
Automated Domain-Specific Modeling Languages for
Generating Framework-Based Applications∗

André L. Santos
Faculty of Sciences
University of Lisbon

Campo Grande, 1749-016
PORTUGAL

andre.santos@di.fc.ul.pt

Kai Koskimies
Department of Software Systems

Tampere University of Technology
P.O.BOX 553, FIN-33101 Tampere

FINLAND
kai.koskimies@tut.fi

Antónia Lopes
Faculty of Sciences
University of Lisbon

Campo Grande, 1749-016
PORTUGAL

mal@di.fc.ul.pt

Abstract

The adoption of Domain-Specific Modeling Languages
(DSMLs) for generating framework-based applications has
proved to be an effective way of enforcing the correct use
of frameworks and improve the productivity of application
developers. However, the development of the code genera-
tor of a DSML is typically a laborious task with difficulties
in what concerns complexity, understandability, and main-
tainability. In this paper, we address this problem with a
new approach for developing DSMLs for frameworks that
allows to eliminate the need of implementing code gener-
ators. The approach relies on the extension of frameworks
with an additional layer based on aspect-oriented program-
ming that encodes a DSML. By means of a generic language
workbench, framework-based applications can be gener-
ated from application models described in that DSML. The
proposed language workbench was implemented in a proto-
type tool and we performed a case study on the Eclipse Rich
Client Platform.

1 Introduction

Object-oriented frameworks are an important means for
realizing software product-lines [4]. Framework-based ap-
plications are developed by instantiating a certain frame-
work. The activities related to developing a framework are
known as domain engineering, whereas application engi-
neering refers to the development of framework-based ap-
plications.

Learning how to correctly use a non-trivial framework
is a difficult and time-consuming activity. In order to help

∗This work was partially supported by FCT, through the Multiannual
Funding Programme.

application engineers to overcome this obstacle, domain en-
gineers may develop tool support for Domain-Specific Mod-
eling (DSM) [6]. By doing so, the abstraction level of ap-
plication development is raised, given that applications are
described in terms of high-level concepts expressed in a
Domain-Specific Modeling Language (DSML). The essen-
tial elements of a DSM solution are the modeling language
and the code generator, which generates framework-based
code from descriptions in that language.

Using model-driven engineering terminology, the mod-
eling language definition can be given in a meta-model,
while descriptions in that language, i.e. (application) mod-
els, are given as instances of the meta-model. The meta-
models and code generators may be developed using lan-
guage workbenches1 for that purpose (e.g. [13, 8, 7]). Fig-
ure 1 illustrates conventional tool support for generating
framework-based frameworks. As part of the problem do-
main, we have the meta-model that describes domain con-
cepts, and application models that describe instances of
those concepts. As part of the solution domain, we have the
object-oriented framework, and the framework-based appli-
cations.

1i.e. tools that are suitable for developing some sort of DSL support.

OO
FrameworkMeta-model

Application

problem domain solution domain

Code
Generator

Application
Model

Figure 1. Conventional DSM solution for gen-
erating framework-based applications.



DSM approaches claim that it is possible to increase pro-
ductivity in application engineering activities by up to an
order of magnitude [6]. However, these productivity gains
imply a significant additional effort in domain engineer-
ing activities, since the meta-model and the code generator
have to be developed and maintained consistently through-
out the evolution of the framework. A DSML is the result
of several development iterations, and nevertheless, new in-
crements have to be developed when the domain evolves,
implying modifications in the framework, meta-model, and
code generator. This makes the evolution of the tool support
for DSM challenging.

The difficulty of building and maintaining tool support
for DSM depends essentially on the complexity of the map-
ping between the concept instances expressed in the DSML
and the code that has to be generated. In principle, the more
straightforward this mapping is, the easier it will be to im-
plement and evolve the code generator. As a matter of fact,
black-box frameworks are pointed out as being suitable for
having tool support for DSM (in [16] referred to as visual
builders), given that what it has to be generated is simply
glue code that composes default components.

Let us assume that the easiest way to develop tool sup-
port for DSM is by having a black-box framework as the
framework which applications are based on. Although
black-box frameworks may have a conceptually clean way
of instantiating them, the framework classes do not contain
enough information so that the transformation definition be-
tween domain concepts and the glue code can be automati-
cally obtained. So it happens because neither the concepts
nor their relationships are explicit. The code generator has
thus to be developed for implementing this mapping.

One of the main goals of the approach presented in
this paper is to relieve domain engineers from develop-
ing code generators. We propose a technique for obtain-
ing tool support for DSM solely by enhancing a framework
with an additional layer that explicitly encodes the DSML,
which we refer to as the DSM layer. This layer enables
to build framework-based applications at a higher abstrac-
tion level, so that the mapping between domain concepts
and framework-based code is straightforward, and there-
fore, it can be automatically obtained. The realization of
the DSM layer relies on our previous work that proposes a
technique based on aspect-oriented programming for mod-
ularizing framework extension points in framework special-
ization aspects [18] . These are reusable aspect modules for
developing framework-based applications. A DSM layer
is composed by several specialization aspects, which are
annotated with little additional meta-data for enabling that
both the meta-model and the mapping between models and
framework-based code can be unambiguously inferred.

