N

N
N

HAL

open science

Finding Repeats With Fixed Gap
Roman Kolpakov, Gregory Kucherov

» To cite this version:

Roman Kolpakov, Gregory Kucherov. Finding Repeats With Fixed Gap. [Research Report] RR~-3901,

INRIA. 2000, pp.15. inria-00072753

HAL Id: inria-00072753
https://inria.hal.science/inria-00072753
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00072753
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--3901--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Finding Repeats With Fixed Gap

Roman Kolpakov and Gregory Kucherov

N° 3901
Mars 2000

THEME 2

apport
derecherche

%I INRIA

LORRAINE

Finding Repeats With Fixed Gap

Roman Kolpakov* and Gregory Kucherov'

Théme 2 — Génie logiciel
et calcul symbolique
Projet Polka

Rapport de recherche n° 3901 — Mars 2000 — 15 pages

Abstract: We propose an algorithm for finding in a word all pairs of oc-
currences of the same subword with a given distance r between them. The
obtained complexity is O(nlogr + S), where S is the size of the output. We
also show how the algorithm can be modified in order to find all such pairs
of occurrences separated by a given word. The solution uses an algorithm for
finding all quasi-squares in two strings, a problem that generalizes the known
problem of searching for squares.

Key-words: algorithms, pattern matching, repetitions, algorithmic com-
plexity

* French-Russian Institute for Informatics and Applied Mathematics, Moscow University,
119899 Moscow, Russia, e-mail: roman@vertex.inria.msu.ru

! LORIA/INRIA-Lorraine, 615, rue du Jardin Botanique, B.P. 101, 54602 Villers-lés-
Nancy, France, e-mail: kucherov@loria.fr

Unité de recherche INRIA Lorraine
LORIA, Technopble de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lés-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Recherche de répétitions & distance fixe

Résumé : Nous proposons un algorithme recherchant dans un mot toutes les
paires d’occurrences d’'un méme facteur & distance r entre elles. La complex-
ité obtenue est O(nlogr + S), o S est la taille de la sortie. Nous montrons
également comment ’algorithme peut étre modifié afin de trouver toutes les
répétitions séparées par un mot donné. La solution utilise un algorithme qui
trouve tous les quasi-carrés dans deux mots, un problme qui généralise le prob-
léme bien connu de recherche de carrés.

Mots-clés : algorithmes, recherche de motifs, répétitions, complexité algo-
rithmique

Finding Repeats With Fized Gap 3

1 Introduction

Repetitions in words are important objects playing often a fundamental role in
combinatorial properties of words. They also proved to be important in string
matching applications [CR95|. Finding repetitions in words is fundamental for
some compression techniques [Sto88], as well as for biological sequence analysis
|Gus97].

A great deal of work, in word combinatorics and string matching, has been
devoted to contiguous repetitions, when a fragment is repeated contiguously
two or more times [Cro81, Sli83, Cro83, AP83, ML84, ML85, Mai89, Kos94,
IMS97, SG98a, KK99b, SGI98b, KK99a|. A simplest form of contiguous repe-
tition is a square (tandem repeat), which is a subword of the form uu.

On the other hand, some applications bring up the problem of finding
subwords repeated in a word in a possibly non-contiguous way. As an example,
it is well known that the suffix tree [McC76, Ukk95]| allows to easily compute
the longest subword occurring at least twice in a word. More about finding
repeated subwords in a word can be found in [Gus97].

An intermediate problem, occurring for example in molecular biology appli-
cations, consists in finding subwords repeated within some specified distance.
This problem has been studied in a recent paper [BLPS99|. More precisely, the
problem considered was to find all subwords uvu, where the size of v, called
the gap, belongs to a specified interval. Using suffix trees together with binary
search trees, it has been shown in [BLPS99| that all such pairs (of occurrences
of u) can be found in time O(nlogn + S), where S is the size of the output.

In this paper, we consider a restricted version of this problem, when v has
a fized size, and show that all repeated occurrences of u with a gap equal to r
can be found in time O(nlogr + S).

