
Nail: A practical interface generator for data formats

Julian Bangert and Nickolai Zeldovich
MIT CSAIL

ABSTRACT

We present Nail, an interface generator that allows pro-

grammers to safely parse and generate protocols defined

by a Parser-Expression based grammar. Nail uses a richer

set of parser combinators that induce an internal repre-

sentation, obviating the need to write semantic actions.

Nail also provides solutions parsing common patterns

such as length and offset fields within binary formats that

are hard to process with existing parser generators.

1 INTRODUCTION

Code that handles untrusted inputs, such as processing

network data or parsing a file, is error-prone and is often

exploited by attackers. This is in part because attackers

have precise control over the inputs to that code, and

can craft inputs that trigger subtle corner cases in input

processing. For example, the libpng library has had 24

remotely exploitable vulnerabilities from 2007 to 2013,1

and Adobe’s PDF and Flash viewers have been notori-

ously plagued by input processing vulnerabilities. Even

relatively simple formats, such as those used by the zlib

compression library, have had input processing vulnera-

bilities in the past.2

A promising approach to avoid such vulnerabilities is

to specify a precise grammar for the input data format,

and to use a parser generator, such as lex and yacc, to

synthesize the input processing code. Developers that use

a parser generator do not need to write error-prone input

processing code on their own, and as long as the parser

generator is bug-free, the application will be safe from

input processing vulnerabilities. Unfortunately, applying

this approach in practice, using state-of-the-art parser

generators, still requires too much manual programmer

effort, making it error-prone, as we describe next.

First, parser generators typically parse inputs into an

abstract syntax tree (AST) that corresponds to the gram-

mar. In order to produce a data structure that the rest

of the application code can easily process, application

developers must write explicit semantic actions that up-

1http://www.cvedetails.com/vulnerability-list/
vendor_id-7294/Libpng.html

2http://www.cvedetails.com/vulnerability-list/
vendor_id-72/product_id-1820/GNU-Zlib.html

date the application’s internal representation of the data

based on each AST node. Writing these semantic actions

by hand is error-prone, much like other input processing

code, and mistakes can result in memory corruption bugs

or misinterpreted inputs. Writing these semantic actions

also requires the programmer to describe the structure

of the input three times—once to describe the grammar,

once to describe the internal data structure, and once

again in the semantic actions that translate the gram-

mar into the data structure—leading to another potential

source of bugs and inconsistencies.

Second, applications often need to produce output in

the same format as their input—for example, applica-

tions might both read and write files, or both receive

and send network packets. Most parser generators just

focus on parsing an input, rather than producing an out-

put, thus requiring the programmer to manually construct

outputs, which is error-prone. Some parser generators,

such as Boost.Spirit [7], allow reusing the grammar for

generating output from the internal representation. How-

ever, those generators require yet another set of semantic

actions to be written, transforming the internal represen-

tation into an AST.

Third, data formats, especially binary formats such

as PNG or PDF, can have structural dependencies, such

as offset, length, and checksum fields that are hard to

express in state-of-the-art grammar languages. Often the

programmer is required to manually write control code,

such as re-positioning the parser’s input stream, looping

over the invocation of a sub-parser, or computing a check-

sum over raw input bytes. Besides leaving much room

for errors with offset arithmetic, such code is usually not

reusable when generating output.

This paper presents the initial design and implemen-

tation of Nail, a parser generator that greatly reduces

the programmer effort required to use a grammar-based

parser. Nail addresses the above three challenges with

several key ideas.

First, Nail reduces the expressiveness of its grammar

language by removing semantic actions. Existing parser

generators allow arbitrary computation to transform be-

tween the AST and the parser output. Instead, Nail de-

rives the structure of its output automatically from the

grammar, forcing the programmer to clearly separate

2014 IEEE Security and Privacy Workshops

© 2014, Julian Bangert. Under license to IEEE.

DOI 10.1109/SPW.2014.31

158

2014 IEEE Security and Privacy Workshops

© 2014, Julian Bangert. Under license to IEEE.

DOI 10.1109/SPW.2014.31

158

2014 IEEE Security and Privacy Workshops

© 2014, Julian Bangert. Under license to IEEE.

