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Abstract—Assisting patients to perform activities of daily
living (ADLs) is a challenging task for both human and machine.
Hence, developing a computer-based rehabilitation system to
re-train patients to carry out daily activities is an essential
step towards facilitating rehabilitation of stroke patients with
apraxia and action disorganization syndrome (AADS). This paper
presents a real-time hidden Markov model (HMM) based human
activity recognizer, and proposes a technique to reduce the time-
delay occurred during the decoding stage. Results are reported for
complete tea-making trials. In this study, the input features are
recorded using sensors attached to the objects involved in the tea-
making task, plus hand coordinate data captured using KinectTM

sensor. A coaster of sensors, comprising an accelerometer and
three force-sensitive resistors, are packaged in a unit which can be
easily attached to the base of an object. A parallel asynchronous
set of detectors, each responsible for the detection of one sub-goal
in the tea-making task, are used to address challenges arising
from overlaps between human actions. The proposed activity
recognition system with the modified HMM topology provides a
practical solution to the action recognition problem and reduces
the time-delay by 64% with no loss in accuracy.

I. INTRODUCTION

Apraxia and Action Disorganization Syndrome (AADS)
is a broad term that describes a compromised ability to use
objects and gestures in a goal-directed manner in a naturalistic
setting. Most often, AADS is caused by damage to one of
the brain hemispheres caused by CardioVascular Accident
(CVA). A large number of stroke survivors suffer from apraxia
which leads to an impairment of cognitive abilities to complete
activities of daily living (ADLs) [1–3]. These patients often
perform an incorrect sequence of actions, skip steps, or misuse
objects with possible safety implications.

Assisting patients with their routine activities is a challeng-
ing task for both human and machine. Hence, the objective
of the CogWatch project [4–6] is to develop an intelligent
computer-based rehabilitation system to (1) monitor the pa-
tient’s progress through the ADL and (2) provide appropriate
guiding cues for the patient when an error is detected or
anticipated and re-train patients to carry out daily activities.
Designing such system is an essential step towards facilitating
rehabilitation of stroke patients suffering from AADS.

Although the objective of CogWatch is the wider devel-
opment of technology for cognitive rehabilitation of stroke
patients, the focus of the present paper is reducing the delay
occurred during the decoding stage of the proposed action
recognition system, based on HMMs and instrumented objects.
The paper is organized as follows. Section IV-B describes

the task. Section III describes our approach to instrumen-
tation of objects. Section IV-A describes how features are
extracted from the sensors. Sections IV-C and IV-B describe
the conventional action recognition system, and section IV-D
presents a real-time action recognition system with reduced
time-delay. Section VI presents the experimental results and
analysis. Section VII presents our conclusions.

II. RELATED WORK

ADL can be captured through sensors on the patients or
their environment, or the objects that they interact with [7–14],
but decomposition of an ADL into sub-goals and recognition
of these sub-goals has received less attention. The use of
sensorised objects promotes an “object-centric” view of action
recognition, in which a sub-goal is characterized in terms of
how it is “experienced” by the objects involved. This contrasts
with “scene-oriented” approaches, in which an external video
sensor plus image processing is used to identify and track the
hands and objects during a task, or approaches where sensors
are attached to the body (for example [13,15]). The object-
centred and scene-oriented approaches are both unobtrusive,
since neither requires the user to wear sensors. However, the
scene-oriented approach normally requires careful installation
and calibration of cameras, which may be an issue if the system
is intended to be widely deployed and stand-alone, for example
in an ordinary household kitchen. A popular option for in-
strumentation is to use Radio Frequency Identification (RFID)
tags to identify which objects have been picked up [16,17],
however these do not provide sufficiently rich information and
an antenna bracelet needs to be worn.

III. INSTRUMENTATION AND SENSORS

The initial ADL in CogWatch is “making a cup of tea”.
These sub-goals are recognized from the outputs of sensors
attached to the objects involved, and the location of the hands.
The objects involved in the tea-making task are a kettle, water,
jug, mug, milk jug, spoon and containers for the tea-bags,
sugar and used tea-bags. In the current system only the kettle,
mug and milk jug are instrumented. The sensors and circuitry
are packed into an instrumented ‘coaster’, the ‘CogWatch
Instrumented Coaster (CIC)’, that is fitted to the underside of
the object (figure 1). The CIC contains a 3-axis accelerometer,
3 force sensitive resistors (FSRs), a PIC, a Bluetooth and a
battery. For the kettle, which is ‘cordless’ with a separate base,
the CIC was split into two packages, with the accelerometer
attached to the kettle body and the FSRs attached to the base.
The accelerometer is an Analog Devices ADXL335, providing
acceleration measurements on 3 axes in a range of ±3g.