The approach we use is similar to the one used in [Mai89, KK99a] for
finding so-called maximal (contiguous) repetitions. It is based on two ideas.
The first one is a special factorization of the word. Slightly different defini-
tions of this factorization are known under the name s-factorization [Cro83]
(f~factorization in [CR94|), or Lempel-Ziv factorization [Gus97]|, because of its
use in the well-known Lempel-Ziv compression method |[LZ76, ZL77|. In this
paper, for presentation purposes, we use the Lempel-Ziv factorization.

RR n° 3901

4 Roman Kolpakov* and Gregory Kucherov®

The second component of our method is longest common extension func-
tions [ML84|. To illustrate the idea, assume we are given two words uy, uy, and
want to compute, for each position 7 of uy, the length of the longest prefix of u;
which occurs at position 7 in uy. A variation of the Knuth-Morris-Pratt algo-
rithm (see [ML84, CR94|) allows to compute all these lengths in time O(|u;|+
|ug|). This computation, under different variants, appeared to be very useful
in several string matching problems [Cro83, ML84, Mai89, KK99a, SGI8b].

After giving basic definitions in Section 2, we first consider a problem of
finding quasi-squares in two words. This problem, which plays an auxiliary
role in this paper, generalizes the problem of finding usual squares in a word
and is interesting on its own. In Section 3, we propose an efficient solution
to this problem. Then, in Section 4, we present an algorithm for finding all
repeats with a fixed gap. Finally, in Section 5 we show how this algorithm
can be modified to find all repeated subword occurrences with a fized word
between them.

2 Definitions

Consider a word w = a;...a,,. |w| denotes the length of w. w[i : j], for
1 <4,j5 < n, denotes the subword a;...a; provided that i < j, and the empty
word otherwise. A position 7 in w is an integer number between 0 and k,
associated to the factorization w = w'w”, where |w'| = i. A subword v of w is
said to start (respectively end) at position ¢ if v is a prefix of w” (respectively
suffix of w'). A subword v contains position 7 if it starts at a position smaller
or equal than ¢, and ends at a position greater or equal than i.

For a set S, |S| denotes the cardinality of S.

Let » > 0 be a given integer. An occurrence in w of subword o = uvu,
where |u| > 0 and |v| = r, is called an r-gapped repeat (for short, r-repeat) in
w. The first occurrence of u is called the left root, and the second the right
root. For an r-repeat «, the length |u| is denoted p(«).

INRIA

Finding Repeats With Fized Gap Y

3 Finding quasi-squares in two words

In this section we consider an auxiliary problem, that however is interesting
on its own, as it generalizes the well-known problem of finding all squares in a
word.

Assume we are given two words w',w” of equal length, |w lw"| = n,
n > 2. We say that words w’,w” contain a quasi-square iff for some 1 <
k < nand p > 0 we have w'[k.k +p— 1] = w"[k + p..k +2p — 1]. By
analogy to usual squares, p is called the period of the quasi-square, and words
w'lk.k +p—1],w"[k + p..k + 2p — 1] are called respectively its left root and
right root.

Given two words, the problem is to find all quasi-squares in them. Clearly,
this generalizes the problem of finding all squares in a word which corresponds
to finding all quasi-squares in two equal words. Recall that finding all squares
in a word is a problem which has been extensively studied. Since the number
of all squares can be O(n?), one way is to consider only primitively-rooted
squares, of which the number is O(nlogn), or other repetitive structures,
such as mazimal integer or mazimal fractional repetitions®. Several algorithms
|Cro81, AP83, ML84| allow to find all such structures in time O(nlogn). Each
of these algorithms is able to extract all squares in time O(nlogn + S), where
S is the number of output squares (see also [SG98a]). On the other hand,
Crochemore [Cro83| proposed an algorithm to test, in linear time, if a word
contains at least one square. Using the technique proposed in [KK99a], this
algorithm can be actually extended to find all squares in time O(n + S). This
bound was claimed in [Kos94|, and follows from later works [SG98b, KK99a).

Denote QS (w',w") the set of all quasi-squares of words w’, w"”. We show
that @S (w', w") can be computed in time O(nlogn+S), where S = |QS(w', w")]|.
The algorithm we propose is based only on longest common extension func-
tions and does not use suffix tree-like data structures. It is similar to the
algorithm of [ML84]| for finding all repetitions. An advantage of the proposed
solution is that the output quasi-squares are naturally grouped into families
of quasi-squares with the same root length and starting at successive positions
in the word*. We will use this feature of the algorithm in Section 5.

