
Weaving Behavior into Feature Models for Embedded System Families

T. J. Brown, R.Gawley, R. Bashroush, I. Spence, P. Kilpatrick, C.Gillan
School of Electronics, Electrical Engineering and Computer Science,

The Queen’s University of Belfast.
{tj.brown, r.gawley, r.bashroush, i.spence, p.kilpatrick}@qub.ac.uk

C.Gillan@ecit.qub.ac.uk

Abstract

Product Line software Engineering depends on
capturing the commonality and variability within a
family of products, typically using feature modeling,
and using this information to evolve a generic reference
architecture for the family. For embedded systems,
possible variability in hardware and operating system
platforms is an added complication. The design process
can be facilitated by first exploring the behavior
associated with features. In this paper we outline a bi-
directional feature modeling scheme that supports the
capture of commonality and variability in the platform
environment as well as within the required software.
Additionally, ‘behavior’ associated with features can be
included in the overall model. This is achieved by
integrating the UCM path notation in a way that
exploits UCM’s static and dynamic stubs to capture
behavioral variability and link it to the feature model
structure. The resulting model is a richer source of
information to support the architecture development
process.

1. Introduction

 Over recent years Software Product-line
Engineering methods [1] have emerged as a major
strategy for maximizing reuse when a family of related
software systems is to be fielded. The key idea is to
exploit the commonality within the family of products,
by designing the family as a whole, rather than
developing products on a one-at-a-time basis. A
difficulty of course is that significant variability from
product to product is generally also present, and must be
accommodated. An initial phase involving
commonality-variability analysis is generally required,
and in current practice feature modeling [2] has
emerged as a widely used technique at this stage of the
process. Additionally, the design of a generic reference

architecture for the family as a whole is widely
recognized as a key activity within the process.
 Opportunities for applying product-line methods are
often encountered in the arena of embedded systems,
where the family of systems comprises both hardware
and software. Within such system families,
commonality and variability may arise within both the
software and hardware aspects of products. Moreover,
within such a family it is possible to find some aspects
of a product’s functionality being implemented in
software within some family members, but in hardware
within others. In the construction of feature models for
such families, it can be useful to model both hardware
and software components, and capture the
interrelationships between the features contributed by
both. We have evolved a scheme of feature modeling
targeted at such system families which provides this
capability. It is significantly inspired by earlier
approaches to feature modeling, including FODA [2]
and particularly the FORM [3, 4] feature modeling
process, but it allows bi-directional modeling to capture
the features and feature variability within the operating
platform as well as within the software.
 Feature Modeling is primarily a means of capturing
requirements and exposing variability within the
product line. It has been argued [5] that a basic feature
model does not completely characterize the variability
within a product line. Pohl et al. [6] have introduced the
notion of an orthogonal variability diagram as a way of
resolving the ambiguity they identify in conventional
feature models.
 While unambiguous documentation of variability in
requirements is important, it is highly desirable that the
information assembled within the model should support
the subsequent phases of the domain engineering
process. A key downstream activity in domain
engineering is the development of a generic reference
architecture for the product line. However, there is a
substantial transition involved in going from a feature
model to an architecture. Moreover, while feature
models provide a significant input to the process, our

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

experience is that a feature model of itself contains
insufficient information to support the derivation of a
generic architecture for a product-line. The difficulty is
that some degree of knowledge of the behavioral aspects
of the family is also necessary. This is not provided by
feature modeling in its conventional form. The value of
behavioral information has also been recognized by
others. For example, Mei et al. [7] in their FODM
modeling framework include the concept of behavioral
characteristics for functional features. In the PLUSS
modeling approach [8], broadly similar motives have
prompted Eriksson et al. to combine features with Use
Case models and Use Case realizations.
 In an earlier paper [9] we introduced the concept of
bi-directional feature models and described an outline
methodology for evolving software architectures from
feature models. This approach made significant use of
additional information derived from scenarios designed
to exercise features in a systematic way. Using
scenarios in this way serves to expose aspects of the
behavior associated with individual features. (Some
features may, of course, be intrinsically non-functional.)
This in turn makes it easier to recognize, for example,
features that could be implemented within a single
component, as opposed to features that are inherently
cross-cutting and require an implementation approach
involving several components.
 Experimentation in this area led us to recognize the
potential benefit of having a means of modeling not just
features, but feature behavior: in other words a
mechanism for integrating behavior and behavioral
variability into feature models. For this to work
successfully, it is essential that the behavioral
information be captured in a highly abstract manner,
making no assumptions about any pre-existing software
structure. Feature models normally have optional and
alternative features that serve to capture the feature
variability within the model. Clearly any matching
behavioral notation has to support the synchronized
capture of optional or alternative behavior. In essence,
the feature model structure and the related variability in
behavior need to be woven together within an integrated
modeling framework.
 In the remainder of this paper we describe our
feature and behavioral modeling schema. In Section 2
the basic scheme of bi-directional feature modeling is
described. Section 3 discusses the selection of a suitable
notation for capturing feature behavior and explains the
choice of the UCM path notation. The basic features of
this notation are briefly described, although fuller
details are available in other publications [10, 11, 12,
13], and online via [14]. In section 4 we then describe
how we compose these notations. Section 5 outlines a
general methodology for identifying behavior and its
relationship to features, and section 6 presents a short

