
Detecting Homoglyph Attacks with a Siamese Neural Network

Jonathan Woodbridge, Hyrum S. Anderson, Anjum Ahuja, Daniel Grant

Endgame
Email: {jwoodbridge, hyrum, aahuja, dgrant}@endgame.com

Abstract—A homoglyph (name spoofing) attack is a common
technique used by adversaries to obfuscate file and domain
names. This technique creates process or domain names that
are visually similar to legitimate and recognized names. For
instance, an attacker may create malware with the name
svch0st.exe so that in a visual inspection of running processes or
a directory listing, the process or file name might be mistaken
as the Windows system process svchost.exe. There has been
limited published research on detecting homoglyph attacks.
Current approaches rely on string comparison algorithms (such
as Levenshtein distance) that result in computationally heavy
solutions with a high number of false positives. In addition,
there is a deficiency in the number of publicly available
datasets for reproducible research, with most datasets focused
on phishing attacks, in which homoglyphs are not always used.

This paper presents a fundamentally different solution to this
problem using a Siamese convolutional neural network (CNN).
Rather than leveraging similarity based on character swaps
and deletions, this technique uses a learned metric on strings
rendered as images: a CNN learns features that are optimized
to detect visual similarity of the rendered strings. The trained
model is used to convert thousands of potentially targeted
process or domain names to feature vectors. These feature
vectors are indexed using randomized KD-Trees to make
similarity searches extremely fast with minimal computational
processing. This technique shows a considerable 13% to 45%
improvement over baseline techniques in terms of area under
the receiver operating characteristic curve (ROC AUC). In
addition, we provide both code and data to further future
research.

Keywords-deep learning; siamese networks; homoglyph;

I. INTRODUCTION

Cyber attackers have long leveraged creative attacks to

infiltrate networks. One simple attack uses homoglyphs or

name spoofing to obfuscate malicious purpose. These attacks

occur for both domain names and process names. Attackers

may use simple replacements such as 0 for o, rn for m, and

cl for d. Swaps may also include Unicode characters that

look very similar to common ASCII characters such as ł for
l. Other attacks append characters to the end of a name that

seem valid to a user such as svchost32.exe, svchost64.exe,
and svchost1.exe. The hope is that these processes or domain

names will go undetected by users and security organizations

by blending in as legitimate names.

One naive approach for discovering name spoof attacks is

to calculate the edit (Levenshtein) distance of each new pro-

cess or domain name to each member of a set of processes or

domain names to monitor. In general, edit distance measures

the number of edits (insertions, deletions, substitutions or

transpositions) to convert one string to another. A distance

less than or equal to a pre-defined threshold is flagged as

a potential spoof. In practice, this approach suffers from a

poor False Positive (FP)/False Negative (FN) tradeoff.

Another approach is to create a custom edit distance

function that accounts for the visual similarity of substitu-

tions, so that substituting a character with a visually similar

character result in a smaller edit distance than a visually

distinct character [15], [4]. As shown later in the paper, these

techniques result in only modest improvements over standard

edit distance functions. In addition, these techniques are in

large part manually crafted, making them very difficult to

enumerate and maintain, especially when considering the

full Unicode alphabet.

To overcome the shortcomings of the aforementioned

methods, this paper presents a metric-learning technique

based on a Siamese convolutional neural network (CNN).

A training set {(si, s′i, yi)}ni=1 is composed of n pairs of

strings consisting of either process names or domain names,

together with a distance target (similarity label) yi. A pair

of strings (si, s
′
i) for which s′i is a spoof of si (or vice

versa), we assign yi = 0 (similar), and yi = 1 (dissimilar)

otherwise. Each string si and its pair s′i is then rendered as

a binary image xi and x′
i, respectively. The Siamese CNN is

explicitly trained to convert images to features vectors such

that the distance between feature vectors of spoofing pairs

target a distance of 0.0, and at least 1.0 otherwise. The model

is deployed as a defensive measure as follows. We convert

all common or potentially targeted domain or process names

to feature vectors. These feature vectors are indexed using a

randomized KD-Tree index. When a new process or domain

name is observed, it is converted to a feature vector by the

CNN and searched in the KD-Tree index to find any visually

similar matches. If a match exists, then a homoglyph attack

is detected.