DOI 10.1109/SPW.2014.31

158

syntactic validation and semantic processing.

Second, this well-defined internal representation al-

lows Nail to invert the parser and generate output. How-

ever, Nail allows constants in the external format to have

multiple representations if they should not affect the se-

mantics of the data. For example, in a text protocol, the

amount of white-space separating tokens should not af-

fect the meaning of the data and consequently Nail does

not expose it to the application. As long as constants

are only used for their intended purpose of representing

syntax-only features, the generated output will have the

same semantics as the parsed input.

Third, Nail provides support for structural dependen-

cies, transparently handling offset and length fields. By

hiding the offset and length values from the programmer,

Nail ensures they remain consistent even if the data is

changed by the application.

We have implemented an initial prototype of Nail for

C. Our experience so far suggests that it is a promising

approach: we were able to construct a succinct grammar

for DNS packets, and write a small DNS server that uses

Nail for all packet input and output, and operates purely

on Nail-generated data structures, with no need for any

semantic actions.

The rest of this paper is organized as follows. §2 puts

Nail in the context of related work. §3 describes Nail’s

design. §4 discusses our initial implementation of Nail.

§5 provides some initial evaluation results. §6 suggests

several directions for future work, and §7 concludes.

2 RELATED WORK

Language safety. Input processing vulnerabilities fall

into two broad classes. The first class is memory safety

bugs, such as buffer overflows, which allow an adver-

sary to corrupt the application’s memory using specially

crafted inputs. These mistakes arise in lower-level lan-

guages that do not provide memory safety guarantees

(such as C), and can be partially mitigated by a wide

range of techniques, such as static analysis, dynamic in-

strumentation, and address space layout randomization,

that make it more difficult for an adversary to exploit

these bugs. Nail helps developers of lower-level lan-

guages avoid these bugs in the first place.

The second class is logic errors, where application

code misinterprets input data. This can lead to serious

security consequences when two systems disagree on the

meaning of a network packet or a signed message, as in

iOS3 [8] and Android4 [11] code signing and even the

3The XNU kernel and the user code-signing verifier interpret exe-

cutable metadata differently, so the code signature sees different bytes

at a virtual address than the executable that runs.
4Android applications are distributed as .zip files. Signatures are

X.509 protocol underlying SSL [12]. These mistakes

are highly application-specific, and are difficult to miti-

gate using existing techniques, and these mistakes can

occur even in high-level languages that guarantee mem-

ory safety. By allowing developers to specify their data

format just once, Nail avoids logic errors and inconsis-

tencies in parsing and output generation.

A subclass of logic errors are so-called weird ma-
chines, where implementation side effects or under-

specified parser behavior leads to a protocol or data for-

mat inadvertently becoming a Turing-complete execution

environment, even though the original grammar did not

require it. Frequently, this execution environment can

either then directly manipulate data in unwanted ways or

be used to make exploiting another bug feasible.5 Exam-

ples include x86 page tables [1], and ELF symbols and

relocations [17]. In the offensive research community,

this has been generalized into treating a program as a

weird machine [4] that operates on an input, analogous

to a virtual machine operating on bytecode. Nail avoids

these problems by having the parser precisely match the

specified grammar, eliminating under-specified behavior.

Parsing frameworks. Proper input recognition has

been shown to be an excellent way of eliminating ma-

licious inputs. In one case, a PDF parser implemented

in Coq could eliminate over 95% of known malicious

PDFs [2]. However, manually writing parser code does

not scale to the number of file formats and protocols

in existence and might result in parser code tied to one

specific application.

Generating parsers and generators from an executable

specification is the core concept of Interface Generators,

e.g. in CORBA or more recently [19]. However, while

interface generators work very well for existing gram-

mars, they do not allow full control over the format of the

output, so cannot be used to implement legacy protocols.

Very related work has been done at Bell Labs with the

PacketTypes system [14], however PacketTypes works

only as a parser, not as an output generator and does not

support the expressive power of parsing expression gram-

mars (PEGs), but rather implements a C-like structure

model enhanced with data-dependent length fields and

constraints.