case study highlighting some potential benefits of the
combined notation. An important longer term objective
is to evolve an architecture development methodology
for product-line architectures using this kind of model.
This is the subject of active research, but lies outside the
scope of this paper.

2. Bi-Directional Feature Modeling

 The feature modeling scheme proposed herein, and
referred to as Rationalised Feature Modeling, is
intended to provide a framework which can be used for
modeling system families, where individual features and
functionality may be provided wholly in hardware,
wholly in software, or partially in hardware and
partially in software, and where different products
within the family may have different policies of
distributing functionality between hardware and
software. In such a situation it is important that any
feature model should capture the relationships and
interdependencies between the hardware based features
and features or functionality to be provided in software.
 Rationalised Feature Modeling is partially inspired
by the FORM feature modeling process, and
incorporates useful ideas from other feature modeling
schemas. It retains FORM’s idea of layered feature
modeling but separates the operating environment layer
from the other three found within FORM. The operating
environment layer is replaced by an optional platform
layer intended to contain O/S and hardware related
features. The framework allows modeling optionally
from two directions: a top-down feature tree models the
product family’s software, while an inverted feature tree
models the platform layer. If the platform layer is
present then there can be relationships across the
hardware/software boundary, including mutual
dependencies and hardware/software feature
alternatives. These latter relationships indicate product
functionality which may be provided in software on
some products within the family, and as hardware on
others.

2.1. Supported Feature Types

 In common with the basic FODA framework, and
most subsequent notations, Rationalised Feature
Modeling allows features to be mandatory, optional or
alternative. A mandatory feature will be supported by
every product instance that supports it parent. Optional
features are features that may be present or absent from
any product within the family. Alternative feature sets
are sets of features from which only one is selected for
inclusion in any given product. They are thus mutually
exclusive: if one is supported the others cannot be. In
addition, rationalised feature modeling allows the use of

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

OR features [15]. An OR feature set is a set of features
from which one or more may be selected into any
product within the family. At least one must be selected
but there is no exclusivity relationship, and in fact a
product may contain all features within any OR feature
set.

2.2. Hierarchical Feature Relationships

 Two forms of hierarchical relationship between
features are supported. These are the relationships
consists_of and provided_by, and are commonly
supported by other feature modeling schemas. The
consists_of relationship may be used to indicate that a
feature at a certain level consists of one or more lower-
level sub-features. The provided_by relationship
indicates that a feature at one level is provided by other
lower level features. These two relationships serve to
capture the hierarchical structure of the feature tree.

2.3. Feature Dependencies and Constraints

 There are two forms of feature dependency
supported. These are the requires and excludes
dependencies which are also found in the FODA
approach. Requires dependencies arise when the
inclusion of one feature within a product is only
appropriate so long as another required feature is
included as well. Although both features may be
optional or alternative, they must be included or
excluded together. The opposite situation arises when
the inclusion of an optional or alternative feature makes
it necessary to exclude some other feature. This
constitutes an excludes dependency. In the graphical
notation, both forms of dependency are illustrated by
dashed arcs. In the case of a requires dependency the
arc carries a single terminating arrow pointing to the
required feature. In the case of an excludes relationship
the arc carries an arrow at both ends.

2.4. Bi-Directional Feature Modeling

 Perhaps the most radical aspect of the core feature
modeling scheme is its support for bi-directional
models. In this approach a conventional top-down
feature tree models features of the family that are
software based, or have a software component, and an
inverted feature tree models the hardware and operating
system platform. The top-down feature tree follows the
FORM practice of layering the feature tree. A three
layer model is used with a capability feature layer,
which models high level product features, a domain
technology layer and then an implementation feature
layer below.

