

Hence, if u = #siayt# then rule (5) of TM can be sim-
ulated by the following derivation in ID�:

#siayt# ) #sjL[siayt# )

#sjL[ayt# ) #sj[ayt#:

In addition to the rules above, that simulate the rewrit-
ing of the Turing machine by circular insertions and deletion
rules, we introduce the following rules (b):

(b1) (�;#; �#s0; s0; b)I; (b;#; �#;#; �)I
(b2) (sf ; Y1; �Y1; Y1; a)I; (sf ; Y1; �Y1; Y1;#)I
(b3) (c; sf ; Y1)D; (#; sf ; Y1)D
(b4) (Y1; b; c)D; (Y1; b;#)D
(b5) (b; Y2; �Y2; Y2; Y1#)I; (#; Y2; �Y2; Y2; Y1#)I
(b6) (Y2; Y1;#)D
(b7) (b; c; Y2)D; (#; b; Y2)D
(b8) (#; Y0; �Y0; Y0; Y2#)I
(b9) (�;#; Y0)D; (Y0; Y2#; �)D
(b10) (�;#; �#s0#;#; �)I; (#sf ; Y2; �Y2; Y2;#)I ;

(#; sf ; Y2#)D

where sf ranges over Sf , b; c range over X, and for each
sf , a ranges over such elements of X that sfa is final. It
can now be verified that L(ID�) = L(TM ).

Indeed, if w 2 L(TM ) then w 2 T � and there exists a
derivation

#s0w# )� #w1sfw2# (�)
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for some sf 2 Sf , w1; w2 2 X�, sfw2# final. To show
that w 2 La(ID�) we must find a derivation w )� Y0 ac-
cording to the rules of ID�. If w 6= �, such a derivation is
the following:

w
(b1)
) #s0w#

(a)
)

�

#w1sfw2#
(b2)
) #w1sfY1w2#

(b3)
)

#w1Y1w2#
(b4)
) #w1Y1#

(b5)
) #w1Y2Y1#

(b6)
)

#w1Y2#
(b7)
) #Y2#

(b8)
) #Y0Y2#

(b9)
) Y0;

where
(a)
)

�

represents a simulation of the derivation (*) of
the Turing machine by the rules (a).

If w = �, the required derivation is the following:

�
(b10)
) #s0#

(b10)
) #Y2#

(b8)
) #Y0Y2#

(b9)
) Y0:

Assume, conversely that w 2 L(ID�). If w = � there is a
derivation according to ID� from #sf# to Y0 where sf 2
Sf and sf = s0. This implies that � 2 L(TM ). If w 6= �
then, according to the way the rules (a) were constructed,
there is a derivation according to ID� from

#w1sfaw
0

2#; sf 2 Sf ; a 2 X;w1; w
0

2 2 X
�; sfa final; (��)

to Y0, and also a derivation from w to (��), according to
rules (b). This implies that w 2 L(TM ). |

5 Experimental implementation of a circular
insertion/deletion system

In order to be able to describe our molecular biology lab-
oratory implementation of a circular insertion/deletion sys-
tem we need a brief introductionof some basic molecular bi-
ology notions. For further details of molecular biology ter-
minology, the reader is referred to [10].

DNA (deoxyribonucleic acid) is found in every cellular
organism as the storage medium for genetic information. It
is composed of units called nucleotides, distinguishedby the
chemical group, or base, attached to them. The four bases
are adenine, guanine, cytosine and thymine, abbreviated as
A, G, C, and T . (The names of the bases are also com-
monly used to refer to the nucleotides that contain them.)
Single nucleotides are linked together end–to–end to form
DNA strands. A short single-stranded polynucleotide chain,
usually less than 30 nucleotides long, is called an oligonu-
cleotide (or, shortly, oligo). The DNA sequence has a polar-
ity: a sequence of DNA is distinct from its reverse. The two
distinct ends of a DNA sequence are known under the name
of the 50 end and the 30 end, respectively. Taken as pairs, the
nucleotides A and T and the nucleotides C and G are said
to be complementary. Two complementary single-stranded
DNA sequences with opposite polarity will join together to

form a double helix in a process called base-pairing or an-
nealing. The reverse process – a double helix coming apart
to yield its two constituent single strands – is called melting.

A single strand of DNA can be likened to a string con-
sisting of a combination of four different symbols, A, G,
C, T . Mathematically, this means we have at our disposal
a 4-letter alphabet X = fA;G; C; T g to encode informa-
tion. As concerning the operations that can be performed
on DNA strands, the existing models of DNA computation
are based on various combinations of the following primi-
tive bio-operations, [8]:
– Synthesizing a desired polynomial-length strand.
– Mixing: pour the contents of two test-tubes into a third.
– Annealing (hybridization): bond together two single-
stranded complementary DNA sequences by cooling the so-
lution.
– Melting (denaturation): break apart a double-stranded
DNA into its single-stranded components by heating the so-
lution.
– Amplifying (copying): make copies of DNA strands by us-
ing the Polymerase Chain Reaction (PCR).
– Separating the strands by size using a technique called gel
electrophoresis.
– Extracting those strands that contain a given pattern as a
substring by using affinity purification.
– Cutting DNA double-strands at specific sites by using
commercially available restriction enzymes.
– Ligating: paste DNA strands with compatible sticky ends
by using DNA ligases.
– Substituting: substitute, insert or delete DNA sequences
by using PCR site-specific oligonucleotide mutagenesis.
– Detecting and Reading a DNA sequence from a solution.