Parser generators for binary protocols were first intro-

duced by the Hammer [16] parser. While previous parser

generators could also be used to write grammars for

verified with a Java program, but the program is extracted with a C

program. The Java program interprets all fields as signed, whereas the

C program treats them as unsigned, allowing one to replace files in a

signed archive, thereby undermining Android’s security model.
5For example, by compiling a return-oriented-programming exploit

from code fragments discovered on the fly.

159159159

binary protocols,6 doing so is practically inconvenient.

Hammer allows the programmer to specify a grammar

in terms of bits and bytes instead of characters. Com-

mon concerns, such as endianness and bit-packing are

transparently hidden by the library. Hammer implements

grammars as language-integrated parser combinators, an

approach popularized by Parsec for Haskell [13]. The

parser combinator style (to our knowledge, first described

in [5]) is a natural way of concisely expressing top-down

grammars [6]7 by composing them from one or multiple

sub-parsers. Hammer then constructs a tree of function

pointers which can be invoked to parse a given input into

an abstract syntax tree (AST).

Nail improves upon Hammer in three ways. First,

Nail generates output besides recognizing input. Second,

Nail does not require the programmer to write potentially

insecure semantic actions. Last, Nail’s structural depen-

dencies allow it to work with protocols Hammer cannot

recognize, such as protocols with offset fields or length

fields (Hammer has extremely limited support for length

fields: it can parse arrays immediately preceded by their

length).

Application use of parsers. Generated parsers have

long been used to parse human input, such as program-

ming languages and configuration files. Frequently, such

languages are often specified with a formal grammar in

an executable form.

Unfortunately, parser frameworks are seldom used

to recognize machine-created input. For example, the

security-critical and well-engineered MIT Kerberos dis-

tribution uses parser generators, but only for handling

configuration files. A notable exception is the Mongrel

web server8 which uses a grammar for HTTP written

in the Ragel [18] regular expression language. Mongrel

was re-written from scratch multiple times to achieve

better scalability and design, yet the grammar could be

re-used across all iterations [15].

3 DESIGN

3.1 Overview
To integrate the data format and the internal representa-

tion, Nail provides a rich set of combinators that not only

describe the grammar of the external protocol, but also

induce an internal model.

6Theoretically speaking, the alphabet over which a grammar is an

abstract set, so most algorithms work just as well on an alphabet of

{0,1}.
7For more background on the history of expressing grammars, see

Bryan Ford’s masters thesis [9], which also describes the default parsing

algorithm used by Hammer.
8http://mongrel2.org/

Syntax Semantics

int32 32-bit signed integer

uint4
4-bit unsigned integer,

returned as an 8-bit value

uint8 | 1..3
8-bit unsigned integer,

1 ≤ x ≤ 3

uint16 | ..512
unsigned 16-bit integer,

x ≤ 512

int32 | [1,255,512]
signed 32 bit integer,

x ∈ {1,255,512}
Figure 1: Example Nail grammars for integer values.

A central design decision of Nail is that there is a

semantic bijection between the model exposed to the

programmer and the byte-level input and output, up to

syntactic equivalence for unambiguous grammars. More

precisely, the parser is the generator’s inverse, so parsing

the generator’s output will yield the generator’s input,

but generating the parsers output does not necessarily

yield the parsers input. To understand why this makes

sense, consider a grammar for a text language that tol-

erates white space, or a binary protocol that tolerates

arbitrarily long padding.9 In that case, the program se-

mantics should be independent of the number of padding

elements in the input, and Nail therefore does not expose

that information to the programmer. We call such dis-

carded fields constants. Currently, Nail always makes a

default choice when there are multiple options to express

a constant, however Nail could be extended to allow a

grammar-specific plug-in to make these choices, say for

faster alignment, streaming applications when data is not

ready, or visual appearance in human-readable protocols.

Similarly, Nail does not preserve the layout of objects

referred to by their offsets. If the grammar contains no

constants and offset fields, there is a proper isomorphism

between model and protocol.

Nail evaluates the combinators and produces:

• type declarations for the internal model,

• the parser, a function to parse a sequence of bytes

into an instance of the model, and

• the generator, a function to create a sequence of

bytes from an instance of the model.

In the rest of this section, we present Nail’s combinators.