 The inverted feature tree can hold features arising
from the operating system and / or the hardware
platforms on which the software will operate. There can
be relationships across the boundary between software
and the operating system platform. The first form of
across-boundary relationship is that of mutual
dependency between an optional or alternative software
feature in the upper feature tree and an operating
platform feature. The implication is that the software
feature requires or depends on the availability of the
platform feature. If an optional platform feature is
excluded then the software feature depending on it
cannot be provided. Although this may be a low level
feature, the implications can extend upwards to the
capability feature layer.
 The second across-boundary relationship is that of a
hardware-software feature alternative. In this case we
are dealing with the same feature which may be
provided in software within one member of the family
but in hardware within others. This kind of situation
may arise in practice when the first products within an
intended family are released with a certain feature
provided in software, whereas in later models the
feature migrates to a hardware device such as an ASIC,
FPGA or DSP (we have encountered this phenomenon
with some families of network products). It is worth
noting that any kind of feature may participate in this
relationship. Thus we could have a mandatory feature
which in some products is provided via software and in
others via hardware. Likewise we could have an
optional feature which, within some products, may not
be provided at all, but if it is provided then it may be
provided as either hardware or as software.

2.5. Feature Properties and Property
Relationships

 The concepts of feature properties and property
relationships, which are included in our approach, arise
from original work at Nokia [15]. There are three kinds
of feature property and two different kinds of property
relationship. Possible kinds of property are:

a) Properties which are fixed for a family of
products e.g. screen resolution on a family
of mobile handsets.

b) Family variable properties which are fixed
for any one product within the family, but
may vary from product to product.

c) Variable properties which can change
within one product

 Properties are illustrated in our feature diagrams as
rectangles attached via a broken line to the feature. The
first form of relationship is called an existence_modify

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

relationship, and occurs between a feature and a feature
property. It arises when the inclusion of an optional or
alternative feature modifies the value of a property
attached to another feature. The second form of
relationship is called a value-modify relationship and
occurs between a property of one feature and a property
of another feature. The essence of this relationship is
that changing the value of a property of one feature
causes a change to the value of a property of another
feature.

2.6. Graphical Notation for Rationalised
Feature Modeling

 Some aspects of the graphical notation for
rationalised feature modeling are illustrated below in
Fig. 1. In our prototype graphical editor for the notation,
features are represented initially as dots with colour
coding to indicate the main feature types.

Capability layer

Requires
dependency

Other layers

Platform node

Concept node

Alternative
features

Feature
property

Hardware-
software
alternative Platform features

Property relationship

Fig. 1: Core Features of the graphical notation for
Rationalised Feature Modeling. (For clarity,
patterning has been used in place of the colour
coding employed by the graphical editor.
Checkerboard replaces red and diagonal hatching
replaces blue)

 Blue is used for optional features, red for alternative
and black for mandatory. OR features are also shown in
black with a black arc. Within the graphical editor,
feature names are shown beside the dot symbols,
although these are omitted here for clarity. Hierarchical
relationships between features are indicated using an
arrow for the provided_by relationship, and a solid line
for the consists_of relationship. Excludes dependencies
between features are illustrated with a dashed arc with
double arrow, while requires dependencies use a dashed
arc with single arrow.

 Properties are illustrated as open rectangles, with
dashed attachment lines linking them to features.
Existence_modify relationships between features and
properties use a dashed single arrow, while
value_modify relationships between properties use a
dashed double arrow.

