
Adversarial examples for generative models

Jernej Kos
National University of Singapore

Ian Fischer
Google Research

Dawn Song
University of California, Berkeley

Abstract—We explore methods of producing adversarial exam-
ples on deep generative models such as the variational autoen-
coder (VAE) and the VAE-GAN. Deep learning architectures are
known to be vulnerable to adversarial examples, but previous
work has focused on the application of adversarial examples to
classification tasks. Deep generative models have recently become
popular due to their ability to model input data distributions and
generate realistic examples from those distributions. We present
three classes of attacks on the VAE and VAE-GAN architectures
and demonstrate them against networks trained on MNIST,
SVHN and CelebA. Our first attack leverages classification-based
adversaries by attaching a classifier to the trained encoder of
the target generative model, which can then be used to indirectly
manipulate the latent representation. Our second attack directly
uses the VAE loss function to generate a target reconstruction
image from the adversarial example. Our third attack moves
beyond relying on classification or the standard loss for the
gradient and directly optimizes against differences in source and
target latent representations. We also motivate why an attacker
might be interested in deploying such techniques against a target
generative network.

I. INTRODUCTION

Adversarial examples have been shown to exist for a variety

of deep learning architectures.1 They are small perturbations

of the original inputs, often barely visible to a human observer,

but carefully crafted to misguide the network into producing

incorrect outputs. Seminal work by [2] and [3], as well as

much recent work, has shown that adversarial examples are

abundant and finding them is easy.

Most previous work focuses on the application of adver-

sarial examples to the task of classification, where the deep

network assigns classes to input images. The attack adds small

adversarial perturbations to the original input image. These

perturbations cause the network to change its classification of

the input, from the correct class to some other incorrect class

(possibly chosen by the attacker). Critically, the perturbed

input must still be recognizable to a human observer as

belonging to the original input class.2

Deep generative models, such as [5], learn to generate a

variety of outputs, including handwritten digits, faces [6],

realistic scenes [7], videos [8], 3D objects [9], and audio [10].

These models learn an approximation of the input data distri-

bution in different ways, and then sample from this distribution

to generate previously unseen but plausible outputs.

1 Adversarial examples are even easier to produce against most other
machine learning architectures, as shown in [1], but we are focused on deep
networks.

2 Random noise images and “fooling” images [4] do not belong to this strict
definition of an adversarial input, although they do highlight other limitations
of current classifiers.

To the best of our knowledge, no prior work has explored

using adversarial inputs to attack generative models. There are

two main requirements for such work: describing a plausible

scenario in which an attacker might want to attack a gener-

ative model; and designing and demonstrating an attack that

succeeds against generative models. We address both of these

requirements in this work.

One of the most basic applications of generative models

is input reconstruction. Given an input image, the model first

encodes it into a lower-dimensional latent representation, and

then uses that representation to generate a reconstruction of the

original input image. Since the latent representation usually

has much fewer dimensions than the original input, it can be

used as a form of compression. The latent representation can

also be used to remove some types of noise from inputs, even

when the network has not been explicitly trained for denoising,

due to the lower dimensionality of the latent representation

restricting what information the trained network is able to

represent. Many generative models also allow manipulation

of the generated output by sampling different latent values or

modifying individual dimensions of the latent vectors without

needing to pass through the encoding step.

These properties of input reconstruction generative networks

suggest a variety of different attacks that would be enabled by

effective adversaries against generative networks. Any attack

that targets the compression bottleneck of the latent representa-

tion can exploit natural security vulnerabilities in applications

built to use that latent representation. Specifically, if the person

doing the encoding step is separated from the person doing the

decoding step, the attacker may be able to cause the encoding

party to believe they have encoded a particular message for

the decoding party, but in reality they have encoded a different

message of the attacker’s choosing. We explore this idea in

more detail as it applies to the application of compressing

images using a VAE or VAE-GAN architecture.

II. RELATED WORK AND BACKGROUND

This work focuses on adversaries for variational autoen-

coders (VAEs, proposed in [5]) and VAE-GANs (VAEs com-

posed with a generative adversarial network, proposed in [11]).

