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Abstract

Insertions and deletions of small circular DNA strands
into long linear DNA strands are phenomena that hap-
pen frequently in nature and thus constitute an attractive
paradigmfor biomolecular computing. This paper presents
a new model for DNA-based computation that invol ves cir-
cular as well as linear molecules, and that uses the opera-
tionsof insertion and deletion. After introducing the formal
model we investigate its properties and prove in particular
that the circular insertion/del etion systems are capable of
universal computation. Weal so givetheresults of an experi-
mental |aboratoryimplementation of our model. Thisshows
that rewriting systems of the circular insertion/del etion type
are viable alternativesin DNA computation.

1 Introduction

Early models of DNA recombination, the splicing sys-
tems, have aready been defined by [4]. They aimed to de-
scribe the action of restriction enzymes and ligases on DNA
mol ecules which resulted in cleavage and reassociation of
DNA strands. Almost a decade later, [1] reported the first
experiment that practically used DNA molecul esfor compu-
tation. The experiment consisted in finding a laboratory so-
[ution of an instance of the Directed Hamiltonian Path Prob-
lem solely by manipulation of DNA strandsin test tubes.
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Since then, research in DNA computing has embraced
both theoretical studies of models of DNA computation and
experiments giving DNA solutions to mathematical prob-
lems, [3], [5], [6], [8].

In particular, [9] proposed a model of DNA computa-
tion based on insertions and deletions that could be imple-
mented in the laboratory by using a technique called PCR
site-specific oligonucl eotide mutagenesis.

Insertionsand deletions of small circular strands of DNA
into/from long linear strands happen frequently in al types
of cellsand congtitute a so one of the methods used by some
viri to infect a host. We investigate here a generalization of
insertions and deletions of words that aims to model these
processes. (Notethat circular DNA strings have been stud-
ied in the literature in the context of the splicing system
modd in[5], [11], [14], [15].)

Givenapair (#,y) of words called acontext and apair of
words («, 3) called aguide, the circular contextual guided
insertion of the circular string ev into the linear string u
is performed as follows. First, the circular word ev is lin-
earized by cutting it between « and 3 (provided 3 occurs
as asubwordin v) and reading it clockwise starting from «
and ending at 5. The resulting linear strand is then inserted
into u, between x and y. If xy does not occur as a subword
in « no insertion can take place.

The (z, y)-deletion of v from « accomplishes the exci-
sion of the linear strand v from «, provided v occurs in u
flanked by « onitsleft sideand by y onitsright side.

We study closure properties of some well-known lan-
guage families under various types of circular insertions.
Moreover, we prove that every Turing machine can besim-
ulated by a system based entirely on circular insertions and



linear deletions. Finaly, we describe an experimental lab-
oratory implementation of a rewriting system based in cir-
cular insertionsand deletions. This proves the feasibility of
performing computationsin vitro by means of circular inser-
tionsand deletions.

Throughout this paper, X represents an aphabet (a fi-
nite nonempty set), A represents the empty word (the word
containing O letters), ev represents a circular string v (a set
containing every circular permutation of thelinear string v).
The length of a word v, denoted by ||, is the number of
occurrences of lettersin v, counting repetitions. For a lan-
guage L, by e we denote the set of al words ev where
v € L. For further formal language definitions and nota-
tionsthe reader isreferred to [12], [13].

2 Circular contextual guided insertions

Besides being fundamenta in formal language theory,
the operations of insertion and deletion have recently be-
come of interest in connection with the topic of biomolec-
ular computing. The insertion operation has been studied in
[7] as ageneradization of catenation. Given words « and v,
theinsertion of v into « consists of al wordsthat can be ob-
tained by inserting v in an arbitrary position of u:

u— v = {ugvus| u = uiug, ur, us € X}

In the context of bimolecular computing, the insertion
operation istoo nondeterministicto model thetype of inser-
tions occurring in DNA strands. Consequently, a modified
version, contextual insertion, was defined in [9] to capture
thefact that insertionsof DNA strands are context-sensitive.
Given a pair of words (z,y) € X*, cdled a context, the
(z, y)- contextual insertion of v into  isdefined as

U (@9) v = {urzvyus| ug, us € X*, u = ujzyus }.