3. Linking Behavior to Features

 To capture feature behavior, it is essential to have a
suitably abstract notation. There are several well known
notations that are often used for modeling behavior.
Within the UML, sequence and collaboration diagrams,
Use Case diagrams, and activity diagrams can all be
used for behavior capture. Use Case diagrams are often
used to relate system interaction with users (Actors) and
tend to provide high-level contextual information.
Sequence diagrams, like message sequence charts,
define behavior in terms of interactions between
components or classes. The difficulty in using such
notations in the current context is that behavior attached
to features must be independent of any kind of
component architecture. This is because the behavior
modeling process will typically be performed as part of
the process of evolving an architecture and before any
definitive architecture has been identified. A notation
that captures behavior, independent of components is
required.
 Activity diagrams capture behavior in terms of a
sequence of actions. Although assignment of actions to
components is possible (using swim lanes) it is not
essential. Branching and concurrent paths are supported
but support for timing constraints is weak. This is a
limitation in the context of real time embedded systems.
 In the PLUSS process Use Cases and Use Case
Realisations are used as part of the requirements capture
process. However, in the context of our work we are
interested in more than requirements capture. Our aim is
to use feature behavioral information as an aid to the
architecture design process. For this purpose, none of
these notations can be regarded as fully satisfactory for
capturing feature behavior. However, a notation that is
highly appropriate in this context is the Use Case Maps
(UCM) path notation. Use Case Maps, like feature
modeling itself, is a requirements capture notation. Its
focus is on the capture of behavior at a reasonable level
of detail. The founding concepts of the notation were
introduced by Buhr [10] and have subsequently been
extensively developed by Amyot and others [12].
Whereas feature modeling is inherently a notation
targeted at product-line requirements, UCM was
developed as a general purpose requirements modeling
notation, aimed at providing an abstract, path-centric
view of system functionality. It has now been

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

standardized and integrated into the User Requirements
Notation (URN) [13].
 In the UCM notation, behavior is captured in terms
of a causal path. The path begins at a starting point,
which may have triggering events and/or pre-conditions
associated with it, and it continues to one or more end
points, which may have associated resulting events
and/or post-conditions. Along the way it may contain
responsibility points, representing actions or
responsibilities that must be discharged in the sequential
order in which they appear. Paths may have loops, OR-
forks, which indicate alternative paths, and AND-forks
that give rise to concurrent path segments that may be
executed in parallel. Alternative paths may be labeled
with the conditions that give rise to their selection.
Concurrent and alternatives paths may rejoin at an
AND-join, or OR-join, respectively. Data items may be
created or destroyed and may be placed on, or removed
from a path. Data placed on a path is considered to
move along the path. The notation supports the concept
of a pool, which is a form of generic data store, and data
items may be moved into or out of pools. Paths may
contain waiting points representing situations where
processing is delayed awaiting the arrival of some
external event, or the satisfaction of some condition.
Synchronization and rendezvous points may also be
included. A timer feature allows the introduction of
timed path segments, in which execution must complete
within a defined time, otherwise the normal execution
path is aborted in favour of an alternative error path. In
the basic notation a path may cross one or more
components. Components need not be shown if no
component architecture is available, or they may be
included as rectangles.

Take sensor reading

Compare with
threshold

Too high normal

Reduce
power Reset timer

reading

Increment counter

Fig. 2 An example illustrating the UCM path notation

 Where a responsibility point is located on the path in
such a way that it is coincident with a component, this
denotes the fact that the responsibility is being assigned
to that component.
 An example of a UCM path is illustrated in Fig. 2.
The path start symbol is the circular disc at the top and
the path travels downwards. The first item after the start
is the responsibility point labeled ‘take sensor reading’,
and shown as crossed lines on the path. Responsibility
points indicate an action to be taken at that point on the
path. The horizontal bar indicates an AND fork, with
the path dividing into two, possibly concurrent, sub-
paths. The rightmost sub-path progresses with a data
movement operation, illustrated by the arrowed line,
which indicates that the reading is deposited in a ‘pool’,
which is the feature shown on the right of the diagram.
This is followed by a further responsibility point,
labeled ‘Reset timer’, that indicates a further action to
be taken. The leftmost concurrent path segment has a
responsibility point labeled ‘compare with threshold’
followed by an OR-fork. An OR-fork indicates that the
path divides, in this case into two alternative sub-paths.
The rightmost alternative sub-path, which is labeled
‘normal’, contains no responsibility points, indicating
that no action is to be taken. The leftmost alternative
sub-path, labeled ‘too high’, has one responsibility
point, before the two alternative sub-paths converge at
an OR-join. The left and right concurrent paths then join
and a final responsibility point occurs before the path
termination symbol, which indicates the end of this
fragment of behavior.

Path Responsibility And fork and Path
Start point And join Terminator

Concatenated Paths

OR
fork

Rendezvous

Synchronise

Timeout
path

Continuing path

Timer

Static
And
Dynamic
stubs +

Move Create

Copy Destroy

Fig. 3. Some visual elements of the UCM path
notation

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

 While this is obviously a trivial example, it
illustrates some of the core features of the UCM path
notation, namely path start and path termination
symbols, responsibility points, forks and joins, as well
as the pool symbol indicating a generic data storage
facility of some form. It is clear that the notation is both
highly abstract and at the same time quite intuitive.
 The path start symbol may have associated pre-
conditions and also specific triggering events. Path
termination symbols may have associated post-
conditions and also resulting events. Paths can have
only one start point but sub-paths arising from either
OR-forks or AND-forks do not need to converge, so
paths can have multiple termination points. However
paths may be concatenated and secondary paths may
start from points on a parent path.

