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Abstract— The insider threat is a prime security concern for 
government and industry organizations. As insider threat 
programs come into operational practice, there is a continuing 
need to assess the effectiveness of tools, methods, and data 
sources, which enables continual process improvement. This is 
particularly challenging in operational environments, where the 
actual number of malicious insiders in a study sample is not 
known. The present paper addresses the design of evaluation 
strategies and associated measures of effectiveness; several 
quantitative/statistical significance test approaches are described 
with examples, and a new measure, the Enrichment Ratio, is 
proposed and described as a means of assessing the impact of 
proposed tools on the organization’s operations. 

Keywords—insider threat; evaluation; validation; metrics; 
assessment 

I. INTRODUCTION 
The insider threat refers to harmful acts that trusted 

individuals might carry out, causing harm to the organization 
or its personnel,  or an unauthorized act that benefits the 
individual. The insider threat is manifested when human 
behaviors depart from established policies, regardless of 
whether it results from malice or disregard for security policies. 
The insider threat problem covers a broad range of activities, 
with policy violation at one end of the continuum of abuses and 
espionage/sabotage at the other. A recent book by Carnegie-
Mellon’s CERT program [1] provides a comprehensive 
reference, discussion of cases, and description of best practices 
in the prevention, detection, and response to IT insider crimes. 
An informative review of research approaches and challenges 
may be found in the IATAC SOAR report [2]. A framework 
for discussing best practices is provided in reference  [3].  

Currently, no single threat assessment technique gives a 
complete picture of the insider threat problem. Approaches to 
insider threat detection vary based on the types of data 
monitored as well as the nature of the analytic method 
employed. Typical monitoring approaches in current use 
incorporate host/network-based monitoring to derive forensic 
measures including external threat/defense-oriented appliances 
such as Intrusion Detection or Prevention Systems and Data 
Leak Detection/Prevention Systems. Several researchers have 
argued that a comprehensive analytic approach is needed that 
incorporates monitoring and analysis of a variety of data from 
cyber monitoring of computer/network activity to behavioral 
observations and human resources data [4] [5] [6]. 

There are several technical approaches to analysis of 
monitored data aimed at detecting or predicting threats. A 
recent review [7] describes broad technical approaches to 
intrusion detection (including insider threats) that may be 
characterized in terms of threshold, anomaly, rule-based, and 
model-based methods [8]. Threshold detection is essentially 
summary statistics (such as counting events and setting off an 
alarm when a threshold is exceeded). Anomaly detection is 
based on identifying events or behaviors that are statistical 
outliers; a challenge is to effectively combat the strategy of 
insiders to work below the statistical threshold of tolerance 
and, over time, train systems to recognize increasingly 
abnormal behavior patterns as normal. Rule- or signature-based 
methods are limited to work within the bounds of the defined 
signature database; variations of known signatures are easily 
created to thwart such misuse-detectors, and completely novel 
attacks will nearly always be missed. Model-based methods 
seek to recognize attack scenarios at a higher level of 
abstraction than the other approaches, which largely focus on 
audit records exclusively as data sources. Regardless of the 
specific analytic and data monitoring approaches employed, 
there is a critical need to define and adopt rigorous means of 
evaluating the effectiveness of proposed solutions. This need is 
shared by the research community as well as operational users 
who must decide or choose among proposed technical 
solutions in the marketplace. The purpose of the present paper 
is to provide an overview and discussion of methods and 
metrics for evaluating analytic insider threat tools and 
approaches. 

II. METHODS 
How should the effectiveness of an automated insider threat 

tool be assessed? No standard metrics or methods exist for 
measuring success in reducing the insider threat—this 
“capability gap” is one reason why the insider threat problem 
was listed second in the 2005 INFOSEC Hard Problems List 
(http://www.cyber.st.dhs.gov/docs/IRC_Hard_Problem_List.pd
f). Another challenge is the lack of appropriate data and 
“ground truth” for evaluating detection performance. The 
challenge is exacerbated because there is a large degree of 
overlap between observable or measurable behaviors 
associated with normal versus malicious activities, and a 
related statistical difficulty in finding population base rates. 