Contextua insertion models insertion of linear DNA
strands into linear DNA strands. To formalize insertion of
circular DNA strands we define circular contextual inser-
tionasfollows. Givenapair (z,y) € X* x X* caledacon-
text, thecircular (x, y)-contextual insertion of ev, v € X*
intou € X* isdefined as

(z,y)

w = ov = {wxv yus|u = uyxyus, v’ € ov, uy,uz € X*}.

In other words, thecircular (z, y)-contextua insertion of
ev into u consists of inserting, between the subwords = and
y of u, of each of thelinear wordsrepresenting acircular per-
mutation of v. Notethat if « does not contain xy as a sub-
word then the result of the circular (x, y)-contextual inser-
tion of any word into « isthe empty set. The cardinality of

i) ranges thus from O to the number of occurrences

XA By

Figure 1. Graphical representation of a circu-
lar insertion in the context (z,y), where the
circular string is cut at the site (A4, B).

of zy inwu times |v| (the number of circular permutations of
).

We can extend the circular contextual insertionto the sit-
uation where we are given apriori alist of contextsinstead
of asingleone. Givenasat C' C X* x X* of contexts, we
define the circular C-contextual insertion of ev into u as:

u L °v = UUIE.U{Ull‘U/yUzKl‘, y) € Ca U=
upzyus, w1, ug € X*}.

Defining circular insertionsthisway alowsinserting any
of thecircular permutationsof the circular string. If wetalk
interms of DNA strands, thisentailsbeing able to cut acir-
cular string at any position, followed by itsinsertioninto the
linear strand. In practice, however, circular DNA strands
can only be cut by restriction enzymes provided the recog-
nition site of the enzymeis present. To make our operations
closer to the reality of DNA strand bio-operationswe mod-
ify our definition to only allow cutting of thecircular strands
at designated sites.

Formally, weintroduceaguideset ¢, whichisaset of |o-
cations at which circulars string may be cut and read clock-
wiseto producelinear strands. By using thisrefinement, the
circular insertion becomes:

u ﬁ °v = {uwawﬁyuﬂ(l‘, y) € Ca (aaﬁ) € Ga U=

urzyus, ev = eqwp, uy, us, w € X*}.

The existence of aguide set allowsthus for more control
over the insertion operation and makes the formal model a
more accurate reflection of thebiol ogical redlity of theinser-
tion of plasmids (circular DNA strands) into linear DNA. A
graphical example of thisoperation can be seeninFig. 1.

A circular insertion schemeisatriple/ = (X,C,G)
where X isan alphabet, C' C X* x X* isacontext set and
G C X* x X* isaguideset. (Both C' and G arefinite.)

Definition 1 Giventwowordsu, v € X*, thecircular con-
textual guided insertion of ev into « according to the circu-
lar insertion scheme 7 isdefined as:



u ey = {uprawfyus|(z,y) € C, (o, f) € G,u =
urzyus, ev = eqwp, uy, uz, w € X*}.

Informally, theinsertion of ew into « according to thein-
sertionscheme I = (X, C, ¢) meansthat thecircular strand
ev may becut at a certain location specified by the guide set
G the linear strand obtained by reading the circular strand
clockwise from the location of the cut may then be inserted
into u at a position specified by the context set C'.

The definition can easily be generalized to languages. If
I =(X,C,G)isacircular insertion scheme and Ly, s C
X* aretwo languages, thecircular insertion of e L, into L4,
according to /, is defined as

Ly L ol = U u <L oV
u€L,veLy

Note that if the context set C' equals {A, A} thenthein-

sertionu < ev isin fact context-free, in the sense that in-
sertion isallowed irrespective of any subwords occurringin
thetarget word «. Similarly, if theguideset G equals {A, A}
then cutting the circular word ev isrestriction free, i.e., we
can cut it at any point.