Fig. 1. A jug fitted with a CogWatch Instrumented Coaster (CIC) and an
‘open’ CIC, showing the accelerometer, PIC, Bluetooth module and battery

Its function is to respond to changes in motion, tilting, and
disturbances of the object due to the addition of materials,
stirring, collisions or (in the kettle) vibration during boiling.
The FSRs can detect whether the object is standing on a surface
of lifted in the air, changes in weight due to the addition
or removal of materials, and more subtle changes in weight
distribution across the base of the object (making it possible,
for example, to detect stirring). The output of an individual
CIC at any time is a six dimensional vector, comprising x, y, z
accelerometer outputs plus the outputs of the three FSRs. The
data from the FSRs attached to the mug show the increase in
weight of the mug as it is filled. The data from the kettle FSRs
identifies the points where the kettle is lifted from and then
returned to the table. In addition to outputs from CICs, the
system uses hand-coordinate data captured using Kinect [18],
using software based on the ‘Kinect-Arms’ libraries [19].

IV. PROPOSED SYSTEM

In this section we describe an HMM based action recogni-
tion system. Furthermore, we present an approach that reduces
the delay occurred during the conventional decoding approach
presented in our previous work [20].

A. Feature Extraction

The raw data (comprising hand coordinates from Kinect,
and FSR and accelerometer data from the three CICs) are
streamed to the system and synchronized at 50Hz. Each sub-
goal is characterized by a different combination of raw sensor
data and features extracted from the raw sensor data. For
example, detection of the sub-goal “Pour Kettle” uses the
outputs from the kettle CIC, the FSRs in the CIC attached
to the mug, and hand position. Hand position is given relative
to x and y axes parallel to edges of the table and centered
at the center of the table. A 2D “Gaussian neighborhood”
associated with each object, is used to indicate when the hand
is in the vicinity of that object. The mean and covariances of
the Gaussian neighborhood for an object is calculated using
the location of the hand when it is stationary and interacting
with that object. The hand is assumed to be stationary if the
difference between successive samples is less than 3mm. The
distance that the hand has traveled between times t and t+ 1
is the Euclidean distance:

d(ht, ht+1) =
√
(h1,t+1 − h1,t)2 + (h2,t+1 − h2,t)2.

Here ht = (h1,t, h2,t) is the position of the hand at time t.

A number of features are extracted from the raw data for
AR. For example, to calculate the change in weight of the mug
a low pass filter is used to smooth the data from FSRs in the

CIC attached to the mug, before the derivative is calculated.
Also, the FSR data obtained from the FSRs under the kettle
and in the CIC attached to the milk jug is used to determine
whether or not that object has been picked up. Variance in
the energy of the outputs from the accelerometer attached to
the kettle body, caused by vibration of the kettle during the
process of heating the water, is used to determine whether the
water in the kettle had reached boiling point and hence detect
the sub-goal “Boil Water”. The feature vector yt at time t is
calculated from a window comprising sensor outputs at times
t− 20, ..., t and passed to the recognizer.

B. HMM-Based action recognition

Variations in the sequences of sensor outputs that result
from individual differences in the ways that users execute the
task, variations in the way that the same user executes the same
task on different occasions, or sensor noise are captured using
a statistical model (a sub-goal HMM (for example, [21])). The
partially-ordered structure of the sub-goal lattice, in which sub-
goals occur in overlapping time, or even at the same time, is
accommodated using a parallel set of asynchronous HMM-
based detectors, each responsible for detecting a specific sub-
goal. The proposed system provides assistance for four types
of tea-making “black tea”, “black tea with sugar”, “tea with
milk” and “tea with milk and sugar”. Using task analysis [22],
each variant is decomposed into a hierarchy of sub-goals. The
list of tea-making sub-goals can be summarized as following.
Here, 7 sub-goals, a common error (9), and a potential hazard
(10) are identified.