I|_

3Formal definitions of these notions can be found in [KK99b]
4This families are analogous to runs of squares in [IMS97, SG98a]

RR n° 3901

6 Roman Kolpakov’ and Gregory Kucherov®

Assume n = 2m, and denote QS,,(w', w") the subset of QS (w',w") con-
sisting of those quasi-squares which contain position m. To prove the bound
O(nlogn+S), it is sufficient to show that all quasi-squares from Q.S,,(w', w")
can be found in time O(n + |QS,, (w', w")|).

Decompose QS,,(w',w") into two subsets QS (w',w") and QST (w', w")
containing position m respectively in the left root and the right root. Consider
the set QS! (w',w") (QST,(w',w") is treated similarly).

Let w'[k..k+p—1],w"[k+p..k+2p—1] be a quasi-square from QS! (w', w")
with period p, that is £ < m < k+p—1. Obviously, p < m as w"[k+p..k+2p—1]
is a subword of w[m + 1..2m|. Define LPR(p) to be the length of the longest
common prefix of words w'[m + 1..n] and w”[m + p + 1..n], and LSF(p) to
be the length of the longest common suffix of w'[1..m] E w"[m + 1..m + p].
From the considered quasi-square, it is easily seen that LPR(p)+ LSF(p) > p.
Vice versa, if for some p = 1,...,m, LPR(p) + LSF(p) > p, then there exists
a quasi-square with period p from QS!, (w',w"). More precisely, the following
Lemma holds.

Lemma 1 For p = 1,...,m, there exists a quasi-square of QS: (w',w") with
period p iff LPR(p)+LSF(p) > p. When this inequality holds, there is a family
of quasi-squares with period p from QS’, (w',w"), with the left roots starting at
positions [m — LSF(p)..m + min{ LPR(p),p} — p].

To use Lemma 1 as an algorithm for computing QS', (w',w"), we have to
compute values LPR(p), LSF(p) for p = 1,...,m. All these values can be
computed efficiently in time O(m) using a variation of the Knuth-Morris-Pratt
string matching algorithm. We refer to [ML84, CR95| for details of how this
can be done.

We conclude that the quasi-squares of @S’ (w',w") can be computed in
time O(m + |QS!, (w',w")]). Similarly, all quasi-squares of QST (w',w") can
be computed in time O(m + |QS],(w',w")|), and therefore all quasi-squares
of QS (w',w") in time O(m + |QS,, (w', w")|). A straightforward divide-and-
conquer algorithm gives the running time O(nlogn+ |QS(w', w")|) for finding
all quasi-squares in w’, w".

Theorem 1 The set QS(w',w") of all quasi-squares in words w', w" can be
found in time O(nlogn + |QS(w',w")]).

INRIA

Finding Repeats With Fized Gap 7

4 Finding repeats with a fixed gap

We now turn to our main problem — finding all r-repeats in a given word wu.
We first define the Lempel-Ziv factorization.

Definition 1 The Lempel-Ziv factorization w = uy...us of a word w = ay...a,
is recursively defined as follows:

® U3 =ay,

e fori = 2,...,s, u; = va, where v is the longest word, occurring at least
twice in uq...u;_1v, and a s the letter following the prefix ui...u;_1v in w
(in other words, u; is the shortest word which occurs only as a suffic in
ul...ui_lui).

The Lempel-Ziv factorization is directly related to the Lempel-Ziv compres-
sion algorithm [ZL77] and to the underlying definition of complexity of a
string [LZ76]. A salient property of Lempel-Ziv factorization is that it can
be computed in time O(n). This can be done using the suffix tree data
structure [McC76, Ukk95|, developed in the context of string matching ap-
plications (see [RPE81]).” Conversely, the Lempel-Ziv factorization (and its
close relative — the s-factorizaiton |[Cro83|) turned out itself to be useful in
string matching applications related to the search for repetitions in the word
[Mai89, KK99a, SG98b|. This paper gives another example of such an appli-
cation.

