
Error-Correcting Codes as Source for Decoding Ambiguity

Adrian Dabrowski

SBA Research
Vienna, Austria

Email: adabrowski@sba-research.org

Isao Echizen

National Institute of Informatics
Tokyo, Japan

Email: iechizen@nii.ac.jp

Edgar R. Weippl

SBA Research
Vienna, Austria

Email: eweippl@sba-research.org

Abstract—Data decoding, format, or language ambiguities
have been long known for amusement purposes. Only recently
it came to attention that they also pose a security risk. In this
paper, we present decoder manipulations based on deliberately
caused ambiguities facilitating the error correction mechanisms
used in several popular applications. This can be used to
encode data in multiple formats or even the same format with
different content. Implementation details of the decoder or
environmental differences decide which data the decoder locks
onto. This leads to different users receiving different content
based on a language decoding ambiguity. In general, ambiguity
is not desired, however in special cases it can be particularly
harmful. Format dissectors can make wrong decisions, e.g.
a firewall scans based on one format but the user decodes
different harmful content.

We demonstrate this behavior with popular barcodes and
argue that it can be used to deliver exploits based on the
software installed, or use probabilistic effects to divert a small
percentage of users to fraudulent sites.

I. INTRODUCTION

Albertini [1] and Magazinius et al. [2] researched so

called binary polyglots that are for example valid PDF,

JPEG, and ZIP files at once [3]. In contrast to computer

language polyglots (source code) which compile in different

programming languages, these are binary formats carefully

stuffed together to confirm to multiple file standards or at

least be understood by those file parsers.

However, ambiguity is in general not desired. Especially

when it leads to different decoders reading different content,

e.g. a firewall scans a JPEG but the user decodes a ZIP

archive with harmful content out of the same data stream.

Jana et al. [4] and Alvarez et al. [5] have shown how to abuse

file-type fingerprinting and parsing differences of anti-virus

tools to evade detection.

On a more theoretical level polyglots lead to a language

decoding ambiguity. This gets even more interesting when

a decoder supports multiple languages but makes a hard

decision on reading and interpreting it one way or another.

Any ambiguity is therefore a potential security risk [4]–[6].

In this paper we show that error-correcting codes (ECC)

are a convenient tool to construct and provoke such ambigu-

ities. It is a generalization of our previous paper on Barcode-
in-Barcode Attacks [7] which we will use for demonstration

purposes.

The rest of this paper is structured as follows: In Section II

we discuss the connection to Language Security and the

necessary background on ECC and polyglots. In Section III

we show how they can be combined and in Section IV and

V we present a proof-of-concept implementation based on

barcodes and their evaluation with different decoders. Future
Work (Section VI) and the conclusion in Section VII discuss

the implications, countermeasures and open problems.

II. BACKGROUND

For this paper we will use file format, data format (e.g.

on a network) and language interchangeably. After all, a

file format specification defines semantics, symbols, and a

grammar and therefore a language. A parser by itself also

implicitly defines a language that under best circumstances

is equivalent to the specification or at least contains the

specification as a subset or substantially overlaps it.

Likewise, a file, a transmission, a data stream, or a single

data packet are also the same on an abstract level: data

arrives from an external source and has to be decoded and/or

parsed (often multiple times, based on layered network and

software structure) to be turned into an useful (internal) rep-

resentation. This includes storage of data and transmissions

over wire, radio, optical networks, or visual symbologies

(e.g. barcodes, as used in this paper).

Figure 1. Visualization of a binary polyglot: data is interleaved using
references with unused space in between, reserved or unused fields, etc.

2015 IEEE CS Security and Privacy Workshops

© 2015, Adrian Dabrowski. Under license to IEEE.

DOI 10.1109/SPW.2015.28

99

A. Binary Polyglots

In computing, a polyglot used to be a source code valid

in multiple programming languages. However, this is easily

extendable to binary formats, as each parser forms its own

language.

As seen in the visualization (Figure 1), some parts of

the file are used exclusively for one format (language) or

another, whereas other parts can be shared. This stuffing

is made possible by the different format semantics, loosely

validating parsers, lax or ambiguous format specifications,

and extensive use of comment blocks as well as ignored,

reserved, and fields for future use.