Using our technique, domain engineers are able to ef-
fectively enhance a framework’s implementation with the

encoding of a DSML, which can be directly used to gen-
erate framework-based applications without the need of de-
veloping any additional artifact. This can be achieved by
means of a generic language workbench, which extracts
meta-models from DSM layers and it is capable of process-
ing instances of those meta-models for generating applica-
tion code. In addition, we propose a mechanism for realiz-
ing open variation points [9] based on integrating manual
code with code generated from models, given the impor-
tance of this issue to DSM-based development.

Comparing to the state-of-the-practice, the approach pre-
sented in this paper represents a major strategic differ-
ence, given that we propose frameworks to have a “built-
in” DSML. Our approach helps to alleviate the problems
related to the development and evolution of tool support
for DSM. The approach was successfully applied with the
Eclipse RCP framework [12] — an industry-strength frame-
work. The proposed language workbench was implemented
in an Eclipse-based [7] tool named ALFAMA [17]. The tool
supports DSM layers written in AspectJ and defines meta-
models in EMF (Eclipse Modeling Framework) [7].

The paper proceeds as follows. Section 2 presents an
overview of our approach. Section 3 addresses the develop-
ment of the DSM layer. Section 4 presents the ALFAMA
tool. Section 5 compares the proposed approach with con-
ventional tool support for DSM. Section 6 describes the
case study on Eclipse RCP. Section 7 discusses related
work, and Section 8 concludes the paper.

2 Approach Overview

This section presents an overview of our approach (Fig-
ure 2). In contrast with conventional approaches for gener-
ating framework-based applications (as illustrated in Figure
1), domain engineers develop the DSM layer in addition
to the framework, while they are relieved of implement-
ing a code generator and of defining the DSML concepts
separately (i.e. externally to the framework implementa-
tion). Our approach relies on a language workbench that,
on the one hand, extracts DSML definitions from DSM lay-

OO
FrameworkMeta-model

Application

problem domain solution domain

Language
Workbench

generator

extractor DSM
Layer

Application
Model

Figure 2. Proposed DSM solution for generat-
ing framework-based applications.



ers while, on the other hand, it transforms instances of those
models (i.e. application models) into code that is based on
the DSM layer. Application engineers develop application
models described in the DSML, as if they were using con-
ventional DSM tool support. However, the application mod-
els are given as input to the language workbench, instead of
a code generator developed specifically for the DSML. The
language workbench is generic, in a sense that it can be used
for multiple frameworks, as long as the DSM layer is devel-
oped in the supported programming language (e.g. AspectJ
for Java frameworks) and according to certain rules.

The goal is that the DSM layer precisely represents a
conceptual model embedded in its modules, using modeling
constructs that are equivalent in terms of expressiveness to
those that can be found in meta-modeling technologies. The
conceptual model is the meta-model that defines the DSML.
Our option was to consider modeling constructs that resem-
ble the ones of EMF [7], which is a Java implementation
of the Meta-Object Facility (MOF) [15] — a standard for
defining modeling languages. Although with small differ-
ences, the meta-models defined in EMF can be considered
to have equivalent expressiveness to those that can be de-
fined using the commercial tools such as MetaEdit+ [13]
and Microsoft DSL Tools [8].

Representing the DSML in an external format using a
meta-modeling technology has advantages such as the pos-
sibility of easy integration with other tools that need to
access the models, or the standard serialization of meta-
models and models.

The definition of a concrete syntax for the DSML is out
of the scope of this paper. Concrete syntax is an orthogonal
issue, which can be handled independently in addition to the
abstract syntax and it does not interfere with the problem of
realizing the code generation.

3 DSM Layer

This section addresses the DSM layer. This layer is
framework specific and developed by domain engineers. It
embodies a DSML definition and, at the same time, the in-
formation required for building framework-based applica-
tions, given their models expressed in the DSML.

A DSM layer is composed by a set of DSM modules.
Each DSM module is associated with a DSML concept and
can be either a class or an aspect, with annotations.

In the rest of this section, we proceed as follows. Sub-
section 3.1 presents the conceptual model in which the no-
tion of DSM layer is based, namely the modeling constructs
that can be represented in a DSM layer. Subsection 3.2 in-
troduces the concepts of an example framework fragment.
These concepts are used in the running example through-
out Subsection 3.3, which addresses the implementation of
DSM modules.

3.1 Modeling constructs

The modeling constructs that can be represented in the
DSM layer are given in the conceptual model of Figure
3. Most of them are fairly equivalent to those that can be
found in meta-modeling and associated technologies, such
as EMF.