A. Related work on adversaries

Many adversarial attacks on classification models have been

described in existing literature [2], [3]. These attacks can

be untargeted, where the adversary’s goal is to cause any

misclassification, or the least likely misclassification [3], [12];

or they can be targeted, where the attacker desires a specific

36

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Jernej Kos. Under license to IEEE.
DOI 10.1109/SPW.2018.00014

misclassification. [13] gives a recent example of a strong

targeted adversarial attack. Some adversarial attacks allow for

a threat model where the adversary does not have access to

the target model [1], [2], but commonly it is assumed that

the attacker does have that access, in an online or offline

setting [3], [12].3

Given a classifier f(x) : x ∈ X → y ∈ Y and

original inputs x ∈ X , the problem of generating untar-
geted adversarial examples can be expressed as the following

optimization: argminx∗ L(x,x∗) s.t. f(x∗) �= f(x), where

L(·) is a chosen distance measure between examples from

the input space (e.g., the L2 norm). Similarly, generating a

targeted adversarial attack on a classifier can be expressed as

argminx∗ L(x,x∗) s.t. f(x∗) = yt, where yt ∈ Y is some

target label chosen by the attacker.

These optimization problems can often be solved with

optimizers like L-BFGS or Adam [15], as done in [2] and [16].

They can also be approximated with single-step gradient-based

techniques like fast gradient sign [3], fast gradient L2 [17], or

fast least likely class [12]; or they can be approximated with

iterative variants of those and other gradient-based techniques

[12], [13].

An interesting variation of this type of attack can be found

in [18]. In that work, they attack the hidden state of the target

network directly by taking an input image x and a target image

xt and searching for a perturbed variant of x that generates

similar hidden state at layer l of the target network to the

hidden state at the same layer generated by xt. This approach

can also be applied directly to attacking the latent vector of a

generative model.

A variant of this attack has also been applied to VAE models

in the concurrent work of [19]4, which uses the KL divergence

between the latent representation of the source and target

images to generate the adversarial example. However in their

paper, the authors mention that they tried attacking the output

directly and that this only managed to make the reconstructions

more blurry. While they do not explain the exact experimental

setting, the attack sounds similar to our LVAE attack, which

we find very successful. Also, in their paper the authors do

not consider the more advanced VAE-GAN models and more

complex datasets like CelebA.

B. Background on VAEs and VAE-GANs

The general architecture of a variational autoencoder con-

sists of three components. The encoder fenc(x) is a neural net-

work mapping a high-dimensional input representation x into a

lower-dimensional (compressed) latent representation z. All

possible values of z form a latent space. Similar values in the

latent space should produce similar outputs from the decoder

in a well-trained VAE. And finally, the decoder/generator
fdec(z), which is a neural network mapping the compressed

latent representation back to a high-dimensional output x̂.

Composing these networks allows basic input reconstruction

3 See [14] for an overview of different adversarial threat models.
4 This work was made public shortly after we published our early drafts.

Receiver

z

SenderAttacker

fenc

fdec

Fig. 1. Depiction of the attack scenario. The VAE is used as a compression
scheme to transmit a latent representation of the image from the sender (left) to
the receiver (right). The attacker convinces the sender to compress a particular
image into its latent vector, which is sent to the receiver, where the decoder
reconstructs the latent vector into some other image chosen by the attacker.

x̂ = fdec(fenc(x)). This composed architecture is used during

training to backpropagate errors from the loss function.

The variational autoencoder’s loss function LVAE enables

the network to learn a latent representation that approximates

the intractable posterior distribution p(z|x):
LVAE = −DKL[q(z|x)||p(z)] + Eq[log p(x|z)]. (1)

q(z|x) is the learned approximation of the posterior distri-

bution p(z|x). p(z) is the prior distribution of the latent

representation z. DKL denotes the Kullback–Leibler diver-

gence. Eq[log p(x|z)] is the variational lower bound, which in

the case of input reconstruction is the cross-entropy H[x, x̂]
between the inputs x and their reconstructions x̂. In order to

generate x̂ the VAE needs to sample q(z|x) and then compute

fdec(z).
For the VAE to be fully differentiable while sampling from

q(z|x), the reparametrization trick [5] extracts the random

sampling step from the network and turns it into an input,

ε. VAEs are often parameterized with Gaussian distributions.

In this case, fenc(x) outputs the distribution parameters μ
and σ2. That distribution is then sampled by computing

z = μ+ε
√
σ2 where ε ∼ N(0, 1) is the input random sample,

which does not depend on any parameters of fenc, and thus

does not impact differentiation of the network.