This way, for example, a file can simultaneously be

a valid PDF document, JPEG picture, and ZIP archive.

Typically, parsers start their work by finding an identifier

and proceed from there. In above example, JPEG needs a

correct signature string right at the start, PDF within the first

1024 bytes, and ZIP starts decoding archives from the end.

(Binary) polyglots can be build as academic challenge, or to

deceive file type dissectors and bypass scanning or filtering.

B. Error Correction

Forward error correction (FEC) is a technique used to

cope with errors in data transmission over unreliable or

noisy communication channels without the need for a reverse

channel. The sender encodes their message in a redundant

way by using an error-correcting code (ECC). Thus allowing

the receiver to detect and correct a limited number of

errors that may occur anywhere in the message without

retransmission. Simple codes such as Parity and Hamming

codes can only detect and correct a very limited number of

errors, advanced codes such as Reed-Solomon, MDS codes,

or Turbo Codes provide versatile configuration options. For

example, on noisy channels, the code can be configured to

allow 30% of the data to be damaged without an impact on

consistency.

The model behind these techniques is a noisy transmission

line, random physical errors on a data carrier, or interference

in transmission. They have not been designed to withstand

a crafted attack. In their effort to protect and reconstruct the

original data they can be abused up to a point where (part

of) the data can mean something completely different.

Extensive error correction is used in many applications

such as digital radio (DAB) and video transmission (ter-

Figure 2. Visualization of an error-correction code: the destroyed data is
reconstructed.

Figure 3. Visualization of embedding alien data into an ECC protected
data: the alien data can overwrite big (consecutive) chunks as long as the
error margin is not overstressed.

restrial and via satellite, DVB-T, DVB-S, DVB-C), cellular

phones (GSM, UMTS, LTE), wireless networks (WIFI),

digital tapes, hard discs, optical discs, raid arrays, flash

drives, cloud storage, server RAM, and barcodes. We will

use barcodes for demonstration purposes.

III. ERROR CORRECTION AS A HIDEOUT

For the rest of the paper, ECC can be viewed as con-

figurable black boxes for encoding data into code words

and vice versa. Among other parameters, the configuration

determines the recovering abilities (error margin); i.e. the

fraction of destroyable code words without an effect on

the decoded data. In normal operation the modified code

words remain transparent to the reading application as error

correction is typically done as one of the first steps in

acquiring data (Figure 3). The amount of foreign data is

limited primarily by the error recovering abilities of the used

code. It is not dependent on the actual type of code used (e.g.

Turbo Code, Reed-Solomon).

We can utilize the latter to override chunks with parasitic

data at almost freely chooseable places, as long as the error

margin is not overstressed and no other vital information is

harmed (e.g. ECC-header, synchronization). This includes

additional synchronization patters and headers if necessary.

The parasitic data can be of a different language or the same

language as the carrier data. The former will exploit multi-

language synchronizers, dissectors and parsers which have

to decide on the type of data. The latter will primarily exploit

the inability of simple synchronizers to distinguish between

different data streams.

This remotely resembles Packet-in-Packet attacks on radio

devices and protocol decoding mismatch in network proto-

cols [8]. In contrast to Packet-in-Packet attacks, we do not

have to modify the content of the user data. The latter is

transparently restored by the ECC mechanism.

100

Figure 4. Similar to Figure 3 a Barcode-in-Barcode can be constructed.
Note: both parts are valid barcodes.

IV. IMPLEMENTATION USING BARCODES

While the visualization in Figure 3 might look far-fetched

or abstract, we can do exactly that with barcodes (Figure 4).

Linear barcodes or 1D codes are used to provide a

machine-readable form of printed information. In cases

where higher data density is required, matrix or 2D bar-
codes are preferentially deployed. Such codes are used in

industrial applications, e.g. logistics or tracking of individual

components during the production process.

There are various 2D or matrix barcode symbologies.

Each of them tends to be dominant in one or more particular

fields of application. This makes it necessary for many

devices to support more than one standard. An optical

transmission media (printed barcode scanned with a camera

under imperfect conditions) is subject to noise, distortions,

camera artifacts, uneven illumination, and other effects.