The most rigorous form of evaluation of a predictive model 
is to test the predictions against a set of real cases (when 
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ground truth is known), but due to the nature of the problem, 
applicable cases are rare. Lacking ground truth data, evaluation 
methods often adopt strategies to test tools or models against 
expert judgments. Difficulties arise from the fact that data are 
collected over long time spans, making it difficult for experts 
to comprehend and reason about large volumes of data. Experts 
also may vary in their assessments of risk for a given set of 
indicators, depending on their background and experiences. In 
addition, while it is reasonable for experts to validate the 
findings of the system to perceived matches to insider threats, 
it is not practical for experts to examine all the observables for 
monitored subjects to determine which of them should be 
flagged. A confounding problem is that experts could find 
evidence of a threat that is not modeled by the system, causing 
difficulties in the interpretation of test results. Finally, in 
integrating psychosocial indicators with cyber-indicators, the 
model requires experts from disciplines typically outside of the 
experience and comfort zone of cybersecurity and 
counterintelligence analysts. 

The challenges are great, but the need is such that the 
research community must increase its focus on evaluation 
methods and metrics.  To facilitate the discussion, this section 
describes three general evaluation strategies: testing against 
expert judgments, injection testing, and testing performance 
against known outcomes. 

A. Testing Against Expert Judgments 
While an empirical test is the ultimate aim, other evaluation 

approaches can be used to test predictions of a model—
specifically, to measure the agreement between the model and 
expert judgments. This requires the following steps: 

• Obtain expert judgments on what constitutes a valid threat, 
what constitutes valid indicators for that threat, and how to 
tie indicators to observables. 

• Develop test scenarios with experts’ help—scenarios must 
be specified in detail with appropriate data and observables 
that will drive the model 

• Obtain expert judgments on the scenarios that will be used 
to test the model 

• Operate the model on the data or observables associated 
with a scenario. The model must characterize the extent to 
which the observables match a scenario. These outputs are 
compared to experts’ assessments of the same sets of 
observables. Compare the experts’ judgments with the other 
experts. The inter-expert agreement is a factor in assessing 
the model’s effectiveness. 

An example of this approach was described in a research 
project investigating behavioral models of insider threat [6]. 
The objective of the study was to validate a psychosocial 
component of an insider threat model that uses behavioral data 
or observations of a number of behavioral indicators such as 
disgruntlement, etc. (details are described in [5] and [6]). The 
evaluation study solicited judgments from expert evaluators 
who examined the same observables used by the model(s). The 
expert judgments were obtained by asking a collection of ten 
experts to rate insider threat risk of 24 scenarios that differed in 
the quantity and severity of behavioral indicators (risk 

judgments were provided on a 0-10 scale and then normalized 
to a 0-1 scale). Kendall’s w nonparametric coefficient of 
concordance measuring inter-rater agreement was 0.707, where 
0 indicates no agreement and 1, perfect agreement. The highly 
significant coefficient of concordance suggests there is a high 
level of agreement among the raters and the agreement is 
statistically significant (p < 0.001). The human expert 
judgments were then compared with the outputs of several 
alternative threat models. For example, one model had been 
developed based on fitting Bayesian weights and probabilities 
for the psychosocial indicators to the judgments provided by 
two HR experts. A more simplistic model was developed 
simply by counting the number of behavioral indicators that 
were observed, regardless of the possible weights or severity of 
indicators. The predictions of the models could be plotted 
against the expert judgment data in a scatterplot; results clearly 
showed that the counting model was inadequate in describing 
the process used by experts in assessing psychosocial threat, 
while the Bayesian model performed adequately: The counting 
model yielded a R2 of 0.26 compared to R2 = 0.60 for the 
Bayesian model (the scatterplot for the Bayesian model is 
shown in Figure 1). 

Even though this method lacked the appeal of testing 
models against ground truth data, the method was useful and 
informative in providing statistically significant descriptions of 
the relative weightings used by human experts in assessing 
behavioral indicators of insider threat, yielding insight into this 
process and modeling/statistical analysis methods that could 
potentially be used to develop analytic risk measures based on 
the behavioral indicators that could contribute to an overall 
comprehensive analytic tool. 

B. Injection Testing  
As noted earlier, a critical challenge for insider threat 

research is lack of actual data that includes ground truth data. 
In some cases, one might acquire real data, but for privacy 
reasons, there is no attribution of any individuals relating to 

Figure 1. Bayesian prediction of 24 unique cases for a total of 240 test cases
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abuses or offenses—i.e., there is no ground truth.  The data 
may contain insider threats, but these are not identified or 
knowable to the researcher. There have been several examples 
of such cases in our research on psychosocial indicators of “at-
risk” employees, for which we used corpuses of email data to 
analyze word-use and detect certain targeted personality traits 
of interest [9] [10]. 