1) “Fill kettle” (using water from a pre-filled jug)
2) “Pour kettle” (i.e. pour boiling water into the mug)
3) “Add tea-bag”
4) “Add sugar”
5) “Add milk”
6) “Remove tea-bag”
7) “Stir”
8) “Toy milk” (pour milk outside the mug)
9) “Toy kettle” (pour boiled water outside the mug)

It is not a prescription for a linear sequence. The execution
of sub-goals may overlap, so that one sub-goal begins before
another is complete (for example, if both hands are used “Add
tea-bag” could start during “Pour kettle”). Even when the sub-
goals do occur in sequence the order may vary.

HMMs are a generic framework for statistical sequential
pattern processing, but they have received most attention in
the area of automatic speech recognition (ASR) (for example,
see [23–26]). The key process in a typical HMM-based ASR
system is a Viterbi decoder [23]. Given a sequence of feature
vectors y = y1, ..., yT the Viterbi decoder finds the sequence
of HMMs M = M1, ...,MN such that an approximation
to the probability p(M |y) is maximized. Since y is fixed,
from Bayes’ rule this is equivalent to finding M such that
p(y|M)P (M) is maximised. The probability P (M) is based
on a language model which defines the probability of any given
sequence of words. In speech recognition, the language model
and the individual HMMs are compiled into a single network
and the most probable path through this network is found using
Viterbi decoding. However, in ASR words occur one-after-
another, whereas in AR actions can occur in overlapping time,
so that the natural structure is a partially-ordered lattice rather



than a sequence. Overlap may occur, for example, if the subject
uses both hands, or executes one or more sub-goals while the
kettle is boiling. Therefore a conventional ASR decoder, which
will compute the most probable sequence of actions given the
data, is not appropriate for AR.

Our AR system consists of 5 independent real-time HMM-
based detectors which together are capable of identifying
occurrences of the 7 sub-goals of tea-making at any time
during completion of the tea-making task. These detectors run
in parallel and are completely separate from each other. Each
detector takes as input those parts of the feature vector that
are useful for detecting its sub-goal(s). A detector consists
of one or more multiple state HMMs, each representing a
unique sub-goal, and these HMM states are associated with
Gaussian mixture models (GMMs). In addition, the detector
includes a single state “background” (or “toying”) HMM,
whose state is associated with a multiple-component GMM.
The five detectors are as follows:

The “Front actions” detector consists of three “sub-goal”
models (corresponding to “Add sugar”, “Add tea-bag” and
“Remove tea-bag”) and a background “toying” model. This
detector is primarily influenced by the Gaussian neighborhood
features for the mug, tea-bag container, sugar container and
used tea-bag container, which are calculated from Kinect, and
the outputs of the FSRs in the CICs under the mug.

The “Pour kettle’ and “Add milk” detectors each consist
of a single sub-goal model (for “Pour water” or “Add milk”)
and a “toying” model which corresponds to picking up the
kettle or milk jug but not pouring water or milk into the mug.
These detectors exploit the accelerometer and FSR outputs of
the CICs attached to the kettle or milk jug, to indicate that
this object has been picked up, moved, tilted, moved and put
down, and the synchronized FSRs in the CIC attached to the
mug to detect that at the time that the first object is tilted the
mug begins to get heavier.

The “Fill kettle” detector has a single sub-goal HMM for
“Fill kettle” and a “toying” model. The inputs to this detector
are Gaussian neighborhood values associated with the jug and
kettle and the outputs of the CIC under the kettle to detect
movement and an increase in weight.

The “Stir” detector has a single sub-goal HMM for “Stir”
and a “toying” model. The inputs to this detector are Gaussian
neighborhood values associated with the mug and the outputs
of the CIC under the mug to detect movement.