Depending on whether or not theinsertion is context-free
and/or thecuttingisrestriction-free, we can havefour differ-
ent types of circular insertion.

If C = G = {(A N} then we cal the context-free
guide-free operation simply circular insertion and in this
case L, < oL, amountsto L; — ci rc(L-), where
circ(Ls) = {uvjvu € Lo} and — istheinsertion oper-
ation defined at the beginning of this section.

If G = {(A\,A\)}then L; < eL,, amounts to the
contextud insertion, [9], of circ(L2) into L, and is conse-
guently called circular contextual insertion.

If ¢ = {(A,A)} then the operation becomes a circular
guidedinsertion of e L5 into L;.

Findly, if neither C' nor G equa {A, A}, we obtain the
circular contextual guided insertion.

3 Closure properties of families of languages
under circular insertion

In this section we study closure properties of some well-
known families of languages under varioustypes of circular
insertion. A language family £ is said to be closed under
a binary operation ¢ if for any two languages L1, L, € L,
Ly o Ly isdsoin L. Let REG,CF,CSRE denote the fam-
ilies of regular languages, context-free languages, context-
sensitive languages and recursively enumerable languages
respectively.

With the biological motivation in mind, the operation of
circular insertion can bethought of as consisting of two dis-
tinct phases. Inthefirst phase, acircular stringiscut at some

location to form alinear string. The second phase involves
inserting the newly generated linear string into aspecific lo-
cation on a previoudly existing linear string.

To show that a given family of languages is closed un-
der circular insertion, it suffices thusto show that itisclosed
under cyclic permutation (the first phase), and aso under
linear insertion (the second phase). As it is known that
REG,CF,CSand RE are closed under cyclic permutation [2],
and under ordinary insertion [7], it follows that they are
closed also under circular insertion (C'= G = {A, A}).

ASREG, CF, CS, RE are dl closed under contextual in-
sertion [9] and circular permutation, it followsthat they are
closed under circular contextual insertion (G = {A, A}) as
well.

To show the closure of the above families under circular
guided insertion (C' = {A, A}), we need an additional no-
tion. Given . C X* and G C X* x X we define the
circular closure of I guided by G as

circg(L) = {aw'Blaw’p € ew,w € L, (a, B) € G}.
Lemmal For any G, circg(L) C circ(L).
Lemma2 circg(L) = circ(L) N (U a, p)ec @X™B)-

Proof: Suppose v € circg(L). By Lemma l, v €
circ(L). Furthermore, since v isof theform «w’ 3 for some
(a, ) € G, itdsobeongstoJ, 5)eq X" Thusv €
cre(L) N (Uga,pyeq @X"P) and circg (L) C circ(L) N
(U(a,ﬁ)eG aX"3).

Assumenow that v € circ(L) N(U 4 p)eq @X™8)- This
impliesthat v & circ(L) and moreover v is of the form
aX* for some (o, 3) € G. Sincewv € circ(L), there ex-
istsw € L suchthat v € ew. As(«, 3) € G, v now meets
the definition of an element in circg (L). Thus, circg(L) D
are(L) N (U, pyec «X76). &

Corollary 1 REG,CF,CSRE are closed under guided cir-
cular closure.

Proof: It follows from Lemma 2 and the closure of
REG,CF,CS and RE under circular closure and intersection
with regular languages &

Proposition 1 REG,CF,CSRE are closed under circular
guided insertion (C' = {(A, A)}).