The VAE-GAN architecture of [11] has the same fenc and

fdec pair as in the VAE. It also adds a discriminator fdisc that

is used during training, as in standard generative adversarial

networks [20]. The loss function of fdec uses the disciminator

loss instead of cross-entropy for estimating the reconstruction

error.

III. PROBLEM DEFINITION

We provide a motivating attack scenario for adversaries

against generative models, as well as a formal definition of

an adversary in the generative setting.

A. Motivating attack scenario

To motivate the attacks presented below, we describe the

attack scenario depicted in Figure 1. In this scenario, there

are two parties, the sender and the receiver, who wish to share

images with each other over a computer network. In order to

conserve bandwidth, they share a VAE trained on the input

distribution of interest, which will allow them to send only

latent vectors z.

The attacker’s goal is to convince the sender to send an

image of the attacker’s choosing to the receiver, but the

37

Fig. 2. Results for the L2 optimization latent attack (see Section IV-C) on the
VAE-GAN, targeting a specific image from the class 0. Shown are the first
12 non-zero images from the test SVHN data set. The columns are, in order:
the original image, the reconstruction of the original image, the adversarial
example, the predicted class of the adversarial example, the reconstruction of
the adversarial example, the predicted class of the reconstructed adversarial
example, the reconstruction of the reconstructed adversarial example (see
Section IV-E), and the predicted class of that reconstruction.

attacker has no direct control over the bytes sent between the

two parties. However, the attacker has a copy of the shared

VAE. The attacker presents an image x∗ to the sender which

resembles an image x that the sender wants to share with

the receiver. For example, the sender wants to share pictures

of kittens with the receiver, so the attacker presents a web

page to the sender with a picture of a kitten, which is x∗.

The sender chooses x∗ and sends its corresponding z to the

receiver, who reconstructs it. However, because the attacker

controlled the chosen image, when the receiver reconstructs

it, instead of getting a faithful reproduction x̂ of x (e.g., a

kitten), the receiver sees some other image of the attacker’s

choosing, x̂adv, which has a different meaning from x (e.g.,

a request to send money to the attacker’s bank account).

There are other attacks of this general form, where the

sender and the receiver may be separated by distance, as in

this example, or by time, in the case of storing compressed

images to disk for later retrieval. In the time-separated attack,

the sender and the receiver may be the same person or multiple

different people. In either case, if they are using the insecure

channel of the VAE’s latent space, the messages they share

may be under the control of an attacker. For example, an

attacker may be able to fool an automatic surveillance system

if the system uses this type of compression to store the

video signal before it is processed by other systems. In this

case, the subsequent analysis of the video signal could be on

compromised data showing what the attacker wants to show.

While we do not specifically attack their models, viable

compression schemes based on deep neural networks have

already been proposed in the literature, showing promising

results [21], [22].

B. Defining adversarial examples against generative models

We make the following assumptions about generating ad-

versarial examples on a target generative model, Gtarg(x) =
fdec(fenc(x)). Gtarg is trained on inputs X that can naturally

be labeled with semantically meaningful classes Y , although

there may be no such labels at training time, or the labels may

not have been used during training. Gtarg normally succeeds at

generating an output x̂ = Gtarg(x) in class y when presented

with an input x from class y. In other words, whatever target

output class the attacker is interested in, we assume that

Gtarg successfully captures it in the latent representation such

that it can generate examples of that class from the decoder.

This target output class does not need to be from the most

salient classes in the training dataset. For example, on models

trained on MNIST, the attacker may not care about generating

different target digits (which are the most salient classes). The

attacker may prefer to generate the same input digits in a

different style (perhaps to aid forgery). We also assume that

the attacker has access to Gtarg. Finally, the attacker has access

to a set of examples from the same distribution as X that have

the target label yt the attacker wants to generate. This does

not mean that the attacker needs access to the labeled training

dataset (which may not exist), or to an appropriate labeled

dataset with large numbers of examples labeled for each class

y ∈ Y (which may be hard or expensive to collect). The attacks

described here may be successful with only a small amount

of data labeled for a single target class of interest.