C. Real-time Viterbi decoder

An identical implementation of the Viterbi algorithm (for
example see [23]) runs independently in each decoder. Briefly,
each detector works as follows: At each time t the detector
receives a new feature vector, yt. For each state i of each of its
HMMs, a quantity αt(i) is calculated which can be thought of
as an approximation to the probability of the best explanation
of data y1, ..., yt up to and including yt ending in state i at
time t. Intuitively, if the detector is for “Add milk” and the ith
state corresponds to tipping the jug, then αt(i) can be thought
of as the probability of the best explanation of data up to time
t culminating in the tipping action at t. Formally αt(i) is given

by the recursion:

αt(i) = maxjαt−1(j)aj,ibi(yt) (1)
ρt(i) = argmaxjρt−1(j)aj,ibi(yt) (2)

where aj,i is the probability of a transition from state j to state
i and bi(yt) is the probability of the sensor data yt given state
i. Note that the ‘preceding’ state j can be in the same HMM
as state i, or, if i is an initial state, j can be the final state
of another HMM in the detector. ρt(i) provides a record from
which the best explanation of the data up to time t in state i
can be recovered.

In the “conventional” implementation of Viterbi decoding
described above, the best explanation of the data is not
recovered until the final time T . However, in a “real-time”
implementation there is no final time. The memory required
to store the ρt(i)s and αt(i)s will increase and no output
will be produced. The solution is to use a technique called
‘partial traceback’ [27]. Each detector’s output up to a time s
is generated as soon as its classification of the data up to that
point is unambiguous, in the sense that all of the ρt(i)s can
be traced-back to a common state at time s in the past. The
memory used to store alternative explanations of the data up to
s is then freed. In this way the decoders can run indefinitely.
If the convergence point s is significantly less than t then
there will be a delay in the output of the decoder. Therefore,
care is needed in the construction of the HMMs to avoid the
ambiguity that will cause this to happen. Whenever a sub-goal
HMM provides the most probably explanation of a section of
input, a label indicating that sub-goal is output. Otherwise the
best explanation of the data is “toying” and nothing is output.

D. Modified HMMs for real-time Viterbi time-delay reduction

The main source of the delay in real-time Viterbi decoding
for our AR task is the inevitable similarity between the end
states of a sub-goal model and “toying” action caused during
the iteration of embedded training where parameters of HMMs
are optimized based on the alignment of the training data with
the model’s states. The modification is achieved by deleting
the self-loop transition for states similar to background data
(toying), to prohibit the model from staying too long in these
states (Figure 2). Consequently the recognition path in the
Viterbi algorithm will exit the sub-goal model as soon as it
reaches the final stage of the sub-goal. After applying changes
into the state transition matrix of the sub-goal models, full-trial
recordings are decoded using the real-time Viterbi algorithm
and modified HMMs, to make sure the spotting performance
of the system is maintained after modification.

Fig. 2. Sub-goal left-to-right HMM topology (a) before and (b) after the
modification. Here, Si represents i-th state.



V. DATA COLLECTION

Recordings were gathered from 38 participants, aged be-
tween 18 and 80, completed multiple individual sub-goals and
full tea-making trials. In all cases synchronized CIC and Kinect
outputs were recorded. In the full trial recordings, subjects
were asked to make 4 different types of tea as described in
section IV-B. In total, there are 1,124 recordings of isolated
actions (4.01 hours) and 70 recordings of complete tea-making
sessions (1.6 hours) (Table I).

TABLE I. Data used in AR development. Durations are in hours.

Sub-goal Trials Dur. Sub-goal Trials Dur.

Pour kettle 148 0.50 Stir 138 0.56
Add milk 69 0.22 Toy with kettle 26 0.07
Add sugar 220 0.40 Boil water 125 0.22
Add teabag 237 0.44 Toy with milk 30 0.11
Fill kettle 180 0.73

Remove teabag 168 0.41 Full trial 70 1.6

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section we describe the experiment results for full
trial experiments (Table II) and report the time-delay reduction
after using the modified HMMs for real-time Viterbi decoder
for detection of sub-goals in full-trials (Table III) .

During the full trial experiments, all of the isolated sub-goal
recordings were used for model training. The number of states
in the sub-goal HMMs , N (5 ≤ N ≤ 60), and the number of
GMM components in the single-state “toying” model, M (1 ≤
M ≤ 512), were determined empirically on the development
data. Each state of the sub-goal HMM was associated with a
single component Gaussian probability density function (PDF).
Best results were achieved by using N = 20, 20, 50 and 70
states for the sub-goal model, and M = 256, 512, 512 and 32
GMM components for the “toying” models for “Front actions”
(“Add sugar”, “Add tea-bag” and “Remove tea-bag”), ‘Add
Milk’, ‘Pour kettle’ and ‘Fill kettle’ detectors, respectively. The
results of the recognition experiments on full trials is shown
in Table II.