Proof: Let Ly, Lo be two languages in one of the above
families, and I = (X, C, ) be an insertion scheme with
C' = {A,A}. The closure of the REG, CF, CS, RE under
guided circular closure follows from the equality

Ly L oy =L — circg(L2),

Corallary 1, and the closure of REG,CF,CS and RE under
(linear) insertion [7]. &



Proposition 2 REG,CF,CSRE are closed under circular
guided contextual insertion.

Proof: Let Ly, Lo be two languages in REG (respectively
CFCS RE) and let I = (X, C, ) beacircular insertion
schemewhereC', G C X* x X* arethecontext respectively
the guide set. For each pair (,y) € C denote

Loy = (X"a#yX7) 0 (Lo L {#}),

where # isanew symbol not belongingto X and 11 denotes
the shuffle operation defined as

ull v = w1V UV UV, U = UL US... Uy,

V= U100, Ui, v € XY, 1<i<n,n>1.

Note now that

U Ly y = {wizdtyus|u = vizyus € Ly,
(z,y)eC

(xay) S C,Ul,Uz S X*}
If we consider the substitution defined by

S(#) = dirca(L2)/{\}
s(a) =aforae X,a# #

then we have

L1 L 0L2 = S(Lz) if A ¢ Lz,

Ly oLy =s(Ly)U[Lin( | ) X eyx®)
(wy)eC
if A€ Lo

The theorem now follows as REG,CF,CS and RE are
closed under shuffle, guided circular closure, A-free substi-
tution, intersection with regular languages and union. &.

Note that the closure properties of the families in the
Chomsky hierarchy under circular insertion, contextua cir-
cular insertion and guided circular insertion follow now
from Proposition 2. However, separate justifications were
given for each typeof circular insertion as an illustration of
the proof techniques that can be used to prove other closure
properties.

4 Computing with circular insertions and
(linear) deletions

In the preceding section we have studied properties of
guided contextua circular insertions. As rewriting mech-
anisms, insertion-type rules a one cannot achieve the com-
putational power of Turing machines: some deletion-type
operations are needed. We will combine circular insertions

with linear del etionsto obtain the necessary kit of rewriting
rulesthat can achieve Turing machine computationa power.

Inthe styleof [9], wedefine acircular insertion/deletion
system as atuple

ID* = (X,T,1*, D, A)

where X isan aphabet, card(X) > 2, T C X isthetermi-
nal alphabet, I* C (X*)® isthefinite set of circular inser-
tionrules, D C (X*)3 isthefinite set of deletion rules, and
A C X* isalinear strand called the axiom.

A circular insertion rule in I* is written as
(c1,91,92,g2,¢2)1 Where (c1,c2) represents the con-
text of the insertion, ez is the string to be inserted and
(g1, 92) aretheguides, i.e. thelocation where oz is cut.

A dédletion rule in D is written as (¢, %, ¢2)p Where
(1, ¢2) represents the context of deletion and z isthe string
to be deleted.

If u,v € X*, we say that u derives v according to ID*
andwewriteu = v if v isobtained fromw by either aguided
contextua circular insertion or by alinear contextual dele-
tion, i.e.,

—dther v = acieaf, v = acig1x’g2e23 and I* con-
tains the circular insertion rule (c1, g1, ez, g2, ¢2)r Where
g1x'gs € ez, 0r

—u = acizesf, v = aciea B and D contains the linear
deletionrule(cy, #,¢2)p.

A sequence of direct derivations

Uy = Uy => ... > up, k>0

isdenoted by u; =* uy and vy is said to be derived from
Uq.

The language L(ID*) accepted by the circular inser-
tion/deletion system ID* isdefined as

LUID*)={veT"|v=" A, Aistheaxiom }

Recall that, [13], arewriting system (S, X U {#}, F) is
called a Turing machineiff the following conditionsare sat-
isfied.

(i) S and X U {#} (with# ¢ X and X # 0) aretwo
digoint aphabets referred to as the state and tape a phabet.

(i) Elements sy € S,b € X, and asubset S; C S are
specified, namely, theinitial state, the blank symbol, and the
final state set. A subset V; C X is specified as the final
alphabet.