9Say, the physical layer of most communication protocols is a

possibly infinite sequence of symbols that are syntactically nil followed

by a pre-determined synchronization sequence and the actual contents

of the transmission.

160160160

header = {
id uint16
qr uint1
opcode uint4
aa uint1
tc uint1
rd uint1
ra uint1
uint3 = 0
rcode uint4

}

struct header {
uint16_t id;
uint8_t qr;
uint8_t opcode;
uint8_t aa;
uint8_t tc;
uint8_t rd;
uint8_t ra;
uint8_t rcode;

};

Figure 2: Nail grammar (left) and data model (right) for a part of the

grammar for DNS packets. The uint3 = 0 grammar represents 3 bits

of padding (filled with zeroes).

Fundamental parsers. The elementary parsers of Nail

are the same as those of Hammer, signed and unsigned

integers with arbitrary lengths up to 64 bits. Note that

is possible to define parsers for sub-byte lengths, e.g.

to parse the 4-bit data offset within the TCP header; in

Nail’s syntax. Integer parsers return their value in the

smallest appropriately sized machine integer type; e.g., a

24-bit integer is stored in a 32-bit wide variable.

Integer parsers can be constrained to fall either within

an (inclusive) range of values or be an element of a set of

allowed values. Figure 1 shows several examples. Invalid

values or prematurely reaching the end of input will raise

an error when parsing input or generating output, and

abort the procedure.

Sequence. Nail’s fundamental concept is the structure

combinator. It contains a list of named parsers and un-

named constant parsers. The parser invokes each field in

sequence and returns a structure containing the result of

each parser. For example, Figure 2 shows the structure

combinator from a part of the grammar for DNS packets,

along with the data model corresponding to it.

Repetition. The many combinator takes a parser and

applies it repeatedly until it fails, returning an array of

the inner parsers results. The sepBy combinator addi-

tionally takes a constant parser, which it applies in be-

tween parsing two values, but not before parsing the

first value or after parsing the last. For example, many
uint8 represents an array of 8-bit unsigned integers, and

sepBy uint8=’,’ (many uint8 | ’0’..’9’) rec-

ognizes comma-separated lists of decimal numbers.

Semantic choice. We extend a parsing expression

grammar’s ordered choice combinator with a tag for each

choice. The parser attempts to parse each option in the

order they are specified in the field and stores the result

in a tagged union. If an option fails, the parser backtracks

choose {
A = uint8 | 1..8
B = uint16 | ..256

}

Figure 3: A simple choice combinator that parses either an 8-bit

unsigned integer with a value between 1 and 8 (option A), or a 16-bit

unsigned integer with a value of at most 256 (option B).

to the beginning of the choice combinator’s input. Care

must be taken that the choices do not overlap, because

Nail always picks the first successfully parsed choice.

If two options overlap, generated output for the latter

option is not necessarily understood identically by the

parser. However, actual data formats are usually not am-

biguous in this sense. Figure 3 demonstrates a simple

choice combinator.

3.2 Constant parsers
Nail also features constant parsers, which do not affect

the internal representation. Constant parsers can appear

instead of structure fields and as separators in the sepBy

combinator.

The simplest constant parser is an integer or array of

integers with fixed value; for example, uint8=0, or many
uint8=[1,2]. A convenience notation for strings is also

supported: many uint8 = "foo".

Wrap combinator. When implementing real protocols

with Nail, we often found that structures that consist of

many constant parsers and only one named field. This

pattern is common in binary protocols which use fixed

headers to denote the type of data structure to be parsed.

In order to keep the internal representation cleaner, we in-

troduced the wrap combinator, which takes a sequence of

parsers containing exactly one non-constant parser. The

parser and generator act as though the wrap combinator

was a sequence of parsers, but the data model does not

wrap the single value in another structure, making the

application-visible representation (and thus application

code) more concise.

For example, <uint8=’"’; many int8 |
’a’..’z’; uint8=’"’> parses a quoted lower-

case word into an array, excluding the quotation

marks.