As a demonstration and proof-of-concept, we applied a 
word analysis to an existing email corpus (a proprietary dataset 
representing 167 senders) to determine if it can discern 
individual word use patterns associated with personality traits 
among the senders. The outliers may, according to our theory, 
represent an elevated risk for insider threat. Unfortunately, we 
did not know the “ground truth” regarding the personalities or 
behaviors of the individuals who sent these emails (however, 
we know that some of the individuals represented in the dataset 
were terminated). To truly validate our methodology, we 
would need both email samples and objective personality 
assessments of the senders (or ground truth from relevant 
employee records).  

After pre-processing that removed text not attributable to 
senders, the dataset comprised approximately 5.25 million 
words. The mean number of words per individual was about 
31,000. Analysis of word use, using the Linguistic Inquiry and 
Word Count (LIWC) program [11], yielded a tab delimited 
output file with a row of raw LIWC category frequencies for 
each sender. The selected word categories were then grouped 
by their corresponding personality factor. The number of words 
in each of the word groups was computed for each sender and 
the counts were converted to a percentage of the total word 
count for each sender.  These percentages were standardized 
using zij = (xij – mj ) / sj, where xij denotes the percentage for 
word group ij for sender i; mj denotes the mean of the 
percentages for word group j over all senders and sj denotes the 
standard deviation of the percentages for word group j over all 
senders. The resulting standardized distributions of 
Neuroticism, Agreeableness, and Conscientiousness scores 
were derived. Lacking “ground truth” for the senders of these 
emails, we introduced into the dataset text samples from 
individuals for whom we had some ground truth information. 
In particular, to consider the question of whether our 
methodology could detect an individual who was more like the 
typical “insider,” we added text samples that we were able to 
obtain for Aldrich Ames, a late 20th century double agent who 
was convicted of espionage; Benedict Arnold, America’s first 
traitor; and Anna Chapman, the Russian “illegal” who was 
caught in 2010. We also included samples from other known 
criminals, though not specifically noted for espionage: Anders 
Breivik, Adolph Hitler, and Ted Kaczynski. Some of these 
samples had considerably lower word counts than individuals 
in the email corpus (viz., for Ames we had a sample of 817 
words; 4574 words for Arnold; and only 82 words for 
Chapman). Adding these “target” individuals to the corpus 
represents an attempt to assess the ability of the word analysis 
method to identify likely POIs. The Z-scores for the 
distribution of (Lack of) Agreeableness scores is shown in 
Figure 2 for the 167 senders and the six “injected” target 
individuals (shown as solid-filled histogram bars).  

It is evident that individuals in the target group are readily 
discriminated from the main corpus; they are ranked in the top 
six highest scores on Neuroticism, in the top seven highest 
scores in (Lack of) Conscientiousness, and five of the six target 
individuals are at the top of the (Lack of) Agreeableness scale. 
Mann-Whitney U-tests conducted for each of the personality 
trait distributions supported what was obvious in the graphs, 
with each test identifying highly significant differences in the 
ranks of the target group compared to the main corpus 
(p<.0001 in all cases). 

To statistically identify individual outliers in the 
distributions, we adopted a conservative, distribution-free 
statistical test that does not depend on assumptions of normally 
distributed data, based on Chebyshev’s inequality, which states 
that the probability of a random variable (τ) exceeding any real 
value T > 0 is 

  (1) 

To use the Chebyshev theorem, we must make the 
assumption that the population variance is finite and not zero.  
We are confident in this assumption.  Additionally, we are 
confident that the distribution is unimodal, which allows the 
use of a refinement proven by Vysochanskij and Petunin [12] 
that allows Chebyshev’s original inequality to be tightened by 
multiplying the right hand side by (4/9). Using the standard 
score Zτ in this expression, this yields the following variant of 
Chebyshev’s inequality: 

  (2) 

For a given significance level P, a critical value of Zτ is 
obtained by solving the equation for Zτ, yielding:  

  (3) 

Figure 2. Distribution of Agreeableness Scores (after [9]). 
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At the 5% significance level, the critical value for Z is + 2.98. 
Applying this criterion to the computed Z statistics for our 
known criminals, the test determined that Aldrich Ames, 
Benedict Arnold, Ted Kaczynski and Adolf Hitler are outliers 
in the population with significant scores in all three personality 
trait categories. Anders Breivik is a significant outlier in two of 
the personality trait categories.  