(iii) The productionsin #" are of theforms

(1) s;a — s;boverprint

(2) s;ac — asjc moveright

(3) s;a# — as;b# moveright and extend workspace
(4) ecsja — sjea moveleft

(5) #sia — #s;ba moveleft and extend workspace



where s;,s; € S anda,b,¢c € X. Furthermore, for each
si,s5; € Sanda € X, F ether contains no productions
(2) and (3) (resp. (4) and (5)) or else contains both (2) and
(3) (respectively (4), (5)) forevery ¢ € X. Fornos; € S
anda € X, theword s, a isasubword of theleft sidein two
productions of the forms (1), (3) and (5).

We say that a word sw, wheres € Sandw € (X U
{#})* isfinal iff w does not begin with aletter « such that
sa isasubword of theleft side of some productionin F'. The
language accepted by a Turing machine TM is defined by

L(TM) = {w e V{| #sowft =" #wis;wa# for some

sp € Sp,wi, ws € X™ suchthat s;w.# isfina}

where =- denotes derivation according to therewriting rules
(1) —(5) of the Turing machine. A languageisacceptableby
aTuring machineiff L = L(T'M) for some TM. It isto be
noted that TM isdeterministic: at each step of therewriting
process, at most one production is applicable.

Proposition 3 If alanguage is acceptable by a Turing ma-
chineTM, then there exists a circular insertion/del etion sys-
tem D* accepting the same language.

Proof. Let TM be a Turing machine TM = (S,X U
{#}, F) as described above. We will construct a cir-
cular insertion/deletion (shortly insdel) system /D°* =
(N,T,I*,D,Y,) suchthat thelanguage accepted by theins-
del systemis L(ID*) = L(TM). The aphabet of ID*
isN = SU XU {#} U {O,L,R,YQ,Yl,Yz}, where
O, L, R, Yy, Y1, Y, arenew symbolsnot appearingin SU X .
The terminal alphabet is7" = V;, theaxiomis Y3, and the
guided contextual insertion and contextua linear deletion
rules are defined asfollows.

(a) For each rule of the Turing machine 7'M, circular in-
sertionand deletion rulesare added tothecircular insdel sys-
tem in the following fashion, where a, b, ¢ are lettersin X,
r,y € XUXZUX3U{#},2 € X2U{#}1X,andr,t € X*:

al. For each rule (1) s;a — s;b (overprint) of /', we
add to the insdel system the rules (zs;a, s, 05,00, b, y)1,
(z,s;a,5;0by)p and (zs;,0,by)p

Hence, if u = #ras;ayt#, thenrule (1) of TM can be
simulated by the following derivationin ID*:

#Hrrs;ayt# = F#res;as;Obyt# =

#rxs;Obyt# = Frxs;byt#
a2. For each rule (2) s;ac —  asjc (move right)
of F', we add to ID* the rules (zs;a,s;,es; R, R, cy)r,
(z,s;,as; Rey)p and (zas;, R, cy)p
Hence, if u = #ras;acyt#, then rule (2) of TM can be
simulated by the following derivationin ID*:

#Hrrs;acyt# = #Hrrs;as; Reyt# =

#rras; Reyt# = #rzas;cyt#.

a3. For each rule (3) s;a# —  as;b# (move
right and extend workspace) of /', we add to ID* the
rules (zs;a,s;,es;Rb,b,#)r, (x,s;,as;Rb#)p, and
(zas;, R,b#)p.