Let w = aj...a, be a word of length n. Without loss of generality, we
assume that a, does not occur elsewhere in w. Assume we computed the
Lempel-Ziv factorization w = u;...u,s for w. First, we introduce some notation.
Let eg,e1,...,€5_1,€s be the positions delimiting u;’s, that is ¢g = 0, and
ei = |ur...u;| for 1 <4 < s. We also denote l; = |u;|, ¢ = 1,...,s. For every
1=1,..,s—1, define é; = ¢; + r, if lz'_|_1 > r, and € = €i+1, ifli_H <r. To
simplify the presentation, we assume that w[i] = @ for i < 0, where @ is a
letter not belonging to the alphabet.

"We note that the Lempel-Ziv factorization can also be computed in linear time with the
DAWG data structure [BBH'85, Cro86]

RR n° 3901

8 Roman Kolpako® and Gregory Kucherov’

Let us split the set of all r-repeats into the set R' of those r-repeats which
contain positions ey, ..., es_1 and the set R” of the remaining r-repeats. (Obvi-
ously, an r-repeat cannot contain e, because of the assumption about the last
letter, and if it contains e, it also contains e;.) We now concentrate on the
r-repeats of R', and further split R’ into (disjoint) subsets R}, i =1,...,s — 1,
so that R} consists of those r-repeats which contain e; but don’t contain e;;.
Furthermore, each R] is split into the following subsets:

(a) a € RYiff the left root of w contains e;,

(b) « € RI™ iff the right root of w contains e;,

c) a € R™?*iff the right root of w contains é;, but does not contain e;,
i g

(d) a € R™d iff the right root of w contains neither e;, nor é;.

To see that cases (a)-(d) cover all possible situation, remark that, for any
a € R!, either o € RI'*) or the left root of « ends to the left of e;, and therefore
the right root starts to the left of e; + r, and therefore to the left of é;. If
it starts to the left of e;, then @ € RI™ (as « contains e; by assumption).
Otherwise, if the right root starts to the right of e;, it ends either before or
after é;, which corresponds to cases (d) and (c) respectively.

We now consider separately r-repeats belonging to each of the cases (a)-(d)
and show how to find them.

(a) Finding r-repeats of R™. Let o € R and p(a) = p. Since o does
not contain e; 1, then r+p < l;,1, and therefore p < 1[;,; —1—r. In particular,
RI™ is empty whenever [;;; <7 + 1. Assume now that l; ;1 > 7 + 1.

Define LPR;(p) to be the length of the longest common prefix of u;y; and
ui1[r +p+ 1..l;;1 — 1], and LSF;(p) to be the length of the longest common
suffix of u;y1[r + 1..r + p|] and the suffix of u;...u; of length p. From the
r-repeat «, it is easily seen that LSF;(p) + LPR;(p) > p.

Conversely, if for some p = 1..l;;; — 1 — r, LSF;(p) + LPR;(p) > p, then
there exists a family of r-repeats of RI"* with the root length p, starting at
positions [e; — LSF;(p)..e; + min{0, LPR;(p) — p}]

We summarize the above in the following lemma.

INRIA

Finding Repeats With Fized Gap 9

Lemma 2 There exists an r-repeat w € R with root length p (p € [1..1;11 —
1—r]) iff LSF;(p)+LPR;(p) > p. When this inequality holds, all such r-repeats
start at positions [e; — LSF;(p)..e; + min{0, LPR;(p) — p}].

Lemma 2 suggests a method of computing R"*. Compute the longest com-
mon extension functions LSF;(p) and LPR;(p) for all p =1..l;1; —1 —r. This
computation can be done in time linear on the length of involved words, that is
in time O(l;11), using the Knuth-Morris-Pratt technique (see Section 3). Then
all r-repeats of R!"* can be output using Lemma 2. The whole computation
takes time O(l; 11 + |RI'|).

(b) Finding r-repeats of R!". Consider a € R!"" with p(a) = p. From
Definition 1 of Lempel-Ziv factorization it follows that the right root of « starts
to the right of e;_;. On the other hand, from the definition of R!™, it ends to
the left of e; 1. Therefore, 0 < p <; + l;11 — 2.