Thus, these symbologies typically employ multiple strategies

to cope with them, one of which is the extensive use of

error-correcting codes.

In everyday life, electronic tickets are issued with 2D

barcodes, and web links are conveyed via 2D barcodes on

billboards and in printed ads. Additionally, they are used

in security-sensitive applications such as monetary transac-

tions: Paypal and Bitcoin allow shoppers to pay for goods

and services using apps that generate QR codes readable by

merchants’ existing scanning devices [9]. Threema [10] uses

QR codes to exchange keys and authenticate users.

The application of such codes is not without security

risks: Different ways of using QR codes as an attack vector

Figure 5. Popular 2D Barcodes with rectengular pixels: Quick Response,
Aztec, Data Matrix

have been proposed [11]–[13]. In 2012, hackers showed that

Unstructured Supplementary Service Data (USSD) codes

encoded in 2D barcodes can be used to wipe a phone

or execute other system functions [14]. On some phones,

they can be used to generate premium rate SMS messages.

QR codes can also be used to trigger vulnerabilities in the

reader software, the operating system, or a remote site such

as SQL injections [11]. The Ninjhax exploit [15] uses a

custom QR code to perform a buffer overflow on the (locked

down) Nintendo 3DS portable game console allowing it to

install custom software. Peng et al. [16] found code injection

vulnerabilities in several QR libraries. QR Codes are also

used to spread malware [13] and for phishing attacks.

For our proof-of-concept implementation we used three

popular code types with rectangular pixels, thus ensuring

a uniform visual appearance when used together: Quick

Response (QR) [17], Aztec [18], and Data Matrix (DM)

[19]. All codes employ ECC codes, but for practical reasons

(Section IV-C) QR codes are suited best for hosting alien

data. With the exception of Aztec, all standards mandate

a white space (quiet zone) around the symbol, but our tests

have shown that most decoders require much less if not none.

A crafted 2D barcode that conforms to multiple standards

(or an embedded barcode inside another) is hardly detectable

by an untrained human viewer.

A. Full Scan: Multiple Standards Ambiguity

The primary case we are discussing here is that of

a full scan. The decoder is presented with a choice of

different codes within the same area. Decoding software

usually employs multiple computationally cheap finders for

specific symbologies, e.g. a detector for a specific visual

marker of a symbology (Figure 6). In other contexts, this

is called synchronization pattern, preamble, magic value, or

format signature. When one is found, an appropriate decoder

retrieves the data and presents it to the user or the calling

application. Although the symbologies are standardized, the

dissector decision tree (and its detection order) is not.

Decode Type C
Detect
Type C

Decode Type B
Detect
Type B

Decode Type A
Detect
Type A

Return
Data

No Barcode
Detected

AA

BB

Figure 6. Decoding ambiguity: the detector for a particular code is tested
first, therefore the others are not considered.

101

AA

BB

Camera Frame

Figure 7. Sliding over the barcode will make the smaller inner barcode
fully visible before the entire (outer) barcode.

B. Partial Scan

A partial scan (e.g the user trying to find the right angle

and distance for scanning) makes it highly probable that an

(inner) embedded code is inside the imaging frame before

the full outer (or host) barcode, favoring the detection of the

inner barcode.

C. Embedding Criteria

Embedding one code into another requires distinct char-

acteristics of the standards for the outer as well as the inner

code.

The outer code has to (a) provide a continuous area of a

certain size to shelter the other, and (b) a sufficiently robust

data correction (or another way to include alien data).

QR and DataMatrix provide a relatively large continuous

area to hide other codes. In our tests, QR’s error correction

performed much better than Data Matrix’s. It is configurable

in 4 steps from 7% to 30% (i.e. 30% of the data can be

destroyed and still reconstructed). Therefore, currently, the

QR symbology provides the best host platform to embed

other codes. As versatile as QR’s error correction code is,

not all parts are protected equally. Some elements are vital

and needed before the FEC bits can even be read or applied.

Therefore, the embedded code must not interfere with these

elements (Figure 8):

1) Finder or Location Markers: These visually prominent

markers (including the quiet zone around them) are used by

the detector to locate a barcode in an image and correct

possible distortions.