If u = #ras;agt, then rule (3) of TM can be smulated
by the following derivationin ID*®:

#Hrrs;a# = Fres;as; Rflat # =

#rras; Rbft = Hrzas;h#.

ad. For esch rule (4) c¢s;a —  sjca (move |eft)
of F, we add to ID* the rules (x,s;,es;L, L, cs;ay)r,
(zs; Le, s, ay)p, (2s;, L, cay)p

Hence, if u = #raxes;ayt#, thenrule (4) of TM can be
simulated by the following derivationin ID*:

#Hrres;ayt# = #Hrxs;Les;ayt# =

#rxs;Leayt# = #rxsjcayt#.

ab. For each rule (5) #sia —  #s;jba (move
left and extend workspace) of F° we add to ID*
the rules (#,s;,es;Lb,b,s;ay)r, (Fs;Lb, s, ay)p,
(#s;, L, bay)p

Hence, if u = #£s;ayt# then rule (5) of TM can besim-
ulated by the following derivationin ID*:

#siayt# = Fs;Lbs;ayt# =

#s; Lhayt# = #s;bayt#.

In addition to the rules above, that simulate the rewrit-
ing of the Turing machine by circular insertionsand del etion
rules, we introduce the following rules (b):

(b1) (A #, 0#s0,50,0)1, (b, #, 0F, #, M) 1

(62)  (s5, Y1, oY1, Y1, a)r, (s, Y1, oY1, Y1, 9)r

(b3) (C Sf’Yl)D’(#’Sf’Yl)

(b4) (Yl, b, C)D, (Yl, b, #)

(05) (b, Yo, eYy, Yo, Yi4)r, (F, Y2, oYo, Yo, YVi4f)r

(b6) (Y2’Y1’ )

(b7) (b, Yo)p, (#,0,Y2)p

(b8) (# Yo,OYO,YQ,YQ#)

(69) (A4, Y0)p, (Yo, Ya#t, A)p

(010) (X, #, oFtso#t, #, M1, (Fs5, Yo, Y5, Yo, #) 1,
(#’ Sf’Y2#)

where s; ranges over S, b, ¢ range over X, and for each
s¢, a ranges over such elements of X that sy« isfinal. It
can now be verified that L(I1D*) = L(TM).

Indeed, if w € L(T'M) thenw € T™ and there exists a
derivation

#sowH#H =" Fwispwa# (%)



forsomes; € S;, w1, w2 € X*, s;wo7# final. To show
that w € L,(ID*) we must find aderivationw =* Yj ac-
cording to therules of ID*. If w # A, such aderivationis
the following:

w (g) H#sow# (:a>) Hw1 s waH (g) HwispYiwa (g)

Hw Yiwa# o Hw1Y1# ) Hw Yo Y19 )

b7 b b
#FwiYaH e #Yo 3t w #YoYodt w Yo,
where (:‘Q represents a simulation of the derivation (*) of
the Turing machine by the rules (a).
If w = A, therequired derivationisthe following:

A s 0y 0 wyy, e By

Assume, conversely that w € L(ID*). If w = A thereisa
derivation according to ID* from #s;# to Yy where sy €
Sy and sy = sg. Thisimpliesthat A € L(TM). If w # A
then, according to the way the rules (a) were constructed,
thereisaderivation according to ID* from

wisrawh#, 55 € Sp a € X, wy,wh € X* srafina, (++
Fats ! ! 2 !

to Yy, and aso a derivation from w to (), according to
rules (b). Thisimpliesthat w € L(TM). &

5 Experimental implementation of a circular
insertion/deletion system

In order to be able to describe our molecular biology lab-
oratory implementation of a circular insertion/del etion sys-
tem we need abrief introducti onof some basic molecul ar bi-
ology notions. For further details of molecular biology ter-
minology, the reader isreferred to [10].