Constant combinators. In some protocols, there

might be many ways to represent the same constant

field and there is no semantic difference between the

different syntactic representations. To support this pat-

tern, Nail allows developers to use choice and repetition

combinators together with constant fields, such as many

161161161

(uint8=’ ’) (representing any number of space char-

acters), or || uint8 = 0x90 || uint16 = 0x1F0F
(parsing two of the many representations of NOP on the

x86 architecture). Note that constant may have varying

lengths. This is particularly useful for handling padding

or whitespace.

As discussed above, choosing to use these combina-

tors on constant parsers removes the bijection between

byte-strings and our data model, as there are multiple

byte-strings that correspond to the same internal data

structure and the generator has to choose one of these

representations. As such, constant combinators are the

generator dual of ambiguous choice combinators in the

parser, because they lead to ambiguities in the generator.

3.3 Dependent fields
Another problem for parser generators is that binary pro-

tocols often contain length and offset fields. Conven-

tional parsing algorithms can, in principle, deal with

bounded offset fields: a finite automaton can count a

bounded integer, and we can feed the (finite) input multi-

ple times to the finite automaton. However, this imple-

mentation is both time-inefficient (it feeds many bytes

into the automaton that will just be skipped) and very

cumbersome to express with current parser generators.

Therefore, if languages with offset fields need to be

parsed with parser generators, the only currently prac-

tical way is to add ad-hoc hacks such as changing the

input pointer of the generated parser on the fly, as part of

the code in the semantic action for the offset field.

Nail will properly support both offset and length fields

and much of the following discussion applies to both,

although the current prototype only implements lengths,

which we will focus on.

We call length or offset fields dependent fields, because

during parsing, another parser depends on them, and

while generating output, their value depends on some

other structure in the data model. Dependency fields

appear in a structure combinator as would any other

integer field, but their name begins with an @ sign. A

dependency field has to appear in the grammar before it

can be used.

Dependency fields are not exposed in the data model,

but instead are transparently computed. This frees the

developer from checking that these fields are correct (for

input) or having to keep their values in sync with the rest

of the data structure (for output).

Length fields. The length combinator, n_of, takes a

dependency field n and a parser, evaluates the parser

exactly n times (i.e., setting the number of iterations to

be the n field’s value), and returns an array of the parser’s

values. When generating output, it emits the array and

writes its length to the dependency field.

Offsets. The offset combinator takes a dependency

field and a parser. It moves the parser to the position spec-

ified in the offset field and invokes the inner parser, and

then moves the input back to its original position. While

generating output, all structures referred to by offset are

generated after the main structure and the dependent

offset fields are patched up.

Checksums. In many data formats, some values de-

pend on external representation, such as checksums and

cryptographic signatures. While it would be possible to

extend our constraint language to be powerful enough to

support such constructs, we would essentially be build-

ing a separate, Turing-complete language that has all the

same pitfalls existing programs have. Therefore, we in-

tend to allow the programmer to carefully escape Nail’s

programming model and write a function that takes a

pointer to the dependent value and a range of bytes, us-

ing the raw_depend combinator.

For example, we imagine the following grammar could

be used to represent a sequence of bytes data followed

by its CRC32 checksum:

data many uint8; @checksum uint32
raw_depend @checksum data crc32

where crc32 is a function supplied by the application,

with the following signature:

bool crc32(uint32_t *out, uint8_t *in);

Because this feature compromises Nail’s security guar-

antees, it should only be used in limited circumstances

and with carefully prepared checksum functions. This

feature is not implemented in the current prototype.

4 IMPLEMENTATION

The current prototype of the Nail parser generator sup-

ports the C programming language and top-down parsers.

Options for C++ STL data models and emitting Pack-

rat parser [10] are under development. In this section,

we will discuss some particular features of our parser

implementation.

The source code of our implementation, together with

the examples described in §5 are available on GitHub at

https://github.com/jbangert/nail.

162162162

utfstring = many choose {
SUPP = {
lead uint16 | 0xD800..0xDBFF
trail uint16 | 0xDC00..0xDFFF

}
BASIC = uint16 | !0xD800..0xDFFF

}

struct utfstring {
struct {
enum { SUPP, BASIC } N_type;
union {
struct {
uint16_t lead;
uint16_t trail;

} SUPP;
uint16_t BASIC;

};
} *elem;
size_t count;

};

Figure 4: Nail grammar (left) and data model (right) for UTF-16 strings.