On the surface, this problem may seem similar to other

well studied problems. For example, there is a large body

of work that addresses the discovery of phishing attacks

[16]. Often these attacks are waged via email so as to

trick unsuspecting victims to click on malicious domain

names that appear to be benign in order to steal information.

Despite some similarities, much of the work in phishing

detection is largely not applicable to detecting homoglyph

attacks. First, phishing attacks often use domains that appear

22

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Jonathan Woodbridge. Under license to IEEE.
DOI 10.1109/SPW.2018.00012

to be legitimate, but are visually distinct from the benign

domain that they are impersonating. For example, an attacker

may register the domain google-weekly-updates.com. In this

example, the domain is very different from google.com and

probably unlikely to be registered (at least not at the time

of this publication!). In fact, previous works found that the

likelihood of a phishing attack grows with increasing edit

distance between the phishing domain and the legitimate

domain [16]. Second, phishing detection can use contextual

information such as appearance of the web pages (e.g., does

the content of fake-facebook.com appear legitimate?) and

whois information (i.e., registration information related to

the domain name).

There has also been a large amount of work in regards to

finding nearest string matches in other domains such as data

cleansing, spell checking, and bioinformatics [8], [23], [7].

However, those works did not consider visual similarity of

characters and do not apply to the problem at hand. Instead,

this work is largely inspired by the work in [11] that uses a

similar Siamese network used in this paper to classify digits

in the MNIST [13] and NORB [14] datasets.

Our work makes three primary contributions:

1) Presents a generic name spoofing detection technique

using a Siamese CNN, which to our knowledge, is the

first such application of metric learning to homoglyph

detection,

2) Compares the system’s efficacy to other common

string comparison techniques, and

3) Contributes source code to reproduce results in this

paper as well as two datasets to further research in

this area1.

In Section II we take a deeper dive into related work as

well as the motivations behind this work. In Section III we

discuss the high-level design of the system and the archi-

tecture of our neural network. In Section IV we compare

our neural network to other string matching techniques. We

conclude the paper in Section V with some closing thoughts.

II. RELATED WORK

An extensive amount of work has been devoted to efficient

string matching. Some of this work is focused on making

string matching fast [7], [8] while other work focuses on

improving the quality of nearest neighbor searches [23].

However, conventional string matching algorithms are not

an effective technique for detecting name spoofing. For

example, consider the windows application iexplore.exe. A
malicious user may create a piece of malware with the name

iexp1orc.exe that is an edit distance of 2 from the original

executable. In this case, a system that labels all process

names with an edit distance of 2 or less would catch this

spoof attack. However, consider also the common windows

1https://github.com/endgameinc/homoglyph

process explorer.exe. This process is also an edit distance 2
from iexplore.exe resulting in a false positive.

The key to detecting name spoofing attacks is to make

visual comparisons. When visually comparing the three

strings iexplore.exe, iexp1orc.exe, and explorer.exe, one of

the strings looks very different from the other two. The first

and last character (before .exe) of the string explorer.exe has

a different shape from the other two strings making it very

distinguishable. Such distinguishable characters are unlikely

to fool anyone in a spoofing attack, but are lost in basic

string matching systems.

There are many subtle string updates that result in a

string that appears almost identical to the original string. In

addition, the Windows operating system supports Unicode

characters resulting in an exponentially large number of

string swaps making signature-based detection infeasible

(i.e., a lookup table of all possible character swaps). Several

spoofing attempts are given in Table I. Notice how easily

spoofing strings may be overlooked. Authors in [22] give

more in-depth analysis of characteristics that make strings

appear visually similar.