3.1 Static and Dynamic stubs

 A very important concept in the UCM notation is
the idea of stubs. When a stub is embedded within a
path it acts as a placeholder into which further behavior
can be plugged. Graphically a stub is represented as a
diamond on the UCM path, and the plug-in behavior
will be represented as another UCM path. Stubs can be
of two types. The simplest are called static stubs and
only one subsidiary path can be plugged in to them. In
this case the plug-in serves as a definition of the
behavioral detail at that point within the containing
path. The second kind of stub, called a dynamic stub, is
characterized by the fact that several alternative plug-in
maps may be inserted in them. The UCM concept is that
the actual plug-in may be selected at run time,
depending on the satisfaction of associated pre-
conditions. Dynamic stubs therefore represent points at
which behavior may vary. However, the plug-ins that
may be inserted into either static or dynamic stubs may
themselves contain stubs that may in turn be either static
or dynamic. So, paths may have stubs for which the
plug-ins may contain stubs, essentially to any level of
nesting. Clearly this mechanism provides scope for the
capture of behavioral variability to any level of detail.
This is a very important capability and one that is
exploited fully in the integration of Use Case Maps with
feature modeling.
 Some further widely used elements of the UCM path
notation are shown in Fig. 3. For a comprehensive
account of all UCM path symbols and their meaning the
reader is referred to the Draft specification [13].

4. Expressing Feature Behavior

 To add behavior to a feature, in the simplest case,
we attach a UCM path to the feature. The Rationalised
Feature Modeling tool, currently under development,

provides a facility to allow a UCM path to be defined
for any feature, within a separate window. Once
behavior has been assigned to a feature it will appear in
the main window with a superimposed star. Clearly
however, we need to observe some rules. To begin with
some features may be inherently non-functional and
therefore cannot have attached behavior. Moreover,
feature models are inherently tree structured, with high
level features possibly aggregating a number of
behaviors rather than just one. We follow the principle
that a UCM path will only be attached to a feature if that
feature’s associated behavior can be captured by one
unique path. This clearly can result in a situation where,
in some cases, a higher-level feature will have no path
attached, but its children will possess paths. One
possible interpretation is that the high level feature
aggregates the multiple behaviors of its children (Fig.
4). At the level of software structure, one possible
outcome of such a situation might simply be a class
whose methods provide the behavior identified within
the child features, although this is not the only possible
consequence. Of course the situation is more complex if
some child features are optional or alternative. In this
case we have a variation point within the product family
and a simple design based on a single class is unlikely
to be appropriate.

Main
feature
window

A

B C D

Separate
behaviour
Windows
for each
feature with
behavior

Fig 4. Features B, C, and D have associated
behavior. Feature A aggregates the behavior of its
children B and C and also D if it is present

 A major mechanism for the capture of behavioral
variability is provided by the availability, within the
UCM notation, of stubs and, in particular, dynamic
stubs. Consider a situation in which a feature has an

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

associated UCM path that contains stubs. It is perfectly
appropriate for its child features also to have associated
behavior. In fact the child feature behavior can provide
the plug-in paths needed for the stubs within the parent
feature’s behavior. Where the child feature is a
mandatory feature, its fixed behavior can be an
appropriate plug-in for a static stub within the parent
feature’s path. A group of alternative child features, on
the other hand, can provide alternative plug-ins for a
dynamic stub within the parent path. Here we are
dealing with a clear example of a variation point
characterized by alternative nested behaviors (Fig. 5).
 Another case is that of a dynamic stub within the
parent, whose plug-in behavior is provided by an
optional child feature. In this case, when the optional
feature is supported, its behavior path is nested within
the parent path. When it is absent, the plug-in is simply
an empty path with no responsibility points or other
behavioral elements.
 This process of defining stubs in the path related to a
parent feature, and plug-in paths for these stubs as
behavior attached to child features, can obviously be
repeated to any level of nesting within a feature tree.
Thus a child feature may have an associated path that
also contains stubs, with their plug-in behavior being
provided by grand-child features of the original parent.
The mechanism therefore allows for both the
progressive refinement of behavior defined for a high
level feature at lower levels within the feature tree, and
for the progressive exposure of nested behavioral
variability.