A concept is identified by a name and may have several
attributes, which have a primitive type and are also iden-
tified by name. A concept may define relationships with
other concepts, which can be either composite associations
or directed associations. Relationships have an associated
multiplicity for restricting the number of associations be-
tween concepts. A concept may be a specialization of a
super concept, inheriting its attributes and relationships. A
concept may be abstract, implying that it cannot be instanti-
ated. In addition to these conventional conceptual modeling
constructs, there are two special kinds of concepts related
with the integration of manual code and generated code. An
open concept is a concept that represents an open variation
point, where application-specific code can be added. An
accessible concept is a concept whose instances may be ac-
cessed by instances of open concepts, enabling manually
given code to access generated code.

name 
Concept

Open
Concept

0..1
super

targetname 
primitive type

Attribute * multiplicity

<<abstract>>
Relationship

Composite
Association

Directed
Association

*
1

Accessible
Concept

Abstract
Concept

* access

Figure 3. Modeling constructs in DSM layers.

3.2 Example Framework

This subsection presents an example framework for the
purpose of explaining how to develop the DSM layer. As a
case study, we applied our approach to an existing frame-
work: the Eclipse RCP framework [12], which can be used
for building stand-alone applications based on Eclipse’s dy-
namic plug-in model and UI facilities. This case study is
discussed in detail in Section 6. Through the rest of the pa-
per, we shall use just a small simplified fragment of it as a
running example.

The DSML concepts for the example framework frag-
ment can be defined through the meta-model given as a class
diagram in the left-hand part of Figure 4. Each class repre-
sents a concept. An RCP application has initial window
size given by width and height. It may contain several ac-



width
height

RCPApplication

<<accesible>>
Table

<<abstract>>
Action

*

*

action()

<<open>>
OpenAction

name
Menu

ExitAction

1

MenuAction
*

:Menu
name="M1"

:RCPApplication
width=400
height=200

:OpenAction :ExitAction

:MenuAction

:Table

...*

...

Figure 4. Example framework: Meta-model
(left) and application model (right).

tions (abstract concept) and several menus. These two con-
tainment relations are examples of composite associations.
The specific behaviour of an action can be defined in terms
of the operation action(). An open action is an open con-
cept where the action behavior con be given manually. Exit
action is a framework-provided action for quiting the appli-
cation, which can be used by the application engineers as-
is. The two latter cases are examples of concept inheritance.
A menu has a name and may contain menu actions which
contain references to the application’s actions. This is an
example of a directed association. An application may con-
tain tables indirectly from other child concepts (not shown).
A table can be accessed by open concepts, and thus, it is an
accessible concept. On the right-hand side of Figure 4 we
can see an object diagram representing an instance of the
meta-model (i.e. an application model).

Both the meta-model and the application model are used
throughout the next subsection. The former is what is rep-
resented in the DSM layer, while the latter is used for ex-
emplifying the code generation.

3.3 DSM modules

This subsection explains how the DSM modules can be
realized in terms of specialization aspects [18]. In what fol-
lows, each modeling construct is illustrated with an example
presented in a figure with three parts:

• The upper part shows the code of a DSM module, writ-
ten in Java/AspectJ, plus annotations. The code ex-
amples omit irrelevant details, and detailed issues con-
cerning AspectJ’s primitives are explained only briefly.

• The middle part presents, on the left-hand side, the
meta-model fragment that the modules are encoding
and which is extracted by the language workbench.
The right-hand side shows a fragment of an applica-
tion model (instance of the meta-model fragment on
the left). The elements drawn with a dashed line are
elements that were introduced previously and which
are involved in the example.

• The bottom part shows the application code that, for
the given application model fragment, is generated by
the language workbench (hence, not meant to be given
manually).

3.3.1 Concepts and attributes

Each module of the DSM layer is associated with a single
application concept, and we assume the module name to be
the concept name. A concept is explicitly declared using
the annotation @Concept. The concept’s attributes can be
declared by annotating a constructor of the module with the
annotation @Attributes.

The main class of an application has to implement the
framework interface IApplication, which has a method for
plugging the menus and another one for plugging the ac-
tions. Figure 5 presents the DSM module that handles the
concept RCP application. The methods are intended to be
empty and non-overridable, since they are going to be ad-
vised by other modules (aspects). As the names suggest,
their role is to allow the customization of menus and ac-
tions, respectively.

@Concept
abstract class RCPApplicat ion implements I A p p l i c a t i o n {

@Att r ibutes
RCPAppl icat ion ( i n t width , i n t he igh t ) {

/∗ . . . ∗ /
}

f i n a l void f i l lMenuBar ( IMenuManager menuBar ) { }

f i n a l void makeActions ( IBarAdv isor barAdvisor ) { }

/∗ . . . ∗ /
}

width
height

RCPApplication
:RCPApplication
width=400
height=200

class App extends RCPAppl icat ion {
App ( ) {

super (400 , 200) ;
}

}

Figure 5. Concepts and attributes.