Table I
EXAMPLE OF PROCESS NAME HOMOGLYPHS

Original Spoof Edit Distance

SVCHOST.EXE SVCH0ST.EXE 1
LSASS.EXE LS4SS.EXE 1
iexplore.exe iexp1orc.exe 2
chtime.exe chtirne.exe 2

Authors in [4], [15] attempted to improve upon con-

ventional edit distance functions by adding knowledge of

visual likeness in characters. For example, swapping a r
for a n would result in a smaller distance than a y or

a b. This technique relied on a largely manual step of

deriving similarity measures between characters and did not

include the massive unicode set. While this method generally

improves upon conventional techniques, it still exhibits a

high false positive rate.

A. Phishing

Phishing attacks can be broken down into four categories

[9]:

1) Obfuscating a domain name with an IP address,

2) Obfuscating a domain name with another domain

name,

3) Obfuscating a domain name within a longer domain

name, and

4) Obfuscating a domain name using misspellings and

common typos.

Examples of each type of phishing attack is given in Table

II. The first three obfuscation techniques result in domains

that are not visually similar. While the target domain name

may be a substring of the phishing domain name, the

two strings are visually different. The fourth obfuscation

23

technique may seem to be similar to process name spoofing,

however, misspellings and typos are not necessarily visually

similar.

Table II
EXAMPLE OF URL PHISHING ATTACKS. ONLY THE LAST IS A

HOMOGLYPH.

Type Phish URL Target Domain

1 202.0.0.1/google.com google.com
2 badDomain.com/google.com google.com
3 google.com.badDomain.com google.com
4 google.om google.com

Machine learning based approaches for detecting phishing

domains rely on two types of features [9], [26], [2], [25],

[18]. These include domain-based features that are derived

directly from the domain name and page-based features that

are derived from the hosted page.

These techniques have been effective in phishing detec-

tion, however, they do not focus on visual similarity. In

fact, authors in [16] found that the likelihood of a phishing

attack grows with increasing edit distance between the

phishing domain and the legitimate domain. Thus, methods

to detect phishing attacks are largely not applicable to

detecting spoofing attacks. While a new set of features

could be derived to detect name spoofing, this process is

extremely time consuming and highly susceptible to the cat

and mouse games waged by adversarial actors. For these

reasons, this work focused solely on visual appearance and

relies on convolutional neural networks to derive its own

visual features.

B. Siamese Neural Networks

Siamese neural networks were first introduced in 1993 by

Bromely and LeCun as a method to validate handwritten sig-

natures [5]. At its core, a Siamese neural network is simply a

pair of identical neural networks (i.e., shared weights) which

accept distinct inputs, but whose outputs are merged by a

simple comparative energy function. The key purpose of the

neural network is to map a high-dimensional input (e.g., an

image) into a target space, such that a simple comparison

of the targets by the energy function approximates a more

difficult-to-define “semantic” comparison in the input space.

Mathematically, if a neural network gW : R
n �→ R

d

is parameterized by weights W, and we choose simple

Euclidean distance for our comparative energy function

E : R
d × R

d �→ R, then the Siamese network computes

dissimilarity between the pair of images (x1,x2) simply as

dW (x1,x2) = E (gW (x1) , gW (x2))

= ||gW (x1)− gW (x2) ||2. (1)

Note that gW represents a family of functions parameter-

ized by W. We wish to learn W such that dW (x1,x2)
is small if x1 and x2 are similar, and large if they are

dissimilar. At first glance, one may be tempted to choose

W simply minimizing dW over pairs of similar inputs;

however, this may lead to degenerate solutions such as

gW = constant, for which dW is identically zero. Instead,

previous research has employed contrastive loss to ensure

that similar inputs result in small dW, while simultaneously

pushing dW to be large for dissimilar inputs [6].
Chopra et al. [11] proposed a contrastive loss function of

the form

L (W) =

P∑
i=1

(1− yi)LS

(
diW

)
+ yiLD

(
diW

)
, (2)

where yi = 0 if the images in the ith input pair (x1,x2)
i

are deemed similar and yi = 1 if dissimilar, diW =

dW

(
(x1,x2)

i
)
is the Siamese network dissimilarity for the

ith pair, and the summation occurs over all P input pairs.