Reference [9] describes additional analysis methods aimed 
at identifying outliers using significance testing of 
Mahalanobis distance [13] that should also be consulted for 
useful analyses. The use of Mahalanobis distance enables 
derivation of a multivariate metric that combines multiple 
dimensions (for example, the personality dimensions of 
Neuroticism, Agreeableness, and Conscientiousness that were 
studied in the example in Section C; more generally, 
distributions of various types might be combined into a 
multivariate distribution that reflects behavioral indicators, 
personality indicators, and cyber monitoring risk scores).  The 
distance measure for Mahalanobis distance computes the 
distance from the center of mass of the multi-dimensional 
multivariate distribution. This metric differs from Euclidean 
distance in that it takes into account the correlations of the data 
set and it is scale-invariant. It is particularly useful in cases 
where the multivariate data are spread out from their center of 
mass in a non-spherical distribution (e.g., ellipsoidal, as would 
be the case if the components of the data had different 
variances—this was indeed the case for the example described 
in Section B; the multivariate distribution of the three 
personality trait measures was elongated). Statistical 
significance tests (such as Mann-Whitney U test) may also be 
used to test for differences among the specified test groups on 
the Mahalanobis measure. 

The analysis demonstrated here may be examined in more 
detail in the original source [9]; the point is that the injection 
methodology and accompanying analysis provides a statistical 
method for applying statistical significance tests to outcomes 
of insider threat detection tools. The example was applied to an 
injection testing methodology that used a test set for injection 
that was rather different from the population corpus: There 
were obvious differences in format, culture/temporal era in 
which samples were generated, and the nature of the 
perpetrators, to name a few). But the evaluation method is of 
primary concern for this exposition; it is important to point out 
that the method is appropriate for cases that contain ground 
truth for the general population and identified “persons of 
interest” (POI) in the population. For this preferred case of 
known outcomes, additional analytic/assessment methods are 
discussed next.  

C. Testing Performance Against Known Outcomes 
The most rigorous form of evaluation of a predictive model 

is to test the predictions against a set of real cases that include 
POIs/perpetrators (when ground truth is known). The analytic 
methods for validation described in Section II B above apply as 
well to this case—particularly the nonparametric Chebychev 
analysis of distributions. When ground truth is available (for 
known perpetrators or POIs), the assessment of a model or tool 
should take into consideration not only detection rates but also 
“false positive” rates (the probability of incorrectly identifying 

someone as a POI). A general problem with cybersecurity 
threat detection tools is that detection performance comes with 
a high false positive rate, which places a high processing load 
on human analysts and cybersecurity personnel to investigate 
the large number of leads that are generated. Fortunately, a 
large body of human performance/signal detection and 
classification research may be tapped to apply analytic 
methods of Signal Detection Theory [14] to this problem.  

A mathematical framework for describing and studying 
decisions that are made in uncertain situations, Signal 
Detection Theory is well-suited for assessing and comparing 
performance of a detection system under differing conditions. 
Detection, classification, memory, and even decision making 
(e.g., diagnostic) performance can be described in terms of four 
performance scores or probabilities, as shown in a table that is 
sometimes referred to as a confusion matrix (see Figure 3). The 
rows correspond to the system’s response (e.g., signal present 
versus signal not present). The columns reflect the true state 
(SIGNAL versus NO-SIGNAL). In the present context, 
SIGNAL corresponds to “Person of Interest is Present” and 
NO-SIGNAL corresponds to “Person of Interest is Not 
Present.” Probabilities or proportions of the system’s responses 
in each cell of the table are referred to using labels such as 
“true positive” (response = signal present when true state = 
SIGNAL); “false positive” (response = signal present when 
true state = NO-SIGNAL); etc. From data collected based on 
the output of the system (e.g., “yes”/“no” responses and/or 
confidence ratings about the presence/absence of the signal), 
analyses derived from Signal Detection Theory may be 
employed to discern levels of performance. Most relevant are 
the probabilities of true positive responses and false positive 
responses, often called “hits” and “false alarms,” respectively. 

TRUE STATE 

System 
Response 

SIGNAL NO SIGNAL 

"Signal 
Present" 

True Positive 
("hit") 

False Positive 
("false alarm") 

"Signal Not 
Present" 

False Negative 
("miss") 

True Negative 

 
A Receiver Operating Characteristic (ROC) curve plots the 

hit rates against the false alarm rates (see Figure 4). For so-
called “yes/no” experiments in which the response is that the 
signal is either present or not, hit and false alarm probabilities 
generate a single point on the ROC curve. This point reflects 
the decision or cut off point of the decision maker. For tests 
that allow the system to indicate its confidence that a signal is 
present, multiple points on the ROC curve may be generated 
[15] (see also textbooks on mathematical psychology, e.g., 
[16]). The best possible prediction method (perfect 
classification) would yield a point in the upper left corner or 
coordinate (0,1) of the ROC space. Because one minus the hit 
rate is the “false negative” rate, the ROC curve also can be 