3.3.2 Composite associations

Concepts may have composite associations with other con-
cepts. A composite association is defined by annotating an
abstract pointcut with @PartOf, with the parameters con-
cept and mult for defining the parent concept and the asso-
ciation multiplicity, respectively.

Figure 6 presents the DSM module that handles the con-
cept menu. A menu is part of an RCP application and can
be included by defining the pointcut application() on an ex-
tension of RCPApplication (previous module). The multi-
plicity defines that each application can have several menus.
The advice introduces the necessary behavior for plugging
the menu in the application.

@Concept
abstract aspect Menu {

@Att r ibutes
Menu( S t r i n g name) {

/∗ . . . ∗ /
}

@PartOf ( concept= ” RCPApplicat ion ” , mul t= ”∗ ” )
abstract pointcut a p p l i c a t i o n ( ) ;

a f te r ( IMenuManager menuBar ) : args ( menuBar ) &&
within ( RCPApplicat ion +) && a p p l i c a t i o n ( ) &&
execution ( void f i l lMenuBar ( IMenuManager ) ) {
menuBar . add ( createMenu ( ) ) ;
}

/∗ . . . ∗ /
}

width
height

RCPApplication
* name

Menu

:RCPApplication
width=400
height=200

:Menu
name="M1"

application()

aspect Menu1OnApp extends Menu {
Menu1OnApp ( ) {

super ( ”M1” ) ;
}
pointcut a p p l i c a t i o n ( ) : target (App ) ;
}

Figure 6. Composite associations.

3.3.3 Abstract concepts

A concept may be declared to be abstract, meaning that it
cannot be instantiated. The purpose of having an abstract
concept is to have other concepts that inherit from it, reusing
its functionality. A DSM module representing an abstract
concept is annotated with @AbstractConcept.

Figure 7 presents the DSM module that handles the con-
cept action (Action). It is similar to the previous exam-
ple. However, it has an abstract method that its extensions
should define. The figure also presents the DSM module for
handling the concept exit action (ExitAction), which inher-

its from Action, overriding createAction() and leaving the
inherited abstract pointcut application() undefined.

@AbstractConcept
abstract aspect Act ion {
@PartOf ( concept= ” RCPApplicat ion ” , mul t= ”∗ ” )
abstract pointcut a p p l i c a t i o n ( ) ;

a f te r ( IBarAdv isor barAdvisor ) : args ( barAdvisor ) &&
within ( RCPApplicat ion +) && a p p l i c a t i o n ( ) &&
execution ( void makeActions ( IBarAdv isor ) ) {

I A c t i o n ac t i on = crea teAc t ion ( ) ;
barAdvisor . r e g i s t e r ( ac t i on ) ;
}

abstract I A c t i o n c rea teAc t ion ( ) ;
}

@Concept
abstract aspect E x i t A c t i o n extends Act ion {

I A c t i o n c rea teAc t ion ( ) {
return Act ionFac tory . QUIT . create ( ) ;
}
}

:RCPApplication
width=400
height=200

:ExitAction

width
height

RCPApplication <<abstract>>
Action*

application() ExitAction

aspect ExitActionOnApp extends E x i t A c t i o n {
pointcut a p p l i c a t i o n ( ) : target (App ) ;

}

Figure 7. Abstract concepts.

3.3.4 Directed associations

A concept may declare a directed association with an-
other concept. This can be done by annotating an abstract
pointcut with @Association, with parameters concept and
mult, as in composite associations.

Figure 8 presents the DSM module that handles the con-
cept menu action. An extension of Action is to be defined
in the pointcut action(). The first advice captures the action
creation and keeps its reference. An extension of Menu is to
be defined in the pointcut menu(), in order to set the menu
which contains the menu action. The second advice adds
the action upon the creation of the menu.

3.3.5 Open and accessible concepts

An open concept represents an open variation point, where
application-specific code can be added in addition to the
generated code. The difference between DSM modules that
represent open concepts and the regular ones is that the for-
mer declare certain methods to be exposed to application



@Concept
abstract aspect MenuAction {

private I A c t i o n ac t i on ;

@Association ( concept= ” Act ion ” , mul t= ” 1 ” )
abstract pointcut ac t i on ( ) ;

a f te r ( ) returning ( I A c t i o n a ) :
within ( Ac t ion +) && ac t i on ( ) &&
execution ( I A c t i o n c rea teAc t ion ( ) ) {

ac t i on = a ;
}

@PartOf ( concept= ”Menu” , mul t= ”∗ ” )
abstract pointcut menu ( ) ;

a f te r ( ) returning ( IMenuManager menu) :
within (Menu+) && menu ( ) &&
execution ( IMenuManager createMenu ( ) ) {
menu . add ( ac t i on ) ;
}