Figure 8. Critical areas of an QR Code: location markers (1), quiet zone
(2), timing pattern (3), and alignment markers (4).

Table I
TESTED APPLICATIONS AND THEIR BARCODE STANDARD SUPPORT

OS/Type Name QR DM Aztec

iPhone NeoReader [20] � � �

Qrafter [21] � � �

i-nigma [22] � � –

QR Code Reader and S. [23] � � �

ScanLife [24] � � –

Android ZXing Barcode Reader [25] � � –

UberScanner [26] � � �

ScanLife [27] � � –

i-nigma [28] � � –

AT&T Code Scanner [29] � � –

NeoReader [30] � � �

ShopSavvy [31] � � –

Handheld Symbol DS6708 [32] � � �

2) Quiet Zone: The QR standard defines a large white

space around each barcode. Most readers still require at least

1 pixel white border around the location pattern, whereas

some also manage without a quiet zone.

3) Timing Patterns: These dotted patterns run horizon-

tally and vertically between the inner corners of the three

location markers. They are used to synchronize rows and

column pixels and are essential for most readers.

4) Alignment Markers: They are only built into bigger

codes to help handling distortions. They are less important

for most decoders and a limited number of them can be

destroyed without reducing readability.

V. EXPERIMENTAL RESULTS

We tested 13 readers (iPhone, Android, and dedicated

hardware) with ten different barcode inclusions as presented

in [7]. For this paper, we picked three notable examples. All

codes were scanned ten times and recognition of one code or

another was noted, including additional observations (such

as strong preference for one outcome). Results can depend

on many external factors such as light, state of the reader, or

distance. Thus, we refrain from providing non-representative

numbers.

A. Aztec in QR

Aztec is a very good choice for being embedded into

another code. By standard it does not require a quiet zone.

However, our tests have shown that corner placement (and

therefore offering a partial quiet zone) provides a higher

decodability rate with the Symbol device.

Qrafter was neither able to decode the inner nor the outer

barcode, while NeoReader strongly prefers the inner Aztec

code. This is probably a case where the Aztec finder is called

before the QR finder. All other decoders non-deterministicly

return one code or the other.

102

App/Device Outer Inner

NeoReader � �pref.

Qrafter � �

i-nigma � –

QR Code R.S. � �

ScanLife � –

ZXing B.S. � –

UberScanner � �

ScanLife � –

i-nigma � –

AT&T Code S. � –

NeoReader � �

ShopSavvy � –

DS6708 � �

Figure 9. Aztec in QR: NeoReader on iOS strongly prefers Aztec over
QR. (� decoded, � not decoded, – unsupported)

B. Data Matrix in QR

The weakness of Data Matrix is the lack of a distinct

visual marker. On the one hand, this makes the code very

compact, on the other hand the decoder gets fewer visual

clues.

In this example, the embedded Data Matrix code was

positioned in the center of the QR code. A thin white

border (Figure 10) was added for better decodeability. (In

different tests [7], we also shared the border with the outer

code.) This example is interesting, because NeoReader on

iOS completely ignores the outer QR code. On Android,

ScanLife and the AT&T Scanner only decoded the inner

Data Matrix when panning over the image.

App/Device Outer Inner

NeoReader � �

Qrafter � �

i-nigma � �

QR Code R.S. � �

ScanLife �pref. �

ZXing B.S. � �

UberScanner � �

ScanLife � (�swipe)

i-nigma � �

AT&T Code S. � (�swipe)

NeoReader � �

ShopSavvy � �

DS6708 � �

Figure 10. Data Matrix in QR

C. QR in QR

QR in QR is a special case. The finder markers compete

against each other and may confuse the detector. Addition-

ally, it is easier to be noticed by a human. The results

suggest, that the white space around the whole barcode

as defined in [17] is not a necessity for any of the tested

App/Device Outer Inner

NeoReader � �

Qrafter � �

i-nigma � �

QR Code R.S. � (�)

ScanLife � �

ZXing B.S. � �

UberScanner � �

ScanLife � �

i-nigma � �

AT&T Code S. � �

NeoReader � �

ShopSavvy � (�)

DS6708 �pref. �

Figure 11. QR in QR, center with white space

readers and a thin border around the finder markers is

enough (Figure 11). Without the latter, most applications

only decode the outer barcode.