We proceed similarly to case (a), and define longest common extension
functions RPR;(p) and RSF;(p) for p =1..1; + ;11 — 2. RPR;(p) is defined as
the length of the longest common prefix of u;1[1..l;41 — 1] and wle; —r —p+
l..e; — r], and RSF;(p) as the length of the longest common suffix of u;[2..];]
and the suffix of w[l..e; — r — p] of length [; — 1. Similarly to case (a), the
following Lemma holds.

Lemma 3 There exists an r-repeat oo € RI™ with root length p (p € [1..l; +
liv1—2]) iff RPR;(p)+RSF;(p) > p. When this inequality holds, the right roots
of all such r-repeats start at positions [e; — min{ RS F;(p), p}..e;+ RPR;(p) — p).

Again, functions RPR; and RSF; can be computed in time linear in the
length of involved words, that is in time O(l; + l;41). Therefore, all r-repeats
of RI" can be reported in time O(l; + l;11 + |RI™]).

(c) Finding r-repeats of R™*. Note that this case is defined only when
é; < €;+1, that is when [;;; > r. Consider « € R with p(a) = p. The right
root of « lies inside u;11[2..[;41 — 1], and therefore p < ;11 — 1.

Using the same approach, we define M PR;(p) to be the length of the longest
prefix of u;1[r+1..l;11 — 1] and wle; —p+1..¢;], and M SF;(p) to be the length
of the longest suffix of u;,1[2..r] and the suffix of w[l..e; — p| of length r — 1.
The following Lemma holds.

RR n’ 3901

10 Roman Kolpakov'® and Gregory Kucherov'

Lemma 4 There exists an r-repeat o € R™* with root length p (p € [1..l;41 —
2]) iff MPR;(p) + MSF;(p) > p. When this inequality holds, the right roots
of all such r-repeats start at positions [e; + 1 — min{ M SF;(p),p}..e; +r +
MPR;(p) — p]-

Functions M PR; and MSF;(p) can be computed in time O(l;41) and all
r-repeats of RT" can be reported in time O(l; 41 + |R™|).

(d) Finding r-repeats of R™¢. Consider now o € R™? with p = p(a).
Denote m; = é;—e; = min{r, [;11 }. The right root of « lies inside u;[2..m;—1],
and therefore p < m; — 2.

This case differs from cases (a)-(c) in that we cannot a priori select a
position contained in the right (or left) root of a. Therefore, we cannot apply
directly the technique of longest common extension functions. We reduce this
case to the problem of finding quasi-squares, considered in Section 3.

Since the start position of the right root is contained in the word wle; +
1..e; + m; — 1], the end position of the left root is contained in the word
wle;+1—r..e;+m;—1—r]. Since p < m; — 2, the left root of « is contained in
the word w' = w[e; —r — m; + 3..; + m; — 1 — r]. The length of w' is 2m; — 4.
Let # be another fresh letter. Denote by w” the word #...# u;[2..m; — 1].

m;—2

Lemma 5 There exists an r-repeat o € R™4 iff there erists a quasi-square in
words w',w". Each such quasi-square corresponds to an r-repeat o € R™4.

Therefore, there is a one-to-one correspondence between the set R4 and the
set of quasi-squares in the words w', w” constructed above. Moreover, a quasi-
square with the left root starting at position j in w’ corresponds to an r-repeat
starting at position (e; —r —m; + 3+ j) in w.

By Theorem 1, all those quasi-squares can be found in time O(m;logm;).
We conclude that all r-repeats of R™ can be reported in time O(m; logm; +
|R™4|), which, using m; = min{r,l;11}, we estimate as O(l;; logr + |R/™4]).

Putting together cases (a)-(d), all r-repeats of R can be found in time

O(l;) + O(liz1logr) + O(|RL|). Summing up over all 7 = 1..s, we obtain that
all r-repeats of R’ can be found in time O(nlogr + |R'|).