One way to generate such adversaries is by solving the

optimization problem

argminx∗ L(x,x∗) s.t. ORACLE(Gtarg(x
∗)) = yt,

where ORACLE reliably discriminates between inputs of class

yt and inputs of other classes. In practice, a classifier trained

by the attacker may server as ORACLE. Other types of

adversaries from Section II-A can also be used to approximate

this optimization in natural ways, some of which we describe

in Section IV.

If the attacker only needs to generate one successful attack,

the problem of determining if an attack is successful can be

solved by manually reviewing the x∗ and x̂adv pairs and

choosing whichever the attacker considers best. However, if

the attacker wants to generate many successful attacks, an

automated method of evaluating the success of an attack is

necessary. We show in Section IV-E how to measure the

effectiveness of an attack automatically using a classifier

trained on z = fenc(x).

IV. ATTACK METHODOLOGY

The attacker would like to construct an adversarially-

perturbed input to influence the latent representation in a way

that will cause the reconstruction process to reconstruct an

output for a different class. We propose three approaches to

attacking generative models: a classifier-based attack, where

we train a new classifier on top of the latent space z and

use that classifier to find adversarial examples in the latent

space; an attack using LVAE to target the output directly;

and an attack on the latent space, z. All three methods are

technically applicable to any generative architecture that relies

on a learned latent representation z. Without loss of generality,

we focus on the VAE-GAN architecture.

38

x Encoder
fenc

z Decoder
fdec

x

Classifier
fclass

VAE-GAN

Discriminator
fdisc

(0, 1)

y

Fig. 3. The VAE-GAN classifier architecture used to generate classifier-based
adversarial examples on the VAE-GAN. The VAE-GAN in the dashed box
is the target network and is frozen while training the classifier. The path
x → fenc → z → fclass → ŷ is used to generate adversarial examples in
z, which can then be reconstructed by fdec.

A. Classifier attack

By adding a classifier fclass to the pre-trained generative

model5 as shown in Figure 3, we can turn the problem of

generating adversaries for generative models back into the

previously solved problem of generating adversarial examples

for classifiers. This approach allows us to apply all of the

existing attacks on classifiers in the literature. However, using

this classifier tends to produce lower-quality reconstructions

from the adversarial examples than the other two attacks due

to the inaccuracies of the classifier. We omit further details

due to lack of space.

B. LVAE attack

Our second approach generates adversarial perturbations

using the VAE loss function. The attacker chooses two inputs,

xs (the source) and xt (the target), and uses one of the

standard adversarial methods to perturb xs into x∗ such that

its reconstruction x̂∗ matches the reconstruction of xt, using

the methods described in Section IV-D.

The adversary precomputes the reconstruction x̂t by eval-

uating fdec(fenc(xt)) once before performing optimization.

In order to use LVAE in an attack, the second term (the

reconstruction loss) of LVAE (see Equation 1) is changed so

that instead of computing the reconstruction loss between x
and x̂, the loss is computed between x̂∗ and x̂t. This means

that during each optimization iteration, the adversary needs

to compute x̂∗, which requires the full fdec(fenc(x
∗)) to be

evaluated.

C. Latent attack

Our third approach attacks the latent space of the generative

model. It is similar to the work of [18], in which they use a

pair of source image xs and target image xt to generate x∗

that induces the target network to produce similar activations at

some hidden layer l as are produced by xt, while maintaining

similarity between xs and x∗.

For this attack to work on latent generative models, it

is sufficient to compute zt = fenc(xt) and then use the

following loss function to generate adversarial examples from

different source images xs, using the methods described in

Section IV-D:

Llatent = L(zt, fenc(x
∗)). (2)

5 This is similar to the process of semi-supervised learning in [23], although
the goal is different.

L(·) is a distance measure between two vectors. We use

the L2 norm, under the assumption that the latent space is

approximately euclidean.

D. Methods for solving the adversarial optimization problem

We can use a number of different methods to generate

the adversarial examples. We initially evaluated both the fast

gradient sign [3] method and an L2 optimization method. As

the latter produces much better results we focus on the L2

optimization method. The attack can be used either in targeted

mode (where we want a specific class, yt, to be reconstructed)

or untargeted mode (where we just want an incorrect class to

be reconstructed). In this paper, we focus on the targeted mode.

The optimization-based approach, explored in [2] and [16],

poses the adversarial generation problem as the following

optimization problem:

argminx∗ λL(x,x∗) + L(x∗, yt). (3)

As above, L(·) is a distance measure, and L is one of

Lclassifier, LVAE, or Llatent. The constant λ is used to balance

the two loss contributions.