The authors chose partial loss for similar pairs to be squared

loss, LS(x) = x2, while partial loss for dissimilar pairs

was chosen to be the squared hinge loss with margin α,
LD(x) = (max {0, α− x})2. Intuitively, this loss aims to

shrink the distance between feature vectors of similar pairs

to 0, while expanding the distance between dissimilar pairs

to be at least α. In our experiments, we use a margin of

α = 1.
Since the loss function is differentiable with respect to

W, the weights can learned via backpropagation. Notable

is the fact that after the weights W have been trained, the

network gW may be used in isolation to map from the space

of images to the compact target feature space for simple

comparison.

C. Indexing Strings
Once a Siamese neural network is trained to convert

strings to a feature vector, we must select many process

names (or domain names) that we are interested in moni-

toring (i.e., which names do we expect to be targeted in a

spoof attack?). This list is tractable as it is less likely for an

attacker to spoof a process (or domain) name that is known

by very few people. However, this list can easily grow into

the hundreds of thousands. For example, someone interested

in monitoring domain names may want to monitor the top

250K common domains around the world. A naive approach

is to compute the Euclidean distance between a suspect

string’s feature vector and every string’s feature vector that

is being monitored. This brute force nearest search can be

improved significantly using indexing.
We employ (randomized) KD-Trees as a geometrical

index [3] to quickly search for similar feature vectors.

There are several algorithms for performing nearest neighbor

search [12], [10], [24], [21], and many may work for this

technique. KD-Trees were chosen for their simplicity and

availability of open source tools.
In KD-Trees, the dataset is bisected at the median point

along the dimension of highest variance, forming two ge-

ometric axis-aligned child regions, which are subsequently

24

Figure 1. Neural network trained to produce similarity features from
image-rendered string queries

split using the same logic, and so on, to form a deterministic

tree. For search, deterministic trees may scale poorly with

dimensionality. Several randomization techniques may be

applied to the former strategy, which results in a non-

deterministic tree. We use a standard implementation of

FLANN [19], in which the split point at each level is chosen

randomly among those dimensions that exhibit the greatest

variance. A constant number of trees (we use 10 trees in

experiments) are built using independent random choices of

the split dimension, and all trees are searched for each query.

III. METHOD

We utilize a Siamese network as a key component for

predicting the visual similarity between a query string and a

whitelist of potential strings that an attacker may spoof. Our

process includes the following steps for determining whether

a query is a possible domain or process name spoof.

1) A query string is rendered as a binary image to capture

its visual representation. Independent of the query,

whitelist strings are rendered into images of fixed size

using a common font.

2) From the rendered image, image features are extracted

using a neural network, shown in Fig. 1. This network

was trained in a Siamese architecture to capture visual

similarity between image-rendered strings and possi-

ble spoofs. The resulting features are those learned by

the Siamese network to best capture image similarity

between rendered strings and synthesized spoofs.

3) We query a randomized KD-Tree index for feature

vectors with Euclidean distance below a specified

threshold to the query feature, and report strings

corresponding that correspond to spoofs.

In what follows, we provide additional details about

components of this process.

A. Neural network similarity model

The neural network in Fig. 1 is intended to produce a

feature vector from an input image of rendered text. In our

model, we render images of size 150x12 with white text

Figure 2. Overview example of training the Siamese Neural network.
google.com and gooogle.com are spoofing pairs and the CNN is trained
such that the euclidean distance between their respective features is 0.0.

on black background using Arial TrueType font. In our

experiments, the image size accommodates horizontal space

for 25 characters—an artificial limitation that is trivially

extended without other dependent changes in the process.

With well-structured input, our network can be rela-

tively small. We choose two convolution layers with leaky

ReLU activations [17], each followed by maxpooling with

downsampling. The convolutional layers are followed by

a single dense layer that maps the flattened output of the

convolutional layers to a 32-dimensional feature vector.