INRIA

Finding Repeats With Fized Gap 11

Finding r-repeats of R” can be done using a technique similar to the one
used in [KK99a|. The key observation here is that each r-repeat of R" occurs
inside some factor u; (i.e. does not contain positions e; and e;;1). By definition
of the factorization, each such r-repeat is a copy of another r-repeat occurring
to the left. When constructing the Lempel-Ziv factorization, we can store,
for each factor u; = wa, a reference to an occurrence of v to the left (see
Definition 1). After finding all r-repeats of R', we sort them, using basket
sort, in increasing order of their start position and, for each start position, in
increasing order of their root length. Then we process all factors from left to
right and for each factor u; = va, copy corresponding earlier found r-repeats
occurring in the referenced copy of v. We refer the reader to [KK99a] for full
details. The running time of this stage is O(n + |R"|).

We conclude with the final result.

Theorem 2 The set R of all r-repeats in a word w can be found in time
O(nlogr + |R|).

We end this section by noting that when r = 0 (that is, usual squares are
looked for), only cases (a),(b) remain to be dealt with. The algorithm we obtain
is actually the algorithm of Crochemore [Cro83| allowing to find, in linear
time, all squares containing factor borders, augmented with the technique of
|KK99a] allowing to find the remaining squares (cf Section 3). Thus, we obtain
an O(n + S) algorithm for finding all squares. The same algorithm works for
r = 1, since in this case too, cases (a),(b) cover all possible relative positions
of 1-repeats and factor borders.

5 Finding r-repeats with a fixed gap word

The algorithm presented in Section 4 can be modified in order to find all r-
repeats with a fixed word between the two roots. Assume v is a fixed word of
length r. Denote by R, the set of r-repeats of the form uvu, where |u| > 1. We
show that all those repeats can be found in time O(nlogr +|R,|). To do that,
we first find, using any linear-time string matching algorithm (for example,
the Knuth-Morris-Pratt algorithm) all start occurrences of v in w. For each
position i of v, we compute the position NEXT (i), defined as the nearest start
position of v strictly to the right of i.

RR n’ 3901

12 Roman Kolpakov'? and Gregory Kucherov

From the algorithm of Section 4 for finding the set R', it should be clear that
all the r-repeats of R’ can be represented by O(nlogr) families each consisting
of r-repeats with a given root length and starting at all positions from a given
interval. In other words, each family can be specified by an interval [i..j] and
a number p, and encodes all r-repeats with root length p starting at positions
from [i..j].

From this specification, using function NEXT(7), we can easily extract all
r-repeats of R, in time proportional to the number of those. For that, we
first assume that each family is specified by an interval of end positions of the
left root (as the root length p is known for each family, the translation can be
trivially computed by just adding p to the interval of start positions). Then
we process all the families and extract from each interval those positions which
are start positions of an occurrence of v. Using function NEXT, this can be
easily done in time proportional to the number of such positions.

After processing all families, we have found all r-repeats from the set R] =
R,NR'in time O(nlogr+|R,|). Then, using a procedure for finding r-repeats
from R", described in Section 4, we find all r-repeats from R, = R, N R" in
time O(n + |R)|). As R, = R} U R}, all r-repeats from R, are found in time
O(nlogr + |R,|)-

6 Conclusions

An interesting natural question is whether all r-repeats can be found in time
O(n + |R|). The “bottleneck” implying the logr factor comes from the prob-
lem of finding quasi-squares. Can all quasi-squares be found in time O(n +

QS (w', w")[)?
References

[AP83] A. Apostolico and F.P. Preparata. Optimal off-line detection of
repetitions in a string. Theoretical Computer Science, 22(3):297—
315, 1983.

INRIA

Finding Repeats With Fized Gap 13

[BBH*85]

[BLPS99)

[CRY4]

[CR95]

|Cro81]

[Cro83]

[Cro86|

[Gus97]

[IMS97]

[KK99a]

RR n° 3901

A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen,
and J. Seiferas. The smallest automaton recognizing the subwords
of a text. Theoretical Computer Science, 40:31-55, 1985.

G. Brodal, R. Lyngsg, Ch. Pedersen, and J. Stoye. Finding maxi-
mal pairs with bounded gap. In M. Crochemore and M. Paterson,
editors, Proceedings of the 10th Annual Symposium on Combinato-
rial Pattern Matching, volume 1645 of Lecture Notes in Computer
Science. Springer-Verlag, 1999.