DNA (deoxyribonucleic acid) is found in every cdlular
organism as the storage medium for genetic information. It
iscomposed of unitscalled nucl eotides, distinguished by the
chemical group, or base, attached to them. The four bases
are adenine, guanine, cytosine and thymine, abbreviated as
A, G, C,and 7. (The names of the bases are also com-
monly used to refer to the nucleotides that contain them.)
Single nucleotides are linked together end-to—end to form
DNA strands. A short single-stranded polynucleotidechain,
usualy less than 30 nucleotides long, is called an oligonu-
cleotide(or, shortly, oligo). The DNA sequence hasapolar-
ity: asequence of DNA isdistinct fromitsreverse. Thetwo
distinct ends of a DNA sequence are known under the name
of theb’ end and the 3’ end, respectively. Taken aspairs, the
nucleotides .4 and 7 and the nucleotides C and G are said
to be complementary. Two complementary single-stranded
DNA sequences with opposite polarity will join together to

form a double helix in a process called base-pairing or an-
nealing. The reverse process — a double helix coming apart
toyidditstwo constituent single strands—is called melting.

A single strand of DNA can be likened to a string con-
sisting of a combination of four different symbols, A, G,
C, T. Mathematically, this means we have at our disposal
a4-letter dphabet X = {A,G,C, 7T} to encode informa-
tion. As concerning the operations that can be performed
on DNA strands, the existing models of DNA computation
are based on various combinations of the following primi-
tive bio-operations, [8]:
— Synthesizing a desired polynomia -length strand.
—Mixing: pour the contents of two test-tubesinto athird.
— Annealing (hybridization): bond together two single-
stranded complementary DNA sequences by cooling the so-
[ution.
— Méting (denaturation): bresk apart a double-stranded
DNA intoitssingle-stranded components by heating the so-
[ution.
—Amplifying (copying): make copiesof DNA strandsby us-
ing the Polymerase Chain Reaction (PCR).
— Separating the strands by si ze using a technique called gel
electrophoresis.
— Extracting those strands that contain a given pattern as a
substring by using affinity purification.
— Cutting DNA double-strands at specific sites by using
commercially available restriction enzymes.
—Ligating: paste DNA strands with compatible sticky ends
by using DNA ligases.
— Subsgtituting: substitute, insert or delete DNA sequences
by using PCR site-specific oligonucl eotide mutagenesis.
— Detecting and Reading a DNA sequence from a solution.

To test the empirical validity of our theoretical modd,
we implemented a small circular insertion/del etion system
inthelaboratory. The purposeof thisimplementationwasto
show that in vitro circular insertion is possibleand not over-
whelmingly difficult.

The following circular insertion/deletion system was
chosen:

ID* = (X,T,I*, D, u)

where the alphabetsare 7, X = {A4,C,G, T}, thereare no
deletionrules,i.e. D = (), theaxiom v isasmall DNA seg-
ment from the Drosophila Melanogaster genome and /°* =
(G,G, 80, TCGAC,TCGAC) where ev is a commercialy
availableplasmid (circular strand). Notethat A, C, G, T cor-
respond to thefour bases that occur in natural DNA, and that
the sequence G|7CG.AC is the restriction (cut) site for the
Sl | enzyme.

To begin the experiment, we synthesi zed the linear axiom
u in which we would then insert. This was accomplished
by taking DNA from Drosophila (fruit fly) and performing
PCRwiththeprimers BC+ and ed~. Theresult wastheam-
plification of a particular 682bp (basepair) linear sequence



of DNA which became the axiom w of the circular inser-
tion/deletion system. The 682bp linear strand was chosen
to contain exactly one restriction site for the enzyme Sal |,
corresponding to the context of insertion (G, 7 CG.AC).

For the circular string ev to beinserted we chose pK18h,
acommercialy available plasmid having onerestriction site
for Sal I, correspondingto theguides (G, 7CG.AC) inthein-
sertion rule.

After verifyingthat the PCR had worked correctly and we
had indeed obtained the desired 682bp linear axiom u, we
cut v with Sal 1, cleaving it into two new linear strands de-
notedby L and R, i.e. w = L|R. The product was checked
by gel electrophoresis to ensure the presence of bands cor-
responding to thesizes of 1. (188bp) and 12 (493bp), as seen
fromthefirst bandin thegel of Fig. 2. The plasmid ev was
also cut and linearized in the same fashion resulting in the
linear strand v.