Parsing. A generated Nail parser makes two passes

through the input: the first to validate and recognize the

input, and the second to bind this data to the internal

model. Currently the parser is a straightforward top-

down parser, although facilities have been made to add

Packrat parsing to achieve linear parsing times.

Memory allocation. Many security vulnerabilities can

occur when heap allocations are done improperly. There-

fore, just like Hammer, Nail avoids using the heap as

much as possible, using a custom arena allocator and

allocating only fixed-size blocks from the system allo-

cator (malloc). However, Nail extends upon Hammer’s

approach and uses two arenas for each parsed input. One

arena is used for intermediate results and is released (and

zeroed) after parsing completes, whereas the other arena

is used only for allocating the result, and has to be freed

by the programmer.

Intermediate representation. Most parser generators,

such as Bison, do not have to dynamically allocate tem-

porary data, as they evaluate a semantic action on every

rule. However, as our goal is to perform as little com-

putation as possible before the input has been validated,

and we do not want to mix temporary objects with the

results of our parse, we use an append-only trace to store

intermediate parser results.

Hammer solves this problem by storing a full abstract

syntax tree. However, this abstract syntax tree is at least

an order of magnitude larger than the input, because it

stores a large tree node structure for each input byte and

for each rule reduced. This allows Hammer semantic

actions to get all of the necessary information without

ever seeing the raw input stream. However, because

we also automatically generate our second pass, which

corresponds to Hammer’s semantic actions, we can trust

it as much as we trust the parser, and thus can expose it

to the raw input stream.

Under this premise, the actions need limited informa-

tion from the recognizer to correctly handle the input

stream. In particular, the parser’s control flow branches

only at the choice, repetition, and constant combinators.

Thus, for each of those combinators, we store the mini-

mum amount of information required to reconstruct the

syntactic structure of the input. The trace is an array of

integers. Whenever the parser encounters a choice, it

appends two integers to the trace. After it successfully

parses a choice, the parser writes the number of that

choice and the length of the trace when it began parsing

that choice. When backtracking in the input, the parser

does not backtrack in the trace. This means that offsets

within the trace can be used for a Packrat hash-table to

memoize backtrack-heavy parsers.

When encountering a repetition combinator, the parser

records the number of times the inner parser succeeded,

and when encountering a constant parser of variable size,

it records how much input was consumed by the constant

parser.

In a second pass, the parser then allocates the inter-

nal representation from an arena allocator and binds the

fields to values from the input, while following the trace

to determine how many array fields to parse and which

choices to pick.

Dependency fields. During parsing, dependency fields

occur before the context in which they are used. The

parser stores their values and retrieves them afterwards

when encountering the combinator that uses them. When

generating output, the dependency field is first filled with

a filler value, then later when the first combinator that

determines this fields value is encountered, the field is

overwritten. Any further combinators using this depen-

dency will then validate that the dependency field is

correct.

163163163

Bootstrapping. To demonstrate the feasibility of the

Nail parser generator, our parser generator uses a Nail

parser to recognize Nail grammars. A superset of the

grammar language described in this paper is implemented

in 100 lines of Nail, which feed into about 1,000 lines

of C++ that implement the actual parser generator. Boot-

strapping is supported via an implementation of the Nail

language in the Lemon parser generator, a variant of

Yacc.

5 EVALUATION

In our preliminary evaluation of Nail, we try to answer

two questions:

• Can Nail grammars support real-world data for-

mats?

• How much programmer effort is required to build an

application that uses Nail for data input and output?

Data formats. To answer the first question, we imple-

mented two Nail grammars: one for UTF-16 encoded

strings, exposing an array of code points (shown in Fig-

ure 4), and another for a subset of DNS packets sent

to and from an authoritative name server, without la-

bel compression, as per RFC1035 (shown in Figure 5).

Furthermore, our GitHub repository contains other Nail

grammars, such as a TAP network stack that processes

Ethernet, ARP, ICMP, IP, and UDP packets, and the gram-

mar for Nail itself.10 The results suggest that Nail is a

good fit for these data formats.