M. Crochemore and W. Rytter. Text algorithms. Oxford University
Press, 1994.

M. Crochemore and W. Rytter. Squares, cubes, and time-space
efficient string searching. Algorithmica, 13:405-425, 1995.

M. Crochemore. An optimal algorithm for computing the repeti-
tions in a word. Information Processing Letters, 12:244-250, 1981.

M. Crochemore. Recherche linéaire d’un carré dans un mot.
Comptes Rendus Acad. Sci. Paris Sér. I Math., 296:781-784, 1983.

M. Crochemore. Transducers and repetitions. Theoretical Computer
Science, 45:63-86, 1986.

D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cam-
bridge University Press, 1997.

C.S. Iliopoulos, D. Moore, and W.F. Smyth. A characterization of
the squares in a Fibonacci string. Theoretical Computer Science,
172:281-291, 1997.

R. Kolpakov and G. Kucherov. Finding maximal repetitions in a
word in linear time. In Proceedings of the 1999 Symposium on Foun-
dations of Computer Science, New York (USA). IEEE Computer
Society, October 17-19 1999.

14

Roman Kolpakov* and Gregory Kucherov'®

[KK99b]

[Kos94]

[LZ76]

[Mai89]

[McC76]

[ML84]

[ML85]

[RPESI|

[SG98a|

R. Kolpakov and G. Kucherov. On maximal repetitions in words. In
Proceedings of the 12-th International Symposium on Fundamentals
of Computation Theory, 1999, Iasi (Romania), Lecture Notes in
Computer Science, August 30 - September 3 1999.

S. R. Kosaraju. Computation of squares in string. In
M. Crochemore and D. Gusfield, editors, Proceedings of the 5th
Annual Symposium on Combinatorial Pattern Matching, number
807 in Lecture Notes in Computer Science, pages 146-150. Springer
Verlag, 1994.

A. Lempel and J. Ziv. On the complexity of finite sequences. IEEE
Trans. Inf. Theory IT-22, pages 75-81, Jan 1976.

M. G. Main. Detecting leftmost maximal periodicities. Discrete
Applied Mathematics, 25:145-153, 1989.

E. M. McCreight. A space-economical suffix tree construction al-
gorithm. Journal of the ACM, 23(2):262-272, 1976.

M.G. Main and R.J. Lorentz. An O(nlogn) algorithm for finding
all repetitions in a string. Journal of Algorithms, 5(3):422-432,
1984.

M.G. Main and R.J. Lorentz. Linear time recognition of square free
strings. In A. Apostolico and Z. Galil, editors, Combinatorial Algo-
rithms on Words, volume 12 of NATO Advanced Science Institutes,
Series F, pages 272-278. Springer Verlag, 1985.

M. Rodeh, V.R. Pratt, and S. Even. Linear algorithm for data
compression via string matching. Journal of the ACM, 28(1):16—-
24, Jan 1981.

J. Stoye and D. Gusfield. Simple and flexible detection of con-
tiguous repeats using a suffix tree. In M. Farach-Colton, editor,
Proceedings of the 9th Annual Symposium on Combinatorial Pat-
tern Matching, number 1448 in Lecture Notes in Computer Science,
pages 140-152. Springer Verlag, 1998.

INRIA

Finding Repeats With Fized Gap 15

[SGOSD]

[S183]

[Sto88|

[Ukk95]

[ZL77]

RR n’ 3901

J. Stoye and D. Gusfield. Linear time algorithms for finding and
representing all the tandem repeats in a string. Technical Report
CSE-98-4, Computer Science Department, University of California,
Dayvis, 1998.

A.O. Slisenko. Detection of periodicities and string matching in
real time. Journal of Soviet Mathematics, 22:1316-1386, 1983.

J.A. Storer. Data Compression: Methods and Theory. Computer
Science Press, Rockville, MD, 1988.

E. Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249-260, 1995.

J. Ziv and A. Lempel. A universal algorithm for sequential data
compression. IEEFE Trans. Inf. Theory IT-23, 3:337-343, May 1977.

/<

Unité de recherche INRIA Lorraine
LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