Figure 3. Terms in a Confusion Matrix. 
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viewed as the 
tradeoff between the 
false negative and 
false positive rates, 
for every possible 
decision cut-off. 
Good performance is 
characterized by low 
false positive rates 
(false alarms) and 
low false negative 
rates (i.e., high hit 
rates) across a 
reasonable range of 
cut off values. 
Therefore, desirable 
performance is reflected in ROC curves that are furthest from 
the (lower left to upper right) diagonal, approaching the (0,1) 
coordinate. The diagonal line is the expected ROC curve that 
would be obtained for random performance. For example, if an 
observer said yes randomly 80 percent of the time no matter 
what, the hit rate when the signal is actually present would be 
80% and the false alarm rate would also be 80% yielding the 
point (0.80, 0.80) on the ROC curve.  

In addition, the theory is used to separate two important 
characteristics of the “receiver”: its sensitivity and its bias. The 
sensitivity measure (d’) is defined as the distance between the 
“signal” and “signal + noise” distributions in standard error 
units, i.e., d' = Zsignal+noise - Zsignal; it is also equivalent to the 
distance from the diagonal as well as the area under the ROC 
curve [14]. The bias measure is reflected in the position of a 
point along the ROC curve, and performance may be 
influenced by manipulating the bias of the observer by such 
means as varying the reward and/or punishment for correct 
responses and errors. Sensitivity, on the other hand, is not 
manipulated by payoff, and therefore it represents the system’s 
level of capability: If system A exhibits a higher d’ compared to 
system B, then when they are tested under similar conditions, 
system A should be expected to perform better. In this sense, d’ 
provides a means of assessing effectiveness of tools, but there 
are some practical difficulties: (i) Ground truth must be 
available. One cannot compute “hit” and “false alarm” rates 
without having definitive outcome data. (ii) For prediction 
problems, there is a difficulty in scoring outcomes and 
therefore assessing hit and false alarm probabilities. 

III. PREDICTION CHALLENGES 
There is much justification for pursuing the development 

and validation of a predictive system, as opposed to a detection 
system that will inevitably relegate defenders to a forensic 
strategy [6]. Among the most compelling reasons is the finding 
reported by Shaw and Fischer [17] that nine of 10 cases studied 
involved serious employment crises and that in nearly every 
case the subject of the study exhibited signs of disgruntlement 
and serious personnel problems months prior to an attack. 
These subjects reacted to off-line personal conflicts, stresses, 
and disappointments through electronic behavior. These 
individuals were reportedly disgruntled in some cases for over 
a year prior to their attacks, and management was aware of 
these personnel problems weeks, if not months, prior to the 

attack. Thus, most of these threats could have been prevented 
by timely and effective action to address the anger, pain, 
anxiety, or psychological impairment of perpetrators. Despite 
these compelling observations, no systematic methods or tools 
have yet been developed and validated to provide a predictive 
capability, although there are efforts underway (e.g., [5] [6] 
[10]). As noted in the introduction, challenges facing the 
security/counterintelligence community are not limited to the 
technical problems of model development, but also include 
obstacles to designing and conducting valid and robust 
evaluations of prospective tools. In this section, several key 
methodological issues and challenges are discussed.  

A predictive system may be evaluated using historical 
data—the advantage is that ground truth and outcomes may be 
known. For many reasons, the use of historical data poses the 
most robust, and least controversial, strategy for testing 
predictive analytic methods. Whether detection or prediction 
are involved, there are ethical issues to be addressed (the reader 
is referred to [18] and [19] for thoughtful discussions of 
privacy and ethical issues underlying insider threat 
monitoring). But evaluation of a predictive system presents 
special challenges. 

When the evaluation of a predictive system occurs in a real-
time operational setting, there is the following dilemma: if the 
system identifies a high-risk individual or POI, but no abuse or 
crime has occurred, what (if any) action should be taken? The 
standard answer is that if no illegal acts or policy violation has 
occurred, then no action is called for. This may not be the best 
possible course, especially if we could apply some well-tested 
(mature) supporting technical tools to help the high-risk 
individuals without adversely impacting their rights. Yet, there 
are more questions and some pitfalls: 

• Since the prediction is not perfect, the conclusion may be 
erroneous. Acting may harm the individual involved, and 
this may expose the organization to litigation. 

• Confronting a POI with “evidence” of risk factors could be 
construed as harassment; this could exacerbate a possibly 
stressful situation and produce negative consequences.  