E. Measuring attack effectiveness

To generate a large number of adversarial examples auto-

matically against a generative model, the attacker needs a way

to judge the quality of the adversarial examples. We leverage

fclass to estimate whether a particular attack was successful.6

The architecture is the same as shown in Figure 3. We use

the generative model to reconstruct the attempted adversarial

inputs x∗ by computing:

x̂∗ = fdec(fenc(x
∗)). (4)

Then, fclass is used to compute:

ŷ = fclass(fenc(x̂
∗)). (5)

The input adversarial examples x∗ are not classified directly,

but are first fed to the generative model for reconstruction. This

reconstruction loop improves the accuracy of the classifier by

60% on average against the adversarial attacks we examined.

The predicted label ŷ after the reconstruction feedback loop

is compared with the attack target yt to determine if the

adversarial example successfully reconstructed to the target

class. If the precision and recall of fclass are sufficiently high

on yt, fclass can be used to filter out most of the failed

adversarial examples while keeping most of the good ones.

We derive two metrics from classifier predictions af-

ter one reconstruction feedback loop. The first metric is

ASignore−target, the attack success rate ignoring targeting,

i.e., without requiring the output class of the adversarial

example to match the target class:

ASignore−target =
1

N

N∑

i=1

1ŷi �=yi (6)

6 Note that fclass here is being used in a different manner than when we use
it to generate adversarial examples. However, the network itself is identical,
so we don’t distinguish between the two uses in the notation.

39

N is the total number of reconstructed adversarial examples;

1ŷi �=yi is 1 when ŷi, the classification of the reconstruction

for image i, does not equal yi, the ground truth classification

of the original image, and 0 otherwise. The second metric

is AStarget, the attack success rate including targeting (i.e.,

requiring the output class of the adversarial example to match

the target class), which we define similarly as:

AStarget =
1

N

N∑

i=1

1ŷi=yi
t
. (7)

Both metrics are expected to be higher for more successful

attacks. Note that AStarget ≤ ASignore−target. When com-

puting these metrics, we exclude input examples that have the

same ground truth class as the target class.

V. EVALUATION

We evaluate the three attacks on MNIST [24], SVHN [25]

and CelebA [26], using the standard training and validation

set splits. Due to space constraints, we only report the most

interesting results. The VAE and VAE-GAN architectures are

implemented in TensorFlow [27]. We optimized using Adam

with learning rate 0.001 and other parameters set to default

values for both the generative model and the classifier. For

the VAE, we use two architectures: a simple architecture

with a single fully-connected hidden layer with 512 units and

ReLU activation function; and a convolutional architecture

taken from the original VAE-GAN paper [11] (but trained

with only the VAE loss). We use the same architecture trained

with the additional GAN loss for the VAE-GAN model,

as described in that work. For both VAE and VAE-GAN

we use a 50-dimensional latent representation on MNIST, a

1024-dimensional latent representation on SVHN and 2048-

dimensional latent representation on CelebA.

In this section we only show results where no sampling from

latent space was performed. Instead we use the mean vector μ
as the latent representation z. As sampling can have an effect

on the resulting reconstructions, we evaluated it separately. We

show the results with different number of samples in Figure 8

in Section V-B2. On most examples, the visible change is small

and in general the attack is still successful.

Original image

Adversarial example

(LVAE)

Adversarial example

(latent)

Reconstruction

(original)

Reconstruction

(adv. latent)

Reconstruction

(adv. LVAE)

Fig. 4. Summary of different attacks on MNIST dataset and VAE-GAN
model: original images, adversarial examples for both methods (latent and
LVAE) and reconstructions of original images and adversarial examples.
Target reconstruction is shown on the right.

Original image

Adversarial example

(LVAE)

Adversarial example

(latent)

Reconstruction

(original)

Reconstruction

(adv. latent)

Reconstruction

(adv. LVAE)

Fig. 5. Summary of different attacks on SVHN dataset and VAE-GAN model:
original images, adversarial examples for both methods (latent and LVAE) and
reconstructions of original images and adversarial examples. The LVAE attack
seems ineffective against SVHN in our experiments. Target reconstruction is
shown on the right.