Static stub to hold B’s behavior Dynamic stub to hold either C or D’s behaviour

Other path elements

A

B C D

Behavior window for A

Main feature window

Behavior window for B Behaviorwindow for C Behaviorwindow for D

Fig.5 A’s path contains a static stub that embeds
B’s behavior and a dynamic stub that embeds either
C or D’s behavior

 It is this ability to relate feature structure to
behavior and to behavioral variability that is the main
benefit that derives from integrating the UCM path
notation into feature modeling. Marrying the two

notations requires very few changes to the core concepts
of either. One point, however, where the normal
semantics of UCM path elements needs some
refinement concerns the role of dynamic stubs. In the
UCM notation the choice of plug-in for a dynamic stub
is deemed to occur at run-time and to depend on the
satisfaction of pre-conditions related to each alternative
plug-in. In the context of product-line requirements, it is
more appropriate to relax this interpretation and to allow
the binding of plug-ins to dynamic stubs to be decided
at any appropriate point, from individual product
design-time onwards. This is because alternative plug-
ins, in this context, are related to alternative product
features and the decision on which features to include
within a product can clearly be taken at many points
within the lifecycle.
 To derive maximum benefit from the integration of
these notations we clearly need to understand how to
use the resulting framework to evolve, ultimately, a
generic architecture. Thus we need to be able to identify
those features to which behavior can and should be
attached. We also need a general methodology for
identifying the pattern of behavior appropriate to each
feature.

5. Elaborating Feature Behavior

 In the first instance a feature model, without any
behavioral detail, will be developed essentially using
product requirements information. Such information
will need to be assembled from product specifications,
discussions with stakeholders and other sources. In the
case of the operating platform features, information
from suppliers and potential suppliers of future and
current hardware devices, alternative operating systems
and quite possibly third party software will need to be
collated and considered. Once this has been completed
and the feature model itself has been created, the task of
adding behavioral detail can begin. The first step is to
identify those features to which behavioral detail can
properly be added. There will certainly be some features
that are essentially non-functional, to which the addition
of behavior is inappropriate. There will be others,
particularly towards the top of the feature tree which
clearly do encompass functionality, but most properly
align with major sub-systems rather than with specific
functional activity. In general, if the functionality
associated with a specific feature is not representable by
means of a single UCM path, then it should not be
modeled. Instead the child feature set should be so
defined that that functionality can be divided over the
children. Modeling of behavior should begin at the
highest level at which this requirement can still be met.
If it becomes clear that some features at a certain level
meet this criterion while children of the same parent

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

feature do not, then this may indicate some anomaly
within the feature model structure. Feature modeling in
general is not an exact science and it is often possible to
perform some re-factoring of the model structure.

5.1. Identifying Behavioral Detail with
Scenarios

 Identifying the actual behavior to be assigned to
each feature requires experience within the domain and
a clear understanding of the relationships between the
feature and the underlying requirements. However, that
will often not be sufficient. A general mechanism that
can help with the identification of a feature’s behavior is
to develop a scenario that causes it to be exercised. Key
questions to consider at this point are the pre-conditions
or triggers that are expected to cause execution. Then
the main responsibilities to be undertaken when the path
executes can be identified. Responsibilities in the UCM
notation are defined in general terms using text
descriptions. However, individual complex
responsibilities can be deferred to child features and
incorporated via stubs. Path termination may create
post-conditions or generate resulting events that trigger
behavior associated with other features. An appropriate
overall approach is to begin with the mandatory features
at a given level within the tree and to prioritise those
features. Thereafter, the behavior for higher priority
mandatory features can be developed first. As work
progresses, generated and consumed events, pre- and
post-conditions and data stores (pools) that are read
from or written to within path definitions are all
registered within the tool. Lower priority features may
thus become enabled, for example, by generated events
or the satisfaction of pre-conditions and their required
behavior then becomes easier to discern. The fact that
the tool automatically registers events, conditions and
pools makes it possible, for example, to identify events
that are generated, but not consumed, or pools that are
read from but not written to. Anomalies of this kind
indicate, as a minimum, lack of completeness within the
model, if not some more fundamental error.
 Behavior for optional and alternative features can be
identified once that for mandatory features at the same
level is in place. In the case of optional and alternative
features, hidden dependencies can sometimes emerge.
For example, if an optional feature has a path that is
triggered by an event that results only from execution of
the path associated with another optional feature, this
implies a relationship between the two optional features.
Unless both are present together, the behavior
associated with one will not be triggered at all, or the
resulting event generated by the other will not be
handled at all. Hence this situation implies the existence
of a ‘requires’ relationship between the two features.