}

<<abstract>>
Action

name
Menu

1

MenuAction*

:ExitAction

:Menu
name="M1"

:MenuAction

menu()

action()

aspect ExitActionOnMenu1 extends MenuAction {
pointcut ac t i on ( ) : target ( ExitActionOnApp ) ;
pointcut menu ( ) : target (Menu1OnApp ) ;

}

Figure 8. Directed associations.

engineers. An open concept can be declared by annotating a
module with @OpenConcept, while its open methods are
annotated with @OpenMethod. An accessible concept is
a concept whose instances may expose an object that can be
accessed by open concepts. An accessible concept can be
declared by annotating a module with @AccessibleMod-
ule, and the accessible object can be defined by annotating
a method with @AccessibleObject. This implies that the
object returned from that method is the accessible object.

Figure 9 presents a DSM module for handling the open
concept open action (OpenAction), as an extension of Ac-
tion. The method action(), which defines the action be-
havior, is declared as being open. The figure also presents
a DSM module for handling the accessible concept table.
When generating the code from an instance of an open con-
cept, two modules are obtained. One module is hidden from
application engineers (AppAction Adapter) and contains
code that can be generated from the model, while the other
module is exposed to application engineers (AppAction)
and contains the open methods. If the open concept ac-
cesses an accessible concept, the hidden module also con-
tains code that sets a variable in the exposed module to point

@OpenConcept
abstract aspect OpenAction extends Act ion {
@OpenMethod
abstract void ac t i on ( ) ;

I A c t i o n c rea teAc t ion ( ) {
return new I A c t i o n ( ) {

public void run ( ) {
ac t i on ( ) ;
}
} ;
}
}

@AccessibleConcept
abstract aspect Table {

/∗ . . . ∗ /

@AccessibleObject
TableViewer createTable ( ) {

return new TableViewer ( ) ;
}
}

<<abstract>>
Action

action()

<<open>
OpenAction

:Table<<accesses>>

:RCPApplication
width=400
height=200

:OpenAction

<<accesible>>
Table

width
height

RCPApplication

*
...

aspect Tab1 extends Table {
/∗ . . . ∗ /

}

abstract aspect AppAct ion Adapter extends OpenAction {
pointcut a p p l i c a t i o n ( ) : target (App ) ;

a f te r ( ) returning ( TableViewer o ) :
execution ( TableViewer createTable ( ) ) && target ( Tab1 ) {

AppAction . t ab l e = o ;
}

}

aspect AppAction extends AppAct ion Adapter {
/∗ a u t o m a t i c ∗ /
s t a t i c TableViewer t ab l e ;

void ac t i on ( ) {
t ab l e . add ( ”some en t ry ” )
}
}

Figure 9. Open and accessible concepts.

at the accessible object. In the example, the open action de-
fines a special association for accessing the table, causing
the exposed module to have a variable for accessing the ac-
cessible object. In this way, application engineers have a
clean mechanism for enabling the manual code to access ob-
jects that were instantiated within the generated code, with-
out the need of touching or understanding the latter.



Application engineering

Domain engineering

Figure 10. ALFAMA tool: domain engineering and application engineering perspectives.

4 ALFAMA Tool

We implemented the proposed language workbench in a
tool that we refer to as ALFAMA2 [17]. The tool realizes
the tool support for DSM outlined in Section 2, assuming
DSM layers developed according to what is presented in
Section 3. The tool was implemented as a set of Eclipse
[7] plugins. The development of the DSM layer relies on a
small subset of AspectJ’s primitives, and Java 5 annotations.
The DSMLs are extracted from the DSM layer into in EMF
[7] models (i.e. meta-models). Optionally, GMF [7] can be
used independently for developing a concrete syntax for the
DSML.

Figure 10 illustrates the ALFAMA development environ-
ment. The domain engineering perspective is shown on the
left-hand side. We can see a package of DSM modules and
the extracted meta-model that is represented in the DSM
layer. The diagram is a visualization of the DSML concepts.
The darker elements are abstract concepts. On the bottom
part we can see the module Action of the DSM layer being
edited. The application engineering perspective is shown on
the right-hand side of the figure. On the upper part we can

2ALFAMA: Automatic DSLs for using Frameworks by combining
Aspect-oriented and Meta-modeling Approaches.

see an application model, which is an instance of the meta-
model shown on the domain engineering perspective. The
application model is being edited in Eclipse’s default EMF
tree view editor. The icons are shown in the editor due to a
light-weight mechanism for concrete syntax, which consists
of associating one icon with each concept. In the middle it
is shown the source code associated with an instance of the
open concept OpenAction. On the bottom part we can see
a property sheet for editing the concept’s attributes. In this
example, the open module is the only piece of code that the
application engineer has to manipulate, while all the rest is
generated and it is not meant to be either touched or under-
stood.