• Legal and counterintelligence stakeholders might prefer that 
no action be taken, but that behavior/cyber monitoring 
should be increased, so as to collect “actionable” data that 
would hold up in court or to identify possible internal or 
external collaborators.  

• On the other hand, cyber security and operational security 
stakeholders may prefer to take some sort of defensive 
action in order to protect and preserve human and 
organizational assets.  

Beyond organizational pitfalls associated with acting on 
predictive analytic outputs, the application and testing of 
predictive methods pose difficult technical/scientific challenges 
because the very definition of “hit” and “false alarm” become 
clouded in this situation. Without ground truth data and 
definitive outcomes (identifying perpetrators), there is no basis 
for calculating P(hit) and P(false alarm). This difficulty makes 
the methods described in Section II A and B all the more 
worthy of consideration. 

Figure 4. The ROC curve represents decision 
making performance under uncertainty 
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In light of these challenges in conducting evaluations of 
predictive systems, an assessment rubric might be considered 
that relies on expert judgment of risk (an example of this 
approach was described in Section II A). The rubric is 
discussed below:  

• Identify risk indicators. In any scientific endeavor it is 
necessary to specify the dependent variables to be studied, 
and upon which the risk model is based. The indicators are 
not only identified, but also must be specified in sufficient 
detail to enable quantitative or qualitative data collection. 

• Develop risk metric. The model must specify how the risk 
indicators shall be combined in the formulation of the risk 
model. As has been previously noted, several investigators 
have argued for development of a composite measure that 
combines risk scores from a variety of indicators [4] [5]. 

• Estimate requirements for test population and test data 
collection. Specify the test subjects to be included in the 
study. Will all individuals in the organization be 
participants in the study, or will the test be restricted to a 
subset of the population? If not all individuals are 
included, identify an unbiased method of selecting test 
subjects (e.g., random selection). Sampling biases 
undermine interpretation of results. Another question is: 
How many test subjects are required? Figure 5 provides a 
conceptual discussion and speculates on some answers.  

• Set up data collection protocols. To support a proper 
scientific evaluation of the risk model, detailed plans must 
be described for collecting test data. Procedures must be 
developed to protect data integrity and privacy of 
individuals—especially with regard to de-identification of 
the data that requires converting personal ID numbers to 
coded identifiers, so that only a select group of 
organizational staff have the capability to “decode” the ID 
numbers for purposes of validating the predictions of the 
model. 

• Collect data.  Acquisition of data from varied sources (e.g., 
human resources/behavioral data, psychosocial data, cyber 
monitoring data, security records) occurs over the 
specified time interval selected for the study. Because the 
target activities are rare in terms of base rate as well as 
occurrences of abuse for a given individual, use of 
sufficiently long study duration is critical—e.g., minimum 
12 months 

• Apply model to generate predictions. Use obtained data as 
input to the model, to generate output. To prepare for 
validation against expert judgments, rank the obtained risk 
scores (with associated de-identified/coded participant 
IDs) generated by the model.  

• Obtain validation data for a test set. To avoid bias, it is 
important to obtain expert judgments for a set of target 
individuals that includes not only the highest-risk outputs 
of the model, but also other representative members of the 
population (more detail on this validation step is provided 
below, in Section IV). For this set of individuals, obtain 
risk judgments from qualified experts within the 
organization (such as an inter-disciplinary team 

comprising human resources, management, security, 
cybersecurity, and legal representatives). Re-apply the de-
identification process prior to returning this feedback to 
the model evaluation team. 

• Compare the expert risk judgments (rankings) with the 
rankings determined by the risk model. The evaluation 
team may conduct various statistical analyses to assess the 
performance of the risk model. Some representative 
analyses were described in Section II A and B.  

 

IV. MEASURE OF EFFECTIVENESS 
It has been noted that there are difficulties in obtaining 

performance metrics for various reasons. When appropriate 
data may be acquired to support outcome assessment based on 
actual cases (e.g., if historical data are available), measures of 
effectiveness may be derived using statistics such as 
associated with a confusion matrix and hit/false positive rates. 
In the absence of such data, and indeed to complement such 
analyses, an “impact assessment” methodology is advised. 
Using the evaluation rubric and test methodology described in 
the previous section, we now briefly consider measures of 
effectiveness. While an organization might comprise a total of 
N individuals, it might be that only a subset N’ is analyzed by 
the algorithm (preferably N’ = N). As described above, the 
proposed evaluation rubric generates an anonymized list of the 
N1 individuals that the model considers to be at the highest 
risk—to use less “charged” terminology, let us say that the 
model generates an anonymized list of “most interesting” 
individuals, those who might be considered most atypical of 

Figure 5. Sample Size Considerations 

SAMPLE SIZE CONSIDERATIONS 

We know that only a very small fraction of the population are POIs (say, 
0.05% or even 0.01%).  