Qrafter and ShopSavvy need noticeably longer for de-

coding, but do so only for the embedded code. i-nigma

on Android prefers the outer code when the phone is held

further away, and the inner code when it is held closer to

the barcode. The QR Code Reader and Scanner on iOS

has major troubles with decoding. In our tests it eventually

returned the inner code and in one case returned a garbage

string.

Presumably, these implementations prefer markers in

close vicinity to each other, except for the handheld device

by Symbol. The latter prefers the largest area between

markers.

VI. DISCUSSION, COUNTERMEASURES AND FUTURE

WORK

We demonstrated the ECC hiding and decode ambiguity

problem with popular barcodes. We argue that it can be used

to deliver exploits based on the software installed, or use

probabilistic effects to divert a small percentage of users to

fraudulent sites (e.g. a donation site where some transactions

are diverted to a different account). It could also be used for

fare-dodging or circle-routing parcels, as different stations

along the logistics chain read different tracking IDs.

More in general, the technique can be used anywhere

where ECC is employed. This includes satellite or terrestrial

digital video transmission (e.g. DVB-S and DVB-T) where

different content is decoded by different viewers. This might

also have implications on computer (anti-)forensics when

dealing with ECC-protected data (tapes, hard disc arrays,

ECC RAM).

The main conceptional problem with countermeasures is

that ECC are designed to transparently hide any modifica-

tions from the processing layers above. The host data as well

as the parasitic data are actually valid and conform to the

103

specifications. Therefore, effective mitigation often heavily

depends on the threat model, the application, and whether

this case can be escalated to the layers above – potentially

reaching a user interactively.

A. Countermeasures for Barcodes

For the barcode example, several mitigation strategies

arise. It should be noted that user involvement is an easy

option for interactive applications, but less suitable for

automated processes (e.g. sorting machines in logistics).

1) Stringent priority: While the code formats themselves

have been standardized, the order of detection is chosen by

the software designers. As this is the root cause for multi-

standard code ambiguity, a stringent prioritization should be

defined.

2) Notification on all codes found: Barcode readers de-

tecting the presence of code ambiguity (same standard or

multiple) should present all of them to the user. This requires

that software does not stop after the detection of the first

code.

3) Alien data warning: A reader that detects alien data,

multiple standards, or multiple decodings using the same

standard should warn the user. This might include standards

that it might not be able to decode but is able to detect based

on its marker signature. However, this also bears the risk of

false positives, as the decoder cannot verify if the marker

actually belongs to a valid code.

4) Scanned photo excerpt: Interactive barcode readers

can present the decoded image and highlight the area of

interest containing the decoded barcode for visual inspec-

tion.

5) Only decode what you are looking for: Limit decoding

to only the standards the intended purpose needs.

B. Generic Countermeasures

Generic solutions are hard to come by, as both data

transmissions are perfectly valid considering the specifica-

tion. The threat model determinates whether the decoder

should escalate the condition to a higher layer, fail-safe by

discarding all data, or try to decide on the benign data by

itself.

The latter is not a trivial problem. In our visual QR

examples above, dissecting parasitic data from the host

transmission is much easier than the general case. Spotting

multiple synchronization markers on an asynchronous data

channel and verifying their belonging to non-overlapping

data packets is potentially a hard problem as it might

include decoding and verification of all the possible data

interpretations itself.

Another (simpler) heuristic could involve sorting possible

decoding variants of the data by its amount of bits (whether

before or after ECC) and assuming that the longest data

stream is the host and therefore legit.

However, any heuristic (or guessing) is a risk, and might

lead to exactly the problems described in Section I. These

are open problems left for future work.

VII. CONCLUSION

Data decoding, format, or language ambiguities have been

long known for amusement purposes. Only recently it came

to attention that they also pose a security risk, for example

by deceiving file dissectors of firewalls and virus scanners.

These binary polyglots mostly arise from poor parsers,

lax data format specifications, and undefined multi-standard

compatibility. In contrast to carefully crafted polyglots, data

formats protected by error-correcting codes (ECC) provide

a very convenient way of constructing decoder or parser

ambiguities.