Once behavioral details have been identified for all such
features, any anomalies of the kind described above
should become identifiable.

6. An Example: Modeling a Safety Function
for Optical Networks

 To illustrate the modeling notation and the tool we
look at a topic from the domain of optical transmission
networks. Optical network products are frequently
highly complex and a complete feature model for such a
device would contain very many features. A pragmatic
approach is to divide such a system into a number of
subsystems which are modeled and designed separately.
For these products an important sub-system is
concerned with safety. In optical networks,
communication is based on laser light traveling between
devices (nodes) within fibre. A fibre break can result in
high energy laser light escaping with potential for injury
to persons, or possible fire hazards. For this reason, all
such equipment includes safety mechanisms which
detect such occurrences and take rapid preventative
action.

Fig. 6 Screen output showing feature model of
ALS/APR safety procedures for optical network
products.

 A complicating factor arises from the fact that not
all fibre communication channels have the same
characteristics. An element may be deployed within a
network based on any one of a number of possible link
characteristics. Although there are similarities in the
required responses to a fibre break, the detailed actions
required can vary depending on the link characteristics.
Furthermore, the need for backward compatibility with
earlier generations of products (which may still be

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

deployed) means that historical safety procedures may
still need to be supported.
 Initially the safety procedure employed was
designed for single channel fibre links and involved
shutting down the transmitting laser completely when a
fibre break was detected (a process referred to as
automatic laser shutdown ALS). More modern fibre
links often have an optical supervisory channel carrying
only status and control information, while the traffic
payload is carried in a separate higher power channel. In
this case a fibre break can be managed by ceasing
transmission of the payload data and reducing power on
the supervisory channel (automatic power reduction,
APR). Although incidents of this nature are generally
reported to network management, who may assume
manual control, it is normal to provide procedures for
automatically restoring transmission power when the
break is repaired (a restart process). The behavioral
details of such processes are again dependent on the link
characteristics. The key procedures involved are
outlined within ITU-T standards recommendations [17],
which may be used as the basis of a bi-directional
feature model.
 Fig. 6 shows such a feature model. Interestingly, this
is an example of a situation where the important
platform features that need to be considered, are not
associated with the computing platform (processor /
operating system). Instead, the platform layer captures
some of the important alternative fibre link
characteristics.

Fig. 7. Outline behavior of the ALS shutdown and
restart processes for single channel links without
optical supervisory channels

 Shutdown and restart procedures are often supported
in software, but the current trend is towards hardware-
based implementations. Consequently the model shows
hardware and software alternatives for each required

safety procedure. For simplicity only the minimum
required detail has been shown.
 Figures 7 and 8 show UCM paths illustrating
shutdown and restart procedures for two of the
alternative situations (paths can also be defined for the
remainder).
 Although the feature model (Fig. 6) illustrates the
various software feature alternatives and their
relationships with the link characteristics, the most
interesting information can be discerned from the
related behavioral models, of which figs 7 and 8
illustrate only two.
 Our interest here is primarily in demonstrating our
feature and behavioral modeling notations. However,
building models of this kind serves to clarify the
behavioral differences induced by differing link
characteristics and would therefore be an important
early-stage activity in any attempt to devise a single
protection system that could readily be configured to
function with any form of link.

Fig. 8 Behavior of the APR shutdown and restart
processes for a link having an optical supervisory
channel, but without line amplification.

7. Conclusions and Future Work

 Commonality and variability modeling techniques,
particularly techniques centered on feature modeling,
have been the topic of research for more than a decade.
The developments reported here are oriented towards
the needs of families of embedded software systems. In
these systems variability in the platform features can
induce variability in the matching software. The notion
of bi-directional feature modeling with separate but
interrelated models for software and platform features
was first introduced in [9], and is further explored
herein. The capture of this information is intended to
facilitate the design of platform independent software.
In this paper we have also described our strategy for