To test the empirical validity of our theoretical model,
we implemented a small circular insertion/deletion system
in the laboratory. The purpose of this implementation was to
show that in vitro circular insertion is possible and not over-
whelmingly difficult.

The following circular insertion/deletion system was
chosen:

ID� = (X;T; I�; D; u)

where the alphabets are T;X = fA; C;G; T g, there are no
deletion rules, i.e. D = ;, the axiom u is a small DNA seg-
ment from the Drosophila Melanogaster genome and I� =
(G;G; �v; T CGAC; T CGAC) where �v is a commercially
available plasmid (circular strand). Note thatA; C;G; T cor-
respond to the four bases that occur in natural DNA, and that
the sequence GjT CGAC is the restriction (cut) site for the
Sal I enzyme.

To begin the experiment, we synthesized the linear axiom
u in which we would then insert. This was accomplished
by taking DNA from Drosophila (fruit fly) and performing
PCR with the primersBC+ and cd�. The result was the am-
plification of a particular 682bp (basepair) linear sequence
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of DNA which became the axiom u of the circular inser-
tion/deletion system. The 682bp linear strand was chosen
to contain exactly one restriction site for the enzyme Sal I,
corresponding to the context of insertion (G; T CGAC).

For the circular string �v to be inserted we chose pK18h,
a commercially available plasmid having one restriction site
for Sal I, corresponding to the guides (G; T CGAC) in the in-
sertion rule.

After verifying that the PCR had worked correctly and we
had indeed obtained the desired 682bp linear axiom u, we
cut u with Sal I, cleaving it into two new linear strands de-
noted by L and R, i.e. u = LjR. The product was checked
by gel electrophoresis to ensure the presence of bands cor-
responding to the sizes of L (188bp) and R (493bp), as seen
from the first band in the gel of Fig. 2. The plasmid �v was
also cut and linearized in the same fashion resulting in the
linear strand v.

At this point the linear strands L and R were combined
with the linearized pK18h, i.e. v, and ligase was added to
reconnect the strands of DNA. After allowing time for liga-
tion, a gel was run to determine the products. The second
band from the gel shown in Fig. 2 indicates that in addi-
tion to the desired LjplasmidjR, we also obtain RjR, LjR,
plasmidjplasmid and even plasmidjplasmidjplasmid.

Note that the band corresponding to the approximate size
of LjplasmidjR can be seen as a smear. This could suggest
the presence of RjplasmidjR or of any other combination of
two linear fragments and a plasmid which failed to separate
clearly from one another due to the large size. Thus further
analysis was required to ensure the presence of the desired
product LjplasmidjR.

In order to amplify the amount of DNA available at this
point, the DNA was recircularized and introduced into E.
Coli bacteria. (The complex details of this process are omit-
ted here.)

Prior to sequencing, a quick restriction digest2 was per-
formed on small amounts of product isolated from each of
the several bacterial colonies. If the starting sample were
a heterogeneous mixture of DNA molecules, each colony
would yield a different product. Consequently, the restric-
tion digest of DNA samples (each isolated from a particular
colony) with enzymes Sal I, Stu I and Xba , resulted in bands
indicating different size distributions. Of these, one sample
corresponded to the size of LjplasmidjR and the identity of
the product was confirmed by sequencing.

This experiment demonstrates that it is possible to insert a
plasmid into a linear strand in vitro, implementing thus a cir-

2A restriction digest consists of taking an unknown product, cutting it
with a series of restriction endonucleases and running each product on a
gel. If the restriction sites for the desired product are known, then we can
compute the expected sizes of the molecules formed after the digest. If the
expected sizes match the bands found on the gel, then there is a good chance
the unknown product is the desired product. By repeating this operation
with different enzymes, we can increase our confidence in this result.

Figure 2. The first vertical lane of this gel
consists of bands corresponding to the unre-
acted linearized plasmid v, the linear strand
u, and the two fragments of the cut linear
strand (R, respectively L). The second ver-
tical lane shows a band corresponding to the
product obtained after reaction (u  v). The
third lane contains a standard 1kb (kilobase)
ladder used to measure the others.

cular insertion/deletion system. Future experimental work
would ideally include a much larger system to test the scal-
ability of this approach.

6 Conclusions and future work

The circular insertion/deletionsystems provide a theoret-
ically interesting extension to the linear systems originally
described in [9]. Moreover, since the operation of insert-
ing plasmids into linear strands of DNA is a common oc-
currence in biology, the study of such systems is a natural
next step in the development of an insertion/deletion-based
model of cellular genetic manipulation.

From a computer science and language theory stand-
point, the construction given here is capable of universal
computation and can thus theoretically implement any al-
gorithm that can be run on an electronic computer. One in-
teresting possibility for future work would be an analysis of
what type of algorithms are most easily and efficiently im-
plemented with such a system. Such a study would yield
some insight into what types of “algorithms” are being used
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by cells themselves.
The experimental results we have obtained show that

rewriting systems based on circular insertions and deletions
are viable in vitro alternatives in DNA computation. They
are momentarily limited due to the fact that only a small size
problem could be implemented. Future work on this model
will include a larger and more complex experiment to help
identify the sources and severity of biochemical errors.

This paper has presented a new model for DNA based
computing using circular strands by extending the inser-
tion/deletion systems presented in [9]. The model has been
shown to be capable of universal computation and a small
size problem was actually implemented in DNA.

We believe that continued effort to provide formal mod-
els of actual biological processes will yield not only insight
into biological systems but perhaps also provide new ideas
about the nature of computation itself.
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