Programmer effort. To answer the second question,

we implemented a functioning toy DNS server. In par-

ticular, we cloned the test DNS server from the Hammer

distribution to Nail. Hammer ships with a toy DNS

server written in 683 lines of code, excluding the Ham-

mer framework itself, that responds to any valid DNS

query with a CNAME record to the domain “spargelze.it”.

Most of this code is taken up with custom validators, se-

mantic actions, and data structure definitions, with only

52 lines of code defining the grammar with Hammer’s

combinators.

Our DNS server consists of 148 lines of C code and

48 lines of Nail grammar, and supports a custom zone

file format with A, NS, MX, and CNAME records. The

same grammar is used, together with 98 lines of C, to

implement a functional toy clone of the host command-

line tool. However, because our grammar does not yet

10https://github.com/jbangert/nail/tree/master/
examples

labels = <many { @length uint8 | 1..255
label n_of @length uint8 }

uint8 = 0>

question = {
labels labels
qtype uint16 | 1..16
qclass uint16 | [1,255]

}

answer = {
labels labels
rtype uint16 | 1..16
class uint16 | [1]
ttl uint32
@rlength uint16
rdata n_of @rlength uint8

}

dnspacket = {
id uint16
qr uint1
opcode uint4
aa uint1
tc uint1
rd uint1
ra uint1
uint3 = 0
rcode uint4
@qc uint16
@ac uint16
uint16 = 0 // authority
uint16 = 0 // additional
// We don’t support authority or
// additional sections in the prototype
questions n_of @qc question
responses n_of @ac answer

}

Figure 5: Nail grammar for DNS packets, used by our prototype DNS

server.

164164164

support DNS label compression, the latter tool will oc-

casionally reject valid real-world DNS responses. Both

clients have functional anti-spoofing measures.

It is hard to compare the programming effort required

to implement our toy DNS server to that of a real world

DNS server, since we have less functionality, in partic-

ular for DNS compression and additional hint records

that real-world DNS servers send. However, the closest

in functionality and intent is Dan Bernstein’s djbdns,11

which aims to be a minimalist, highly secure DNS

server. The latest release of djbdns, including various

support tools, is about 10,000 lines of C as measured

by sloccount. We expect that it is possible to build a

feature-par version with Nail that is an order of magni-

tude smaller and intend to do so.

Other issues. As Nail is work in progress, many parts

of the implementation, syntax and design are not com-

plete yet and we do not yet have meaningful performance

or security metrics.

6 FUTURE WORK

The Nail parser generator is currently a work-in-progress,

and we would appreciate feedback on our initial design

and prototype implementation. Short-term next steps

include improving the scoping of dependency fields and

adding support for offset fields.

One problem with the current design of Nail is that the

design of the grammar dictates the internal structure of

the software. This makes changing grammars or adding

Nail to existing software awkward. One possible solution

to this problem would be to implement a concept simi-

lar to relational lenses [3], which would allow the data

model to be “seen” by the rest of the program through an

isomorphism. Such an isomorphism would still be much

more concise than two sets of semantic actions, while

allowing changes in syntax, alternative representations,

and adaption to legacy systems.

Finally, we would like to demonstrate the capabilities

of Nail by implementing various binary formats “notori-

ous” for their insecurity in Nail. Nail was designed with

the idioms of formats such as PDF and PNG in mind. Ul-

timately, we want to provide examples of successful Nail

parsers throughout a network stack, from a user-space

TCP stack to a PNG de-compressor.

7 CONCLUSION

This paper presented the initial design and implemen-

tation of Nail, an interface generator for data formats.

Nail helps programmers to avoid memory corruption and

11http://cr.yp.to/djbdns.html

ambiguity vulnerabilities while reducing effort in pars-

ing and generating real-world protocols and file formats.

Nail achieves this by reducing the expressive power of

the grammar, maintaining a semantic bijection between

data formats and internal representations, and allowing

programmers to specify structural dependencies in the

data format. Preliminary experience with implementing

a DNS server using Nail suggests that this is a promising

approach.

The source code for our prototype of Nail is available

at https://github.com/jbangert/nail.