5 Comparison with conventional DSM

In this section we present the advantages and disadvan-
tages of our approach when comparing with conventional
DSM tool support.

5.1 Advantages

Reduces complexity and improves understandability. A
code generator is a program that generates another program.



In non-trivial cases, this “indirection” is a source of com-
plexity that may cause a burden for domain engineers. The
most structured and intuitive approach to the development
of code generators is to use code templates. Still, the im-
plementation of the code generator can easily become com-
plex, for instance, when parts of generated code that result
from different model elements are interleaved in common
modules and/or have to share instance variables. In our ap-
proach, the DSML is encoded in the DSM layer, using a
relatively small set of mechanisms based on advices that
either complete hook methods or compose objects. As il-
lustrated in the examples of Section 3, the same aspect-
oriented mechanisms are used repeatedly. The adoption of
abstract concepts (e.g. Action in subsection 3.3.3) in the
DSM layer allows to add increments in the DSML without
difficulty and at a very low cost. Consider for instance the
extensions of Action. One could add another action just
by coding a simple extension, without the need of under-
standing anything about how the actions are plugged in the
framework. The DSML can thus be augmented at these
points even by developers that do not master the framework.
Just by adding the small module, the new feature becomes
ready to be used in the DSML.

Ensures consistency. When using conventional ap-
proaches, the consistency between the framework, the mod-
eling language, and the code generator, can be easily bro-
ken. A code generator produces text, which is code that in-
stantiates the framework. This code is not checked against
compilation until the generator is tested with sample inputs.
This brings consistency problems, since a change in the
framework may introduce unnoticeable errors in the code
that is produced by a not up-to-date generator. Consider
the hook method fillMenuBar(..) of Application of the ex-
ample framework. If, for instance, this method changes its
signature, a code generator programmed for overriding the
former version of the hook method would not manifest its
inconsistency with respect to the framework. The incon-
sistency would only be noticed when generating code from
an application model that involves the hook method. More
concretely, the error would be noticed during the compila-
tion of the generated code. In contrast, in our approach, if a
module defines an advice that is acting over a non-existent
method, one gets a compile-time warning that informs that
the module is broken. Nevertheless, compilation errors also
occur if the body of an advice is using inexistent framework
elements.

Promotes composability and contributes to low change
impact. In general, code generators are not implemented in
cohesive and composable modules. This implies that adding
increments to the generator involves modifications in ex-
isting generator modules. For instance, recall the example
given in Section 3, and suppose that there is no support in
the DSML for including actions in a menu. In the case of

having a conventional code generator, the support for gen-
erating code for including the actions would require modifi-
cations in the generator part that handles the instances of the
meta-class Menu. Namely, code that processes composite
instances of the meta-class MenuItem, in order to generate
the code that plugs the actions. In our approach, a module
encapsulates the concept (as in Subsection 3.3.4), consisting
of a non-invasive increment to the DSM layer. Moreover,
DSM modules can be composed to form different variants
of the DSML. One can make combinations of modules and
obtain different DSMLs without needing to understand any
internals of these modules.

5.2 Disadvantages

Without a supporting methodology, a domain engineer
may take some time to master the development of DSM
modules, due to their different design style. However, the
use of aspects to manage variability has been applied suc-
cessfully in another approach [10], reinforcing our belief
that aspects are useful when combined with frameworks.
Despite the learning issues, the main disadvantage of our
approach is related with flexibility, which we detail next.

Uniform representation of modeling constructs. The
mechanisms to represent the meta-model elements in the
DSM layer are not very flexible. Each modeling construct
has a single way of being represented. For instance, a meta-
class (i.e. concept) must be represented in a module and the
attributes must be represented in a constructor of that mod-
ule. Although different ways to represent a same model-
ing construct could be contemplated, we found no practical
significance in doing so, and simplicity would be compro-
mised. Perhaps when trying the approach on more frame-
works, if DSM modules are found “inelegant”, this option
could be revised. In conventional DSM approaches, meta-
classes, attributes, etc, can be mapped freely, in a sense that
it is up to domain engineers to decide how to map modeling
elements to implementation elements. Therefore, the au-
tomation gains of our approach compromise flexibility to a
certain extent.

Generation of other artifacts. Some frameworks require
that applications have to provide descriptors (e.g. in XML)
in addition to code. The information contained in those de-
scriptors can also be represented in the DSML. Currently,
our approach does not address the mapping of DSML con-
cepts to different artifacts other than the framework instan-
tiation code. However, given that the DSML is defined in-
dependently in a standard format, there is no obstacle in
having a separate generator that processes the same applica-
tions models with the purpose of generating other artifacts.