A. SVHN

The SVHN dataset consists of cropped street number images

and is much less clean than MNIST. Due to the way the images

have been processed, each image may contain more than one

digit; the target digit is roughly in the center. VAE-GAN

produces high-quality reconstructions of the original images

as shown in Figure 5.

For the classifier attack, we set λ = 10−5 after testing a

range of values, although we were unable to find an effective

value for this attack against SVHN. For the latent and LVAE

attacks we set λ = 10.

The evaluation metrics are less strong on SVHN (mean

ASignore−target = 0.82, mean AStarget = 0.51) than on

MNIST (mean ASignore−target = 0.96, mean AStarget =
0.76), but it is still straightforward for an attacker to find a

successful attack for almost all source/target pairs. Figure 2

supports this evaluation. Visual inspection shows that 11 out of

the 12 adversarial examples reconstructed as 0, the target digit.

It is worth noting that 2 out of the 12 adversarial examples

look like zeros (rows 1 and 11), and two others look like both

the original digit and zero, depending on whether the viewer

focuses on the light or dark areas of the image (rows 4 and 7).

The L2 optimization latent attack achieves much better results

than the LVAE attack (see Figure 5) on SVHN, while both

attacks work equally well on MNIST (see Figure 4).

B. CelebA

The CelebA dataset consists of more than 200,000 cropped

faces of celebrities, each annotated with 40 different attributes.

For our experiments, we further scale the images to 64x64 and

ignore the attribute annotations. VAE-GAN reconstructions of

original images after training are shown in Figure 6 (fourth

row).

We tried lambdas ranging from 0.1 to 0.75 for both attacks.

Figure 6 shows adversarial examples generated using the

latent attack and a lambda value of 0.5 (L2 norm between

original images and generated adversarial examples 9.78,

RMSD 0.088) and the corresponding VAE-GAN reconstruc-

tions. Most of the reconstructions reflect the target image very

well. We get even better results with the LVAE attack, using a

lambda value of 0.75 (L2 norm between original images and

40

Original image

Adversarial example

(LVAE)

Adversarial example

(latent)

Reconstruction

(original)

Reconstruction

(adv. latent)

Reconstruction

(adv. LVAE)

Fig. 6. Summary of different attacks on CelebA dataset and VAE-GAN
model: original images, adversarial examples for both methods (latent and
LVAE) and reconstructions of original images and adversarial examples.
Target reconstruction is shown on the right.

generated adversarial examples 8.98, RMSD 0.081) as shown

in Figure 6.

Fig. 7. Visualization of VAE-GAN reconstructions in input image space.
The x-axis is the attack direction, while the y-axis is a random orthogonal
direction. The reconstruction of the original image is at the center (0, 0).

1) Visualizing the adversarial example boundary: We gen-

erate a visualization of the reconstructions in input image

space, showing that the direction of the generated adversarial

example is much more effective than a random direction

when generating adversarial examples. Similar in meaning to

decision boundary plots [3] for classification models, Figure 7

shows VAE-GAN reconstructions from different points in

input image space spanned by the two directions. We generate

the plot by defining two normalized vectors, d1 and d2,

spanning the input image space. The one shown on the x-axis

points in the direction of the generated adversarial perturbation

(d1), while the other shown on the y-axis points in a randomly

chosen orthogonal direction (d2). The images in the plane rep-

resent reconstructions computed by fdec(fenc(x+ud1+vd2)),
where x is the original image. Values on the axes are the values

of constants u and v. The target image used for the attack is

the same as in Figure 6.

This visualization shows that if you move in the direction

of the generated adversarial example, you quickly bump into

adversarial examples, while moving in random directions in

image space has no major effect on changing the reconstruc-

tion.

2) Effect of sampling: Since VAE and VAE-GAN are

stohastic models, we also evaluate the effect of sampling

on the success of adversarial attacks on the CelebA dataset.

Evaluation is performed using different amount of samples

taken: no samples (only the mean is used), a single sample,

12 samples and 50 samples. Figure 8 shows the reconstructions

of original images and adversarial examples with different

number of samples taken. The results show that sampling only

has a limited effect on targeted adversarial attacks on VAE-

GAN using the CelebA dataset.