ACKNOWLEDGMENTS

We thank M. Frans Kaashoek and the anonymous re-

viewers for their feedback. This research was supported

by the DARPA Clean-slate design of Resilient, Adap-

tive, Secure Hosts (CRASH) program under contract

#N66001-10-2-4089, and by NSF award CNS-1053143.

REFERENCES

[1] Julian Bangert, Sergey Bratus, Rebecca Shapiro,

and Sean W Smith. The page-fault weird machine:

lessons in instruction-less computation. In Pro-
ceedings of the 7th USENIX Workshop on Offensive
Technologies, Washington, DC, August 2013.

[2] Andreas Bogk. Certified programming with de-

pendent types. Chaos Communication Camp, Au-

gust 2011. http://www.youtube.com/watch?
v=CmPw7eo3nQI.

[3] Aaron Bohannon, Benjamin C Pierce, and Jeffrey A

Vaughan. Relational lenses: a language for updat-

able views. In Proceedings of the 25th ACM Sym-
posium on Principles of Database Systems, pages

338–347, Chicago, IL, June 2006.

[4] Sergey Bratus, Michael E Locasto, Meredith L Pat-

terson, Len Sassaman, and Anna Shubina. Exploit

programming: From buffer overflows to weird ma-

chines and theory of computation. ;login: The Mag-
azine of Usenix & Sage, 36(6):13–21, December

2011.

[5] William H Burge. Recursive programming tech-
niques. Addison-Wesley Reading, 1975.

[6] Nils Anders Danielsson. Total parser combinators.

In Proceedings of the 15th ACM SIGPLAN Inter-
national Conference on Functional Programming,

pages 285–296, Baltimore, MD, September 2010.

165165165

[7] Joel de Guzman and Hartmut Kaiser. Boost Spirit

2.5.2, October 2013. http://www.boost.org/
doc/libs/1_55_0/libs/spirit/doc/html/.

[8] Team Evaders. Swiping through modern security

features. In Proceedings of the HITB Amsterdam,

2013.

[9] Bryan Ford. Packrat parsing: a practical linear-

time algorithm with backtracking. Master’s thesis,

Massachusetts Institute of Technology, 2002.

[10] Bryan Ford. Packrat parsing: Simple, powerful,

lazy, linear time. In Proceedings of the 2002 ACM
SIGPLAN International Conference on Functional
Programming, October 2002.

[11] Jay Freeman. Yet another Android master key bug,

2013. http://www.saurik.com/id/19.

[12] Dan Kaminsky, Meredith L. Patterson, and Len

Sassaman. PKI layer cake: New collision attacks

against the global X.509 infrastructure. In Proceed-
ings of the 2010 Conference on Financial Cryptog-
raphy and Data Security, pages 289–303, January

2010.

[13] Daan Leijen and Erik Meijer. Parsec: Direct style

monadic parser combinators for the real world.

Technical Report UU-CS-2001-27, Department of

Computer Science, Universiteit Utrecht, 2001.

[14] Peter J McCann and Satish Chandra. Packet types:

abstract specification of network protocol messages.

ACM SIGCOMM Computer Communication Re-
view, 30(4):321–333, 2000.

[15] Meredith Patterson. Langsec 2011-2016.

http://prezi.com/rhlij_momvrx/
langsec-2011-2016/.

[16] Meredith Patterson and Dan Hirsch. Hammer parser

generator, March 2014. https://github.com/
UpstandingHackers/hammer.

[17] Rebecca Shapiro, Sergey Bratus, and Sean W Smith.

“Weird machines” in ELF: A spotlight on the un-

derappreciated metadata. In Proceedings of the
7th USENIX Workshop on Offensive Technologies,

Washington, DC, August 2013.

[18] Adrian D. Thurston. Parsing computer languages

with an automaton compiled from a single regular

expression. In Proceedings of the 11th Interna-
tional Conference on Implementation and Applica-
tion of Automata, pages 285–286, Taipei, Taiwan,

2006.

[19] Kenton Varda. Protocol buffers: Google’s

data interchange format, June 2008. http:
//google-opensource.blogspot.com/2008/
07/protocol-buffers-googles-data.html.

166166166