This can be used to encode data in multiple formats or

even the same format with different content. Implementation

details of the decoder or environmental effects decide which

data the decoder locks onto. This leads to different users

receiving different content based on a language decoding

ambiguity.

We demonstrated this behavior with popular 2D barcodes

but the method is not limited to these. However, evasion

or mitigation strategies are not easy transferable and mostly

application specific.

The main conceptional problem with countermeasures is

that ECCs are designed to transparently hide any modifi-

cations from the processing layers above. The host data as

well as the parasitic data are actually valid and conform

to the specifications. Where applicable, stringent language

descriptions that include dissection rules for multiple lan-

guages/standards and multiple synchronization markers are

a good start. In the general case, spotting multiple syn-

chronization markers on an asynchronous data channel and

verifying their belonging to non-overlapping data packets

is not a trivial task. The area of defenses leaves plenty of

opportunities for future work.

ACKNOWLEDGMENTS

Part of this work arose during an internship at the National

Institute of Informatics, Tokyo. Special thanks to Johanna

Ullrich, Katharina Krombholz and Manuel Leithner for their

valuable feedback and their previous work.

This research was partially funded by the COMET K1

program by FFG (Austrian Research Funding Agency) and

the Austrian Science Fund (FWF): P 26289-N23.

REFERENCES

[1] A. Albertini, “corkami: Reverse engineering and visual docu-
mentations,” http://code.google.com/p/corkami/#Binary files,
accessed September 6th 2014.

[2] J. Magazinius, B. K. Rios, and A. Sabelfeld, “Polyglots:
crossing origins by crossing formats,” in Proceedings of the
2013 ACM SIGSAC conference on Computer & communica-
tions security. ACM, 2013, pp. 753–764.

104

[3] A. Albertini, “This PDF is a JPEG; or, This Proof of
Concept is a Picture of Cats,” in PoC || GTFO 0x03,
March 2014, http://corkami.googlecode.com/svn/trunk/doc/
pocorgtfo/pocorgtfo03.pdf.

[4] S. Jana and V. Shmatikov, “Abusing File Processing in
Malware Detectors for Fun and Profit,” in Proceedings of the
33rd IEEE Symposium on Security & Privacy, San Francisco,
CA, May 2012.

[5] S. Alvarez and T. Zoller, “The death of AV defense in depth?
- revisiting anti-virus software,” 2008, http://cansecwest.com/
csw08/csw08-alvarez.pdf.

[6] L. Sassaman, M. L. Patterson, S. Bratus, M. E. Locasto,
and A. Shubina, “Security Applications of Formal Language
Theory,” in IEEE Systems Journal, Volume 7, Issue 3, Sept.
2013.

[7] A. Dabrowski, K. Krombholz, J. Ullrich, and E. R. Weippl,
“QR Inception: Barcode-in-Barcode Attacks,” in Proceedings
of the 4th ACM Workshop on Security and Privacy in Smart-
phones & Mobile Devices. ACM, 2014, pp. 3–10.

[8] T. Goodspeed, S. Bratus, R. Melgares, R. Shapiro, and
R. Speers, “Packets in packets: Orson welles’ in-band sig-
naling attacks for modern radios.” in Proceedings to WOOT
2011, August 2011, pp. 54–61.

[9] D. Tam, “PayPal offers QR codes for retail-store
purchases,” October 2013, http://www.cnet.com/news/
paypal-offers-qr-codes-for-retail-store-purchases/, accessed
July 24th 2014.

[10] Threema GmbH, “Threema,” https://threema.ch/, accessed
July 17th 2014.

[11] P. Kieseberg, S. Schrittwieser, M. Leithner, M. Mulazzani,
E. Weippl, L. Munroe, and M. Sinha, “Malicious Pixels
Using QR Codes as Attack Vector,” in Trustworthy
Ubiquitous Computing, ser. Atlantis Ambient and Pervasive
Intelligence, I. Khalil and T. Mantoro, Eds. Atlantis
Press, 2012, vol. 6, pp. 21–38. [Online]. Available:
http://dx.doi.org/10.2991/978-94-91216-71-8 2

[12] A. Kharraz, E. Kirda, W. Robertson, D. Balzarotti, and
A. Francillon, “Optical Delusions: A Study of Malicious QR
Codes in the Wild,” in Proceedings of the IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(DSN), 06 2014.