• Suppose we monitor 100% of a population of 100,000 
individuals 
– Assuming 0.05% are POIs, we expect to find 50 POIs: 

• An 80% uncertainty interval is 41-56 POIs 
• A 98% uncertainty interval is 34-67 POIs 

– Assuming 0.01% are POIs, we expect to find 10 POIs: 
• An 80% uncertainty interval is 6-14 POIs 
• A 98% uncertainty interval is 3-18 POIs 

• Suppose we sample 10% of the population;  i.e., 10,000  
– Assuming 0.05% are POIs, we expect to find 5 POIs: 

• P(sample will have 0 People of Interest ) = 1% 
• P(sample will have ≤ 2 People of Interest ) = 12% 
• P(sample will have ≤ 4 People of Interest ) = 44% 

– Assuming 0.01% are POIs, we expect to find 1 POI: 
• P(sample will have 0 People of Interest) = 37% 
• P(sample will have ≤ 1 People of Interest) = 74% 

 
Assuming a base rate of 0.01%, then sampling only 10,000 individuals out of a 
population of 100,000 yields a relatively high probability that we will not run 
across any POIs in our validation test. With such a low base rate, we are 
advised to sample at least 50,000 individuals out of a population of 100,000. 
In that case, P(sample will have ≤ 2 People of Interest) = 12% 
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the general population—we denote this as set A. The test list 
will also include a random selection of N2 anonymized 
individuals from the organization’s general population 
(excluding set A). There are at least two methods that could be 
used for evaluation: 

• Method 1—all N1 + N2 individuals are listed in random 
order and the list is sent to the expert panel for evaluation. 
N2 can be any size, preferably N2 > N1.  The panel rates the 
extent to which each listed individual should be 
considered a POI. The analysis of the results should 
demonstrate if the use of the algorithm to generate set A 
yields a higher percentage of POIs identified by experts.   

• Method 2—pairs of individuals are formed, one from the 
N1 individuals in set A, and one from a list of N2 (=N1) 

individuals randomly selected from set N’–A. Each pair is 
presented to the experts, who must choose which of the 
two is more interesting. This is expected to be a much 
easier task for the experts. 

We seek a measure of effectiveness based upon the expert 
feedback. Suppose that the expert evaluators determine that m1 
POIs out of the N1 (in set A) are actually of interest to them, 
and further assume that out of the other set of N2 individuals, 
m2 are deemed to be POIs by the organization—we denote 
these m2 individuals as comprising set B. As an illustrative 
example, suppose that N’= 5000, N1 = 50, and m1 = 24; and N2 
= 50 with m2 = 1. Then the results are shown in Table I. 

TABLE I.  CONTINGENCY TABLE FOR AN ILLUSTRATIVE EXAMPLE 

B ~B  Not Given to Panel

A m1 = 24 N1 – m1 = 26 N1 =50 0 

~A m2 = 1 N2 – m2 = 49 N2 =50 
N’– N1 – N2 
= 4900 

m1 + m2 = 25 
 

N1+N2 – m1- m2 
= 75 

N1+N2 

= 100 

Note that the rightmost portion of the table (labeled “Not 
Given to Panel”) reflects the subset of N’ analyzed cases (out 
of a total of N in the population. The values of N’ and N do not 
affect the metric calculations below, but they do impact the 
overall success in assessing the performance of an analytic 
tool, as discussed in Section III.  It is also important to note 
that set A does not necessarily equal the set of all individuals 
identified in the sample of N’ analyzed cases who are deemed 
POIs. Rather, set A is a ranked list based on computed POI 
risk. Stakeholders must set an “interest” threshold. In our 
example, a more stringent threshold would be to identify the 
top ten individuals out of the N1 in set A. A less stringent 
criterion would be to include the entire set of N1 individuals in 
set A. By setting varying thresholds between 1 and N1, one 
may compute associated hit and false alarm probabilities to 
generate an ROC curve for the algorithm being tested. 
Generation of the ROC curve provides important evaluative 
insight into the utility of an algorithm. 