Training the network is using a Siamese architecture in the

normal way: a pair of input images (x1,x2) is compared via

Euclidean distance in (1) as dW (x1,x2), and are penalized

via contrastive loss in (2). Parameters of the network are

updated via backpropagation. In our experiments, we use the

RMSProp optimizer on batches of 8 images. An example of

the entire Siamese CNN is given in Figure 2.

B. KD-Tree Index

Potential targets of spoofing attacks are converted to fea-

tures vectors with the CNN described above. These feature

vectors are indexed using ten randomized KD-Trees, where

each tree is grown to purity (1 sample per leaf node).

We perform 128 checks on each query unless otherwise

specified. The KD-Tree implementation in [20] is used for

experiments in this paper.

IV. RESULTS

All experiments are run on two datasets. The first dataset

is constructed using the National Software Reference Library

(NSRL) [1] using all files with the .exe and .dll and a

filename of at least four characters (not including the ex-

tension. Benign pairs (i.e., not spoofing attacks) are created

by calculating an all-to-all edit distance and retaining all

pairs such that:

d(x1, x2) ≤ 3, (3)

where d is the edit distance function (Levenshtein distance).

The edit distance of three is fairly small and chosen to

make the dataset one that distinguishes visual similarity from

edit distance similarity. This data sets helps highlight the

25

shortcomings of various algorithms. Malicious pairs (i.e.,

spoofing attacks) are created by generating spoofing attacks

using the file names extracted from NSRL. Spoofing attacks

are generated using thousands of character swaps using

both ASCII and unicode characters. The second data set is

composed similar to the NSRL data set except that it was

generated using 100K active web domains. The restriction

on edit distance (d ≤ 3) was removed when generating the

domain data set. This was due to a lack of non-spoofing

pairs with distance less than four.

Note that benign strings in both data sets are predomi-

nantly composed of ASCII characters. However, this would

not be the case when deploying the system in many non-

English speaking countries. For this reason, any work using

this dataset should not use the presence of unicode as an

indicator of spoofing attacks.

A. Setup

For both data sets, we randomly partition the data into

training, testing and validation sets. A separate neural net-

work was trained for each data set. The validation set is

used during training to prevent over-fitting. Efficacy results

are calculated using Area Under the Curve (AUC) of the

Receiver Operating Characteristic (ROC).
For comparison, the Siamese neural network is compared

to two string matching techniques: conventional edit distance

and visual edit distance [15], [4].

B. Distance Measure Effectiveness

The first set of experiments compare the effectiveness of

the proposed technique to that of conventional edit distance

and visual edit distance [15], [4], which we re-implement

from descriptions for comparison. Figure 3 shows the ROC

for the process name data set. Standard edit distance has

an ROC very close to 0.5 (chance). This is expected as all

non-spoofing and spoofing pairs had an edit distance not

exceeding 3, making it difficult to do significantly better

than chance using edit distance alone. Surprisingly, visual

edit distance is only slightly improved over edit distance.

Lack of improvements highlights the difficulty of manually

curating distance measures. The number of possible charac-

ters is extremely large when including unicode and manually

deriving all to all distances from each character is unfeasible.

One could attempt to learn an all to all distance between

characters, but manually creating such a data set to learn on

is also prohibitively expensive.

Figure 4 shows the ROC curve for the domain data set.

Note that all three methods perform far better than the

process name data set due to non-spoofing pairs having

edit distances that are greater than 3. However, the CNN

performs significantly better than the other two techniques.

As expected, the visual edit distance is improved over the

standard edit distance.

Figure 3. ROC curves for classifying process name spoof attacks

Figure 4. ROC curves for classifying domain name spoof attacks

C. KDTree Performance

The second set of experiments measures the speed im-

provements and recall degradation when using a KDTrees to

index features derived from our model. The KDTree is used

to index known strings that may be spoofed. For example,

the top 100K most visited domains can be converted to

feature vectors using the model and indexed as possible

targets for homoglyph attacks. When a new domain is seen,

it is converted to a feature vector using the model and is

compared to everything in our index. A naive linear scan will

take nd computations where n is the number of elements in

our index and d is the number of dimensions. On the other

hand, a KDTree index will only take c×(log (n) + d) where

c is the number of checks used by the KDTree. (The number

of checks is the number of leaf nodes visited in the search.)