At this point the linear strands . and R were combined
with the linearized pK18h, i.e. v, and ligase was added to
reconnect the strands of DNA. After alowingtimefor liga
tion, a gel was run to determine the products. The second
band from the gel shown in Fig. 2 indicates that in addi-
tion to the desired L |plasmid| R, we dso obtain R|R, L|R,
plasmid|plasmid and even plasmid|plasmid|plasmid.

Notethat the band corresponding to the approximate size
of L|plasmid|R can be seen as a smear. This could suggest
thepresence of R|plasmid| R or of any other combination of
two linear fragments and a plasmid which failed to separate
clearly from one another due to the large size. Thusfurther
analysis was required to ensure the presence of the desired
product L |plasmid| R.

In order to amplify the amount of DNA available at this
point, the DNA was recircularized and introduced into E.
Coli bacteria. (The complex detailsof thisprocess are omit-
ted here))

Prior to sequencing, a quick restriction digest? was per-
formed on small amounts of product isolated from each of
the several bacteria colonies. If the starting sample were
a heterogeneous mixture of DNA molecules, each colony
would yield a different product. Consequently, the restric-
tion digest of DNA samples (each isolated from a particular
colony) withenzymes Sal I, Stul and Xba, resulted in bands
indicating different size distributions. Of these, one sample
corresponded to the size of L|plasmid|R and the identity of
the product was confirmed by sequencing.

Thisexperiment demonstratesthatitispossibletoinserta
plasmidintoalinear strandinvitro, implementingthusacir-

2A restriction digest consists of taking an unknown product, cutting it
with a series of restriction endonucleases and running each product on a
gel. If therestriction sites for the desired product are known, then we can
computethe expected sizes of the molecules formed after the digest. If the
expected sizesmatch the bandsfound onthegel, then thereisagood chance
the unknown product is the desired product. By repeating this operation
with different enzymes, we can increase our confidencein this result.

Figure 2. The first vertical lane of this gel
consists of bands corresponding to the unre-
acted linearized plasmid v, the linear strand
u, and the two fragments of the cut linear
strand (R, respectively ). The second ver-
tical lane shows a band corresponding to the
product obtained after reaction (v — v). The
third lane contains a standard 1kb (kilobase)
ladder used to measure the others.

cular insertion/del etion system. Future experimental work
would idedlly include a much larger system to test the scal-
ability of this approach.

6 Conclusonsand futurework

Thecircular insertion/del etion systems provide atheoret-
ically interesting extension to the linear systems originaly
described in [9]. Moreover, since the operation of insert-
ing plasmids into linear strands of DNA is a common oc-
currence in biology, the study of such systemsis a natura
next step in the devel opment of an insertion/del etion-based
model of cellular genetic manipulation.

From a computer science and language theory stand-
point, the construction given here is capable of universal
computation and can thus theoretically implement any al-
gorithm that can be run on an e ectronic computer. Onein-
teresting possibility for futurework would be an analysis of
what type of agorithms are most easily and efficiently im-
plemented with such a system. Such a study would yield
some insight into what types of “agorithms” are being used



by cellsthemselves.

The experimental results we have obtained show that
rewriting systemsbased on circular insertionsand deletions
are viable in vitro aternatives in DNA computation. They
are momentarily limited dueto thefact that only asmall size
problem could be implemented. Future work on this model
will include a larger and more complex experiment to help
identify the sources and severity of biochemical errors.

This paper has presented a new mode for DNA based
computing using circular strands by extending the inser-
tion/del etion systems presented in [9]. The modé has been
shown to be capable of universal computation and a small
size problem was actually implemented in DNA.

We believe that continued effort to provide formal mod-
elsof actual biological processes will yield not only insight
into biological systems but perhaps also provide new ideas
about the nature of computation itself.
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