Beyond this, a number of measures of effectiveness may 
be considered.  Lenca et al. [20] described twenty alternative 
measures of association or rules applied to data mining 
algorithms. The idea behind the measures is the assertion that 
the greater the intersection of sets A and B, and the fewer 
counter-examples (A,~B; ~A,B) to the rule there are, the better 
the rule. Some metrics considered in [20] are support = 
P(A,B); lift = P(A,B)/[P(A)P(B)]; and Bayes Factor (originally 
defined by Jeffreys [21]), BF = P(B|A)/P(B|~A). Note that BF 
is a nonzero real number, 0 < BF < +∞. Lenca et al. [20] used 
eight criteria to evaluate the measures, including normative 
properties of asymmetry and independence and subjective 
properties such as intelligibility (whether the rule’s definition 
is easily understood and interpretable by domain experts). The 
BF metric was favorably ranked across all of the criteria.  

We consider the BF measure to be quite interpretable and 
useful for assessing the utility of insider threat algorithms. At 
the very least, it provides a useful supplement to the ROC 
analysis. In our example, BF = (m1/N1)/(m2/N2) = 24. One 
might say that a tool with a BF score of 24 has a very strong 
impact in enriching the detection process beyond the current 
baseline; indeed, in this illustrative case, the algorithm being 
evaluated identified 24 times more POIs than a baseline 
method. Clearly this consideration addresses a property of 
prediction that is different from statistical significance. In this 
vein, we suggest an interpretation of the BF measure to reflect 
what we refer to as an Enrichment Ratio (ER). Specifically, 
ER = BF = (m1/N1)/(m2/N2). The value of 24 obtained in the 
example means that the unaided method would have to 
examine 24 times the number of individuals than would be 
examined by the method being evaluated in order to expect to 
find the same number of POIs. This reveals a practical impact 
on labor hours. Clearly all organizations have a nonzero risk 
of insider threats; large organizations may go to great expense 
to find insider threats. Suppose that an organization dedicates 
ten staff members (full-time equivalents, FTEs) to this effort. 
As shown in the example of Table II, if the ER for an insider 
threat risk model or tool is 2:1, then use of the tool might be 
expected to enable the organization to find the same number 
of insiders with just five FTEs. This saves five FTEs, or $1.25 
Million (assuming $250K/FTE).  

TABLE II.  ENRICHMENT RATIO: PRACTICAL INTERPRETATION FOR 
IMPACT ASSESSMENT OF A PROPOSED TOOL 

BF or 
Enrichment 
Ratio Score
  

Anticipated 
number of 
FTEs to get 
approximately 
equal number 
of “finds”  

Savings 
(assuming 
$250K/FTE) 
compared to 
using 10 
FTEs  

Anticipated 
increase in 
individuals “found” 
using the proposed 
tool table 

1:1  10  0 FTEs  = 
$0K 0 

2:1  5  5 FTEs  = 
$1,250K Double 

5:1  2  8 FTEs  = 
$2,000K Quintuple 

10:1 1 9 FTEs  = 
$2,250K Ten-fold Increase 

9696



V. CONCLUSIONS 
The insider threat is a prime security concern for 

government and industry organizations. Despite much 
research focused on insider threat risk models and tools to 
detect or mitigate insider attacks, development and validation 
of tools still ranks among the most critical research needs. As 
insider threat programs come into operational practice, there is 
a continuing need to assess the effectiveness of tools, 
methods, and data sources, which enables continual process 
improvement. Best practices demand that analytic processes 
be measured for their effectiveness, preferably by calculating 
both true positives and false positives over a specified period 
of time [3]. This is particularly challenging in operational 
environments, where the actual number of malicious insiders 
in a study sample is not known. In the present paper, we have 
attempted to address the difficult challenge of developing 
evaluation strategies and measures of effectiveness.  

Insider threat programs best practices also stress the 
importance of managing the time of analytical/threat analysis 
staff, which typically deals mostly with activities on the low 
end of the complexity and damage spectrums [3]; programs 
should structure their metrics to help distinguish effective vs. 
ineffective detectors by identifying detectors with too few 
analytical outcomes [3]. In this vein, we briefly discussed 
measures of effectiveness, including a BF measure [21] used 
prominently in data mining research [20] that supports our 
application of an Enrichment Ratio (ER) to assess the practical 
impact of proposed tools. The BF measure with the ER 
interpretation quantifies the savings in terms of staff hours or 
labor/analysis costs that may be attributed to the application of 
a threat detection or mitigation tool. By comparing the amount 
of data that must be monitored by a baseline program in order 
to achieve comparable performance to a proposed tool, this 
measure assesses the proposed solution in concrete operational 
terms. It is hoped that this discussion of evaluation 
methodology, analytic approaches, and metrics will help to 
advance the progress of insider threat mitigation research. 
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