We use c = 128, and in practice c is typically on the order

of 64 to 256 making a KDTree far faster than a naive linear

scan for large data sizes. However, this speed increase comes

at a cost of lower recall.

Figure 5 and Figure 6 displays the tradeoff between speed

and recall with increasing number of checks for the process

data and domain data respectively. This experiment is run on

50,000 indexed elements and 50,000 queries. The number

of checks equates to the number of leaves explored in

a search for the nearest neighbor. The closest element in

each explored leaf is returned as the nearest neighbor. The

likelihood of finding the true nearest neighbor increases with

the number of leaves explored. However, the time it takes

26

Figure 5. Displays the tradeoff of speed and recall with varying number
of checks.

Figure 6. Displays the tradeoff of speed and recall with varying number
of checks.

to search also increases.

There is one main differences between the performance of

the two data sets. The domain data set achieves near 1.0 re-

call while the process data set achieves near 0.95 recall. One

cause of degradation in the process name data set are clusters

of very similar process names. For example, some files in

the NSRL data set have versioning information in their

file names (e.g., firefox-1.5.0.1.tar and firefox-2.0.0.1.tar).
Each element in these clusters will have very similar feature

vectors generated by the CNN making it more likely for

a KD-Tree to return incorrect results. Figure 7 shows the

distribution of distances from each process/domain name to

its nearest neighbor. Distances are calculated using the edit

distance normalized by the string length.

As can be seen in Figure 7, process names have a much

larger percentage of nearest neighbors falling in the sub 10%

range than the domain dataset. This distribution of data can

degrade performance as seen in Figure 5.

Both datasets produce nearly identical runtime behavior,

and get the best recall/time trade-off with 128 checks. The

number of checks was based on 50,000 elements and is

expected to increase with the number of elements in the

index.

D. Visualizing nearest neighbors

Figure 8 displays the feature vectors of twenty domain

names, consisting of 4 domain names each with 4 additional

Figure 7. Displays the distribution of distances from each process/domain
name to its nearest neighbor. Distance is defined as the percentage edit
distance (i.e., the edit distance normalized by the string length).

Figure 8. (top) Two dimensional PCA projection of feature vectors derived
from google.com, facebook.com, twitter.com, and snapchat.com along with
4 homoglyph attacks; (bottom) homoglyphs for each of the domain names.

homoglyphs. A PCA projection is performed on these fea-

ture vectors to reduce the number of dimensions to two. The

names consist of google.com, facebook.com, twitter.com, and

snapchat.com along with four homoglyph attacks for each

domain. Note how each domain and respective homoglyph

attacks cluster tightly demonstrating that our learned feature

vectors are able to distinguish well between domain names.

Distinguishability allows us to predict spoofing attacks with

very low false positive rates.

V. CONCLUSION

We presented a technique2 for detecting domain and

process homoglyph attacks using a Siamese CNN. Names

are converted to images and passed to the CNN to convert

the name to a feature vector. The CNN is trained such

that similar strings (i.e., spoofing attacks) generate feature

vectors that have a small Euclidean distance while dissimilar

strings produce feature vectors that have a large Euclidean

distance. Results were compared to conventional detection

methods using edit distance and demonstrated a 13% to 45%

improvement in terms of area under the ROC curve.

2Code and data are publicly available at https://github.com/endgameinc/
homoglyph.

27

REFERENCES

[1] T. Allen, “National software reference library (NSRL),” 2016.

[2] R. Basnet, S. Mukkamala, and A. H. Sung, “Detection of
phishing attacks: A machine learning approach,” in Soft
Computing Applications in Industry. Springer, 2008, pp.
373–383.

[3] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Communications of the ACM, vol. 18,
no. 9, pp. 509–517, 1975.