[13] M. DeCarlo, “AVG: QR code-based malware attacks
to rise in 2012,” 2012, http://www.techspot.com/news/
47189-avg-qr-code.html, accessed July 18th 2014.

[14] B. Naik, “QR Code: USSD attack,” 2012, http://resources.
infosecinstitute.com/qr-code-ussd-attack/, accessed July 18th
2014.

[15] J. Rabet, “NINJHAX - 3DS Homebrew Exploit,” http://
smealum.net/ninjhax/, accessed March 3rd 2015.

[16] K. Peng, H. Sanabria, D. Wu, and C. Zhu, “Secu-
rity Overview of QR Codes,” 2014, MIT Student Paper,
available online https://courses.csail.mit.edu/6.857/2014/files/
12-peng-sanabria-wu-zhu-qr-codes.pdf.

[17] ISO/IEC 18004: Information technology – Automatic identi-
fication and data capture techniques – QR Code 2005 bar
code symbology specification, International Organization for
Standardization Std. ISO/IEC 18 004.

[18] ISO/IEC 24778: Information technology – Automatic iden-
tification and data capture techniques – Aztec Code bar
code symbology specification, International Organization for
Standardization Std. ISO/IEC 24 778.

[19] ISO/IEC 16022: Information technology – Automatic iden-
tification and data capture techniques – Data Matrix bar
code symbology specification, International Organization for
Standardization Std. ISO/IEC 16 022.

[20] NeoMedia Technologies, Inc., “NeoReader,” Apple App
Store, https://itunes.apple.com/us/app/id284973754, accessed
July 17th 2014.

[21] Kerem Erkan, “Qrafter,” Apple App Store, https://itunes.
apple.com/us/app/id416098700, accessed July 17th 2014.

[22] 3GVision, “i-nigma,” Apple App Store, https://itunes.apple.
com/en/app/id388923203, accessed July 17th 2014.

[23] ShopSavvy Inc., “QR Code Reader and Scanner,”
Apple App Store, https://itunes.apple.com/en/app/
qr-code-reader-and-scanner/id388175979, accessed July
17th 2014.

[24] Scanbuy Inc., “ScanLife Barcode & QR Code Reader with
Prices, Deals, & Reviews,” Apple App Store, https://itunes.
apple.com/us/app/scanlife-barcode-reader-qr/id285324287,
accessed July 17th 2014.

[25] ZXing Team, “Barcode Scanner,” Google Play Store,
https://play.google.com/store/apps/details?id=com.google.
zxing.client.android, accessed July 17th 2014.

[26] Ubercoders, “UberScanner,” Google Play Store,
https://play.google.com/store/apps/details?id=org.ubercoders.
uberscanner, accessed July 17th 2014.

[27] Scanbuy Inc., “ScanLife QR & Barcode Reader,” Google
Play Store, https://play.google.com/store/apps/details?id=
com.ScanLife, accessed July 17th 2014.

[28] 3GVision, “i-nigma Barcode Scanner,” Google Play
Store, https://play.google.com/store/apps/details?id=com.
threegvision.products.inigma.Android, accessed July 17th
2014.

[29] AT&T Services Inc., “AT&T Code Scanner: QR,UPC & DM,”
Google Play Store, https://play.google.com/store/apps/details?
id=com.mtag.att.codescanner, accessed July 17th 2014.

[30] NeoMedia Technologies Inc., “NeoReader QR & Barcode
Scanner,” Google Play Store, https://play.google.com/store/
apps/details?id=de.gavitec.android, accessed July 17th 2014.

[31] ShopSavvy Inc., “ShopSavvy Barcode Scanner,” Google
Play Store, https://play.google.com/store/apps/details?id=
com.biggu.shopsavvy, accessed July 17th 2014.

[32] M. Inc., “Symbol DS6708 Digital Scanner Product
Reference Guide,” 2009, http://www.motorolasolutions.com/
web/Business/Products/Bar%20Code%20Scanning/Bar%
20Code%20Scanners/General%20Purpose%20Scanners/
Documents/static file/ds6708.pdf.

105