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

capturing, within the same model, the behavior
associated with functional features. For this we make
use of the Use Case Maps (UCM) path notation. This
provides a suitably abstract means to attach behavior to
features. Our approach to the integration of these
notations exploits the availability of static and dynamic
stubs within UCM. Stubs within a parent feature path
can accept child feature paths as plug-ins where this
corresponds to the issues being modeled. Dynamic
stubs within a parent path allow alternative or optional
child feature behavior to be readily embedded within the
parent’s behavior.
 Although our experience in using this notation is
limited, it does suggest that feature modeling and the
UCM path notation are closely complementary
notations that together allow the capture of
commonality and variability in terms of both feature
behavior and feature model structure. This provides a
stronger starting point for architecture development. It
can help to identify the principal data stores (pools)
needed within a system and, for each such data store,
the features whose behavior includes reading or writing
to the data store. It can also help with the identification
of the event messages needed within a system as well as
the features whose related behavior either generates
those events, or is triggered by them. These are valuable
inputs for the architect. Much research is still needed to
strengthen the link between feature modeling and
architecture design, and to evolve a methodology for
evolving generic architectures from feature models.
Further development of the prototype tool is also
required to improve its ability to cope with large
models.

8. References

[1] L. M. Northrop, “A Framework for Software Product-Line
Practice – version 3”, Software Engineering Institute, 2001.

[2] Kyo C. Kang, G. C. Shalom, J. A. Hess, W. E. Novak and
A. S. Petersen, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”, Technical Report CMU/SEI 90-TR-21,
1990.

[3] K. Lee, Kyo C. Kang, W. Chae and B.B. Choi, “Feature-
based approach to object-oriented engineering of applications
for reuse”, Software Practice and Experience, Vol. 30, 2000,
pp. 1025 – 1046.

[4] Kyo C. Kang, S. Kim, J. Lee and K. Lee, “Feature-
Oriented Engineering of PBX Software for Adaptability and
Reusability”, Software Practice and Experience, vol. 29,
1999, pp. 875 – 896.

[5] S. Buhne, K. Lauenroth, K. Pohl, “Why it is not Sufficient
to Model Requirements Variability with Feature Models”,

Proceedings of the Workshop: Automotive Requirements
Engineering (AURE’04), Nagoya, Japan, 2004.

[6] K. Pohl, G. Bockle, F van der Linden, “Software Product
Line Engineering, - Chapter 5”, Springer, 2005.

[7] H. Mei, W. Zhang, F, Gu, “A Feature Oriented Approach
to Modelling and Reusing Requirements of Software Product
Lines”, Proceedings of the 27th International Computer
Software and Applications Conference (COMPSAC’03). IEEE
Computer Society Press, 2003.

[8] M. Eriksson, J. Borstler, K. Borg, “The PLUSS Approach
– Domain Modeling with Features, Use Cases and Use Case
Realisations”, Proceedings of the 9th International Conference
on Software Product Lines (SPLC 2005), Springer LNCS
3714, 2005.

[9] T.J.Brown, R. Bashroush, I. Spence, P.Kilpatrick, “Feature
Guided Architecture Development for Embedded System
Families”, Proceedings of the IEEE Working International
Conference on Software Architecture, (WICSA), 2005.

[10] R.J.A. Buhr, R.S. Castleman, “Use Case Maps for Object
Oriented Systems”, Prentice Hall, 1996.

[11] R.J.A. Buhr, “Use Case Maps as Architectural Entities for
Complex Systems”, IEEE Transactions on Software
Engineering, Dec. 1998, pp 1131 - 1155.

[12] D. Amyot, “Use Case Maps as a Feature Description
Language”, Proceedings of FireWORKS ’00, S. Gilmore and
M. Ryan (Eds), Language Constructs for Designing Features.
Springer-Verlag, 2000, pp. 27 - 44.

[13] ITU-T URN Focus Group (2002) Draft Rec. Z152 –
UCM: “Use Case Map Notation (UCM)”, ITU_T, Geneva,
2002.

[14] UCM web site at : http://www.usecasemaps.org.

[15] K. Czarnecki and U. W. Eisenecker, “Generative
Programming: Methods Tools and Applications, - Chapter 4”,
Addison-Wesley, 2000.

[16] D. Fey, R. Fajta and A. Boros, “Feature Modeling: A
Meta-model to Enhance Usability and Usefulness”,
Proceedings of the 2nd International Conference on Software
Product Lines (SPLC2), Springer, LNCS 2379, 2002, pp. 198
– 216.

[17] ITU-T Recommendation G.664, “Optical safety
procedures and requirements for optical transmission
systems”, International Telecommunication Union, 2003.

10th International Software Product Line Conference (SPLC'06)
0-7695-2599-7/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