6 Case Study

The proposed approach for developing the DSM layer
went through an iterative process where its applicability
was checked against two frameworks, JHotDraw [19] and
Eclipse RCP [12]. This section focuses on the latter,
which is definitely more complex and can be considered an
industrial-strength framework. Eclipse RCP is a framework
for building stand-alone applications based on Eclipse’s dy-
namic plug-in model and UI facilities, such as menus, ac-
tion bars, listeners, tree views, table views and controls (e.g.
buttons, labels, etc).

We developed an independent DSM layer for Eclipse
RCP, without modifying or inspecting its implementation
internally (i.e. only the interfaces had to be known). Figure
10 shows a subset of the DSM modules that were devel-
oped, within a project that imports the required libraries for
an RCP-based application. We were able to handle the main
application concepts, and fully executable code could be
successfully generated from the application modules. Al-
though we only present a few illustrative framework con-
cepts, the case study was more extensive, where the DSML
had a total number of concepts that was more than the dou-
ble of the concepts presented here.

Programming in AspectJ is effectively programming in
Java plus aspects. In order to give an idea of the size of
a DSM layer, Table 1 shows the number of lines of code
(LOC) of Java and AspectJ of the modules associated with
Eclipse RCP concepts, covering those that are visible in
the meta-model of Figure 10. Concepts that inherit from
other concepts are represented nested under the super con-
cept. Recall that the whole tool support for DSM cover-
ing these concepts relies solely on the DSM modules. The
AspectJ primitives that were necessary to implement these
modules were not in any case more complex than the ones
used throughout Subsection 3.3. From the data in the table,
we can see that about one fifth of the code uses to AspectJ
primitives, while the rest is regular Java. Notice that there
are concepts (mostly sub-concepts) that do not use any As-

Table 1. LOC for Eclipse RCP concepts.
Concept J+AspJ Concept J+AspJ
RCPApplication 71+0 GUI Element 5+6
Action 14+7 CompositeEl. 18+6

ExitAction 8+0 ControlEl. 7+0
OpenAction∗ 22+0 Text Box 19+0

ViewPart 24+15 Button 35+0
Perspective 19+7 PushButton 9+0
ViewPlace 22+19 ToggleButton 7+0
MouseAction 12+13 Checkbox 9+0

MouseClick 4+1 ViewerEl. 7+0
MouseRelease 4+1 TableViewer 8+0

TreeViewer 9+0
∗ - open Total Java: 333 Total AspectJ: 75 Total: 408

pectJ primitives (the aspect keyword was not considered
as such). Most of these sub-concepts are as simple as the
ExitAction that is given in Subsection 3.3.3.

Covering the same concepts, and actually using the same
meta-model, we have experienced to develop a (conven-
tional) code generator in Java. Although this code generator
was slightly bigger in terms of LOC (approximately 10%),
we consider the difference between the sizes not significant.
However, it is worth to emphasize that the DSM layer is
easier to build and evolve, due to the reasons pointed out
in Section 5. Moreover, the DSM layer also embodies the
meta-model definition, which in the conventional approach
is defined separately.

Eclipse RCP by itself cannot be considered a product-
line. However, it is definitely a platform which product-
lines can be built on top of. Typically, a product-line would
have a narrower scope, with its own actions, view parts, and
perspectives, which could be combined to obtain different
products. Therefore, we consider this case study as relevant
in the context of product-lines.

7 Related Work

Approaches based on feature-oriented programming
(FOP), such as AHEAD [3], CaesarJ [14], or aspectual-
mixin layers (AML) [2], propose systems to be constructed
using high-cohesive feature modules, enabling different
systems to be obtained by defining a feature configuration.
If we consider a feature model to be a DSML, variants of
these systems can also be generated in a straightforward
way from a valid configuration of the feature model. Our
approach is different in the sense that the conceptual mod-
els that can be represented in the DSM layer are more ex-
pressive when comparing to the feature model that a sys-
tem built using FOP can represent. The variants of a sys-
tem built using FOP are a set of pre-planned applications
within a finite configuration space, while frameworks usu-
ally support the development of an infinite set of applica-
tions by composing both default and application-specific
components (e.g. Eclipse RCP). Issues regarding the ex-
pressiveness of DSMLs are discussed in more detail in [5].

The work in [11] presents a generative technique where
code that specializes abstract aspects is generated from fea-
ture model instances. The fact that abstract aspects are be-
ing specialized by code generation is common to our ap-
proach, but the way to develop these aspects is consider-
ably different, and both the concepts (feature model) and the
mappings are defined manually. The issue that was raised
regarding the expressiveness of feature models applies to
this approach, too.

In [1], the authors present the idea of having a
Framework-Specific Modeling Languages (FSMLs) with
support for round-trip engineering. As well as in our ap-



proach, code generators do not have to be developed. The
FSMLs are defined manually in the form of feature mod-
els, and code generation relies on embedding mappings to
the framework elements in the FSML concepts. The use of
a FSML supports a development paradigm where an appli-
cation is obtained by generating code that is meant to be
completed manually (if needed). Our approach does not in-
tend to support round-trip engineering. Instead, our option
was to have a clear separation between generated and man-
ually written code, where the former is not intended to be
manipulated or understood in any case, following the DSM
philosophy of raising the abstraction level by complexity
hiding.