Fig. 8. Effect of sampling on adversarial reconstructions. Columns in order:
original image, reconstruction of the original image (no sampling), reconstruc-
tion of the original image (1 sample), reconstruction of the original image (12
samples), reconstruction of the original image (50 samples), adversarial exam-
ple (latent attack), reconstruction of the adversarial example (no sampling),
reconstruction of the adversarial example (1 sample), reconstruction of the
adversarial example (12 samples), reconstruction of the adversarial example
(50 samples).

VI. CONCLUSION

We explored generating adversarial examples against gen-

erative models such as VAEs and VAE-GANs. These models

are vulnerable to adversaries that convince them to turn inputs

into surprisingly different outputs. We have also motivated

why an attacker might want to attack generative models. Our

work adds further support to the hypothesis that adversarial

examples are a general phenomenon for current neural network

architectures, given our successful application of adversarial

attacks to popular generative models. In this work, we are

helping to lay the foundations for understanding how to build

more robust networks. Future work will explore defense and

robustification in greater depth as well as attacks on generative

models trained using natural image datasets such as CIFAR-10

and ImageNet.

REFERENCES

[1] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, ser. ASIA CCS ’17. New York,
NY, USA: ACM, 2017, pp. 506–519. [Online]. Available: http:
//doi.acm.org/10.1145/3052973.3053009

[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

41

[3] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[4] A. M. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
CoRR, vol. abs/1412.1897, 2014.

[5] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[6] T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum, “Deep con-
volutional inverse graphics network,” in Advances in Neural Information
Processing Systems, 2015, pp. 2539–2547.

[7] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves,
and K. Kavukcuoglu, “Conditional image generation with pixelcnn
decoders,” arXiv preprint arXiv:1606.05328, 2016.

[8] N. Kalchbrenner, A. v. d. Oord, K. Simonyan, I. Danihelka, O. Vinyals,
A. Graves, and K. Kavukcuoglu, “Video pixel networks,” arXiv preprint
arXiv:1610.00527, 2016.

[9] A. Dosovitskiy, J. Springenberg, M. Tatarchenko, and T. Brox, “Learning
to generate chairs, tables and cars with convolutional networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PP,
no. 99, pp. 1–1, 2016.

[10] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior,
and K. Kavukcuoglu, “Wavenet: A generative model for raw
audio,” CoRR, vol. abs/1609.03499, 2016. [Online]. Available:
http://arxiv.org/abs/1609.03499

[11] A. B. L. Larsen, S. K. Snderby, H. Larochelle, and O. Winther,
“Autoencoding beyond pixels using a learned similarity metric,”
in Proceedings of The 33rd International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, M. F.
Balcan and K. Q. Weinberger, Eds., vol. 48. New York, New York,
USA: PMLR, 20–22 Jun 2016, pp. 1558–1566. [Online]. Available:
http://proceedings.mlr.press/v48/larsen16.html

[12] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” CoRR, vol. abs/1607.02533, 2016.

[13] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” 2016.

[14] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proceedings of the 1st IEEE European Symposium on Security and
Privacy, 2015.

[15] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2015.

[16] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP), May
2017, pp. 39–57.

[17] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári, “Learning with a
strong adversary,” CoRR, vol. abs/1511.03034, 2015.

[18] S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet, “Adversarial manipulation
of deep representations,” CoRR, vol. abs/1511.05122, 2015. [Online].
Available: http://arxiv.org/abs/1511.05122

[19] P. Tabacof, J. Tavares, and E. Valle, “Adversarial Images for Variational
Autoencoders,” ArXiv e-prints, Dec. 2016.

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Eds.
Curran Associates, Inc., 2014, pp. 2672–2680. [Online]. Available:
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

[21] G. Toderici, S. M. O’Malley, S. J. Hwang, D. Vincent, D. Minnen,
S. Baluja, M. Covell, and R. Sukthankar, “Variable rate image compres-
sion with recurrent neural networks,” arXiv preprint arXiv:1511.06085,
2015.

[22] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor,
and M. Covell, “Full resolution image compression with recurrent neural
networks,” arXiv preprint arXiv:1608.05148, 2016.

[23] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-
supervised learning with deep generative models,” in Advances in Neural
Information Processing Systems, 2014, pp. 3581–3589.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[25] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

[26] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of International Conference on Computer
Vision (ICCV), 2015.

[27] M. Abadi and A. A. et al., “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: http://tensorflow.org/

42