TABLE II. Results of full-trial sub-goal detection experiments (Ins =
number of insertions, %Acc. = % Recognition accuracy, %FA = % False

alarms, and %FR = % False rejections).

Sub-goal Samples Correct Ins %Acc. %FA %FR

Pour kettle 53 53 0 100 0 0
Add milk 38 37 1 94.7 2.6 2.6
Add sugar 56 53 3 89.2 5.4 5.4

Remove tea-bag 60 56 6 83.3 10 6.7
Add tea-bag 60 58 5 88.3 8.3 3.3

Fill kettle 66 59 10 74.2 15.2 10.6
Stir 71 62 24 70 34 13

Detection accuracy for full trials is calculated as follows:
A sub-goal occurring in a full trial is considered to have been
correctly detected if and only if the sub-goal is detected by the
corresponding detector and the detected and actual sub-goals
overlap by 75%. If an actual sub-goal does not overlap with
a detected sub-goal by 75% then a deletion (False Rejection
(FR)) has occurred. If a detected sub-goal does not overlap
with an actual sub-goal by 75%, then an insertion (False Alarm
(FA)) has occurred. The % accuracy is given by:

%Acc =
Samples−Deletions− Insertions

Samples
× 100 (3)

As shown in Table II, the best performance is achieved
for the sub-goals “Add milk” and “Pour kettle”. These are the
only sub-goals for which all of the objects that are involved are
fully instrumented (i.e. fitted with a CIC). Recognition of the
sub-goals “Add tea-bag”, “Add sugar” and “Remove tea-bag”
relies mainly on hand coordinate data from Kinect, plus small
perturbations of the outputs from the CIC sensors attached to
the mug caused by the weight-changes or movement due to
adding a sugar cube or tea-bag to the mug, or removing a tea-
bag from the mug. Since “Remove tea-bag” involves putting
the spoon into the mug and moving it to pick up the tea-bag,
the outputs of the mug CIC and the Kinect hand coordinates
will be very similar to those for “Stir”. Hence the insertion of
“Stir” is to be expected. A solution would be to break down the
sub-goals into smaller actions, so that “Stir” and the start of
“Remove tea-Bag” are both characterized by the same model.

Using the modified HMM set (Section IV-D) results in
output time-delay reduction during the real-time decoding
without loss in accuracy. Table III shows the mean and variance
of the output delays among all detections of a sub-goal in
the full-trial recordings, using the real-time Viterbi algorithm.
The detections of sub-goals are repeated using the models
trained in the full-trail experiment and the modified models.
Modification to the HMM-sets reduced the average output
delay of detections for all sub-goals. The maximum 0.16
and minimum 3.74 seconds improvement, was achieved for
detection of the “Remove teabag” and “Pour kettle” sub-
goals, respectively. Also, the modification to HMMs reduced
the average delay-time of outputs from 2.6 seconds to an
acceptable delay of less than one second.

TABLE III. Detection’s output delay for each sub-goal using the
original and modified HMMs

Sub-goal Output Delay Time (ms)

Models Before Fix After Fix

Mean Variance Mean Variance

Pour kettle 4.553 1.836 0.804 0.459
Add milk 2.025 0.939 0.314 0.321
Fill kettle 3.940 3.054 1.695 1.695
Add sugar 2.206 2.474 1.059 0.837
Add teabag 2.663 1.808 0.264 0.435

Remove teabag 0.737 0.784 0.572 0.339
Stir 2.834 1.543 0.986 0.724

Average 2.647 1.543 0.953 0.744

VII. CONCLUSION

This paper presents a real-time HMM-based architecture
for AR and presents a novel time-delay reduction approach
to speed up the decoding phase. The results show that HMMs
combined with instrumented objects provide a viable approach
to action recognition and using the proposed HMM topology
can reduce the time-delay by 64% with no loss in accuracy.
Future work will report the results obtained by the system
using Deep Neural Network models rather than GMMs.
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