MetaEdit+ [13] and Microsoft DSL Tools [8] are two
examples of commercial language workbenches for devel-
oping conventional tool support for DSM. In contrast to
these approaches, ours encodes the DSML as part of the
framework. Domain engineers are not required to master
meta-modeling nor code generation technologies, but in-
stead, they have to use aspect-oriented programming. Due
to the reasons pointed out in 5.2, these approaches, as well
as FSMLs, are more flexible in what concerns the mapping
and what is generated from the models (e.g. XML files).
While our approach is less flexible, there are automation
gains and tool support for DSM relies only on the frame-
work implementation.

8 Conclusion

In this paper we presented an approach for enhancing
an object-oriented framework with a DSM layer based on
aspect-oriented programming, encoding DSMLs for gen-
erating framework-based applications. We implemented a
prototype tool and we performed a case study on the Eclipse
RCP framework. Our approach is suitable for product-lines
implemented as object-oriented frameworks. A DSM ap-
proach based on what we propose allows the DSM tool
support to be automatically up-to-date with a product-line
platform, at the cost of having the additional DSM layer.
After carrying out the research presented in this paper, we
strongly believe that it is possible to realize DSM solutions
that rely solely on the framework implementation. Adopt-
ing such an approach is well motivated by the difficulty of
developing and maintaining code generators, the iterative
nature of framework-based development, the unavoidable
framework evolution, and obviously, the benefits of build-
ing applications using a DSML.

9 Acknowledgements

We would like to thank Juha-Pekka Tolvanen, Tommi
Mikkonen, and anonymous reviewers for their valuable
comments on earlier versions of this paper.

References

[1] M. Antkiewicz and K. Czarnecki. Framework-specific mod-
eling languages with round-trip engineering. In MoDELS,
2006.

[2] S. Apel, T. Leich, and G. Saake. Aspectual mixin layers:
aspects and features in concert. In ICSE ’06: Proceedings of
the 28th international conference on software engineering,
2006.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-
wise refinement. In ICSE ’03: Proceedings of the 25th In-
ternational Conference on Software Engineering, 2003.

[4] J. Bosch. Design and use of software architectures:
adopting and evolving a product-line approach. ACM
Press/Addison-Wesley Publishing Co., 2000.

[5] K. Czarnecki. Overview of generative software develop-
ment. In UPP, 2004.

[6] DSM Forum. Workshops on
domain-specific modeling, 2001-2006.
http://www.dsmforum.org/DSMworkshops.html, 2007.

[7] Eclipse Foundation. Eclipse platform and projects.
http://www.eclipse.org/projects, 2007.

[8] J. Greenfield and K. Short. Software Factories: Assembling
Applications with Patterns, Frameworks, Models and Tools.
John Wiley and Sons, 2005.

[9] J. V. Gurp, J. Bosch, and M. Svahnberg. On the notion
of variability in software product lines. In Proceedings of
the Working IEEE/IFIP Conference on Software Architec-
ture (WICSA’01), 2001.

[10] U. Kulesza, V. Alves, A. F. Garcia, C. J. P. de Lucena, and
P. Borba. Improving extensibility of object-oriented frame-
works with aspect-oriented programming. In ICSR, 2006.

[11] U. Kulesza, C. Lucena, P. S. C. Alencar, and A. Garcia. Cus-
tomizing aspect-oriented variabilities using generative tech-
niques. In SEKE, 2006.

[12] J. McAffer and J.-M. Lemieux. Eclipse Rich Client Plat-
form: Designing, Coding, and Packaging Java(TM) Appli-
cations. Addison-Wesley Professional, 2005.

[13] MetaCase. MetaEdit+ tool. http://www.metacase.com.
[14] M. Mezini and K. Ostermann. Variability management with

feature-oriented programming and aspects. In ACM Con-
ference on Foundations of Software Engineering (FSE-12),
2004.

[15] OMG. Meta Object Facility Specification (MOF) 1.4. OMG,
2002.

[16] D. Roberts and R. E. Johnson. Evolving frameworks: A pat-
tern language for developing object-oriented frameworks. In
Pattern Languages of Program Design 3. Addison Wesley,
1997.

[17] A. L. Santos. Automatic support for model-driven special-
ization of object-oriented frameworks using ALFAMA. In
OOPSLA’07 Demonstrations Track, 2007.

[18] A. L. Santos, A. Lopes, and K. Koskimies. Framework spe-
cialization aspects. In AOSD ’07: Proceedings of the 6th
International Conference on Aspect-Oriented Software De-
velopment, 2007.

[19] SourceForge. JHotDraw framework.
http://www.jhotdraw.org, 2006.