[4] P. E. Black. (2008) Compute visual similarity of top-level
domains. [Online]. Available: https://hissa.nist.gov/~black/
GTLD/

[5] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun,
C. Moore, E. Säckinger, and R. Shah, “Signature verification
using a "siamese" time delay neural network,” IJPRAI, vol. 7,
no. 4, pp. 669–688, 1993.

[6] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity
metric discriminatively, with application to face verification,”
in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE,
2005, pp. 539–546.

[7] D. Deng, G. Li, and J. Feng, “A pivotal prefix based filtering
algorithm for string similarity search,” in Proceedings of the
2014 ACM SIGMOD international conference on Manage-
ment of data. ACM, 2014, pp. 673–684.

[8] D. Deng, G. Li, J. Feng, and W.-S. Li, “Top-k string similarity
search with edit-distance constraints,” in Data Engineering
(ICDE), 2013 IEEE 29th International Conference on. IEEE,
2013, pp. 925–936.

[9] S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A frame-
work for detection and measurement of phishing attacks,”
in Proceedings of the 2007 ACM workshop on Recurring
malcode. ACM, 2007, pp. 1–8.

[10] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product
quantization for approximate nearest neighbor search,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2013, pp. 2946–2953.

[11] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality re-
duction by learning an invariant mapping,” in Computer
vision and pattern recognition, 2006 IEEE computer society
conference on, vol. 2. IEEE, 2006, pp. 1735–1742.

[12] H. Jegou, M. Douze, and C. Schmid, “Product quantization
for nearest neighbor search,” IEEE transactions on pattern
analysis and machine intelligence, vol. 33, no. 1, pp. 117–
128, 2011.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[14] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods
for generic object recognition with invariance to pose and
lighting,” in Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society
Conference on, vol. 2. IEEE, 2004, pp. II–104.

[15] A. Linari, F. Mitchell, D. Duce, and S. Morris, “Typo-
squatting: The curse”of popularity,” 2009.

[16] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying
suspicious urls: an application of large-scale online learning,”
in Proceedings of the 26th annual international conference on
machine learning. ACM, 2009, pp. 681–688.

[17] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier non-
linearities improve neural network acoustic models,” in Proc.
ICML, vol. 30, no. 1, 2013.

[18] S. Marchal, K. Saari, N. Singh, and N. Asokan, “Know your
phish: Novel techniques for detecting phishing sites and their
targets,” in Distributed Computing Systems (ICDCS), 2016
IEEE 36th International Conference on. IEEE, 2016, pp.
323–333.

[19] M. Muja and D. Lowe, “Fast approximate nearest neighbors
with automatic algorithm configuration.” VISAPP (1), vol. 2,
no. 331-340, p. 2, 2009.

[20] ——, “Flann-fast library for approximate nearest neighbors
user manual,” Computer Science Department, University of
British Columbia, Vancouver, BC, Canada, 2009.

[21] ——, “Scalable nearest neighbor algorithms for high dimen-
sional data,” vol. 36, no. 11. IEEE, 2014, pp. 2227–2240.

[22] T. R. Trabasso, J. P. Sabatini, D. W. Massaro, and R. Calfee,
From orthography to pedagogy: Essays in honor of Richard
L. Venezky. Psychology Press, 2014.

[23] J. Wang, G. Li, and J. Fe, “Fast-join: An efficient method
for fuzzy token matching based string similarity join,” in
Data Engineering (ICDE), 2011 IEEE 27th International
Conference on. IEEE, 2011, pp. 458–469.

[24] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity
search: A survey,” arXiv preprint arXiv:1408.2927, 2014.

[25] G. Xiang, J. Hong, C. P. Rose, and L. Cranor, “Cantina+:
A feature-rich machine learning framework for detecting
phishing web sites,” ACM Transactions on Information and
System Security (TISSEC), vol. 14, no. 2, p. 21, 2011.

[26] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-
based approach to detecting phishing web sites,” in Proceed-
ings of the 16th international conference on World Wide Web.
ACM, 2007, pp. 639–648.

28

