
Black-box Generation of Adversarial Text Sequences to Evade Deep Learning
Classifiers

Ji Gao, Jack Lanchantin, Mary Lou Soffa, Yanjun Qi

Department of Computer Science, University of Virginia; {jg6yd,jjl5sw, soffa,yanjun}@virginia.edu

Abstract—Although various techniques have been proposed
to generate adversarial samples for white-box attacks on text,
little attention has been paid to a black-box attack, which is
a more realistic scenario. In this paper, we present a novel
algorithm, DeepWordBug, to effectively generate small text
perturbations in a black-box setting that forces a deep-learning
classifier to misclassify a text input. We develop novel scoring
strategies to find the most important words to modify such
that the deep classifier makes a wrong prediction. Simple
character-level transformations are applied to the highest-
ranked words in order to minimize the edit distance of the
perturbation. We evaluated DeepWordBug on two real-world
text datasets: Enron spam emails and IMDB movie reviews.
Our experimental results indicate that DeepWordBug can
reduce the classification accuracy from 99% to 40% on
Enron and from 87% to 26% on IMDB. Our results strongly
demonstrate that the generated adversarial sequences from a
deep-learning model can similarly evade other deep models.

I. INTRODUCTION

Although deep learning has achieved remarkable results

in the field of natural language processing (NLP), including

sentiment analysis, relation extraction, and machine trans-

lation [1]–[3], a few recent studies pointed out that adding

small modifications to text inputs can fool deep classifiers

to incorrect classification [4], [5]. Similar phenomenon exist

in image classification where adding tiny and often imper-

ceptible perturbations on images could fool deep classifiers.

It naturally raises concerns about the robustness of deep

learning systems considering that deep learning has become

core components of many security-sensitive applications,

like text-based spam detection.
Formally, for a given classifier F and test sample x, recent

literature defined such perturbations as Δx and the resulting

sample x′ as an adversarial sample [5]:
x′ = x+Δx, ‖Δx‖p < ε, x′ ∈ X

F (x) �= F (x′) or F (x′) = t
(1)

Here we denote a machine learning classifier as F : X→ Y,

where X is the sample space, x ∈ X denotes a single sample,

and Y describes the set of output classes. The strength of the

adversary, ε, measures the permissible transformations. The

choice of condition in Eq. (1) indicates two methods for

finding adversarial examples: whether they are untargeted

(F (x) �= F (x′)) or targeted (F (x′) = t).
The choice of Δ is typically an Lp-norm distance metric.

Recent studies [4]–[7] used three norms L∞, L2 and L0.

Formally for Δx = x′ − x ∈ R
p, the Lp norm is

‖Δx‖p = p

√√√√
p∑

i=1

|x′i − xi|p (2)

The L∞ norm measures the maximum change in any di-

mension. This means an L∞ adversary is limited by the

maximum change it can make to each feature, but can alter

all the features by up to that maximum [5]. The L2 norm

corresponds to the Euclidean distance between x and x′ [6].

This distance can still remain small when small changes

are applied to many different features. An L0 adversary is

limited by the number of feature variables it can alter [7].
In addition to targeted/untargeted and Δ choices, a third

parameter for categorizing recent methods is whether their

assumption of an adversary is black-box or white-box. An

adversary may have various degrees of knowledge about the

model it tries to fool, ranging from no information to com-

plete information. In the black box setting, an adversary is

only allowed to query the target classifier and does not know

the details of learned models or the feature representations

of inputs. Since the adversary does not know the feature

set, it can only manipulate input samples by testing and

observing outputs. In the white box setting, an adversary has

access to the model, model parameters, and the feature set of

inputs. Similar to the black-box setting, the adversary is not

allowed to modify the model itself, or change the training

data used to train the model. Most studies of adversarial

examples in the literature use the white-box assumption [4],

[6]–[8]. One study proposed by [9] showed that it is possible

to create adversarial samples that successfully reduce the

classification accuracy without knowing the model structure

or parameters.
Recent studies have focused on image classification and

typically created imperceptible modifications to pixel val-

ues through an optimization procedure [4]–[7]. Szegedy et

al. [4] first observed that DNN models are vulnerable to

adversarial perturbation (by limiting the modification using

L2 norm) and used the Limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm to find adversarial

examples. Their study also found that adversarial pertur-

bations generated from one Convolutional Neural Network

(CNN) model can also force other CNN models to produce

incorrect outputs. Subsequent papers have explored other

strategies to generate adversarial manipulations, including

50

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Ji Gao. Under license to IEEE.
DOI 10.1109/SPW.2018.00016



Figure 1: An example of WordBug generated adversarial sequence.
Part (1) shows an original text sample and part (2) shows an
adversarial sequence generated from the original sample in Part
(1). From part (1) to part (2), only a few characters are modified;
however this fools the deep classifier to a wrong classification.

using the linear assumption behind a model [5] (by limits

on L∞ norm), saliency maps [7] (by limits on L0 norm),

and evolutionary algorithms [10]. Recently, Carlini et al.

proposed a group of attacking methods with optimization

techniques to generate adversarial images with even smaller

perturbations [6].
Images can be naturally represented as points in a contin-

uous R
d space (d denotes the total number of pixels in an

image). Using an Lp-norm based distance metric to limit

the modification of images appears natural and intuitive.

However, for text sequence inputs it is hard to search for

small text modifications because of the following reasons:

1) Text tokens are categorical features. Imperceptible per-

turbations using Lp-norms makes sense on continuous

pixel values, but not on letters since they are discrete.
2) Each text sample includes a linearly-ordered sequence

of words, and the length of sequences varies.

Due to above reasons, the original definition of adversarial

modifications: Δx = x′ − x (from Equation (1)) cannot

apply directly to text inputs. One feasible definition of

adversarial modifications on text is the edit distance between

text x and text x′ that is defined as the minimal edit

operations that are required to change x to x′.
A few recent studies [11], [12] defined adversarial per-

turbations on RNN-based text classifiers. [11] first chose

the word at a random position in a text input, then used a

projected Fast Gradient Sign Method to perturb the word’s

embedding vector. The perturbed vector is projected to the

nearest word vector in the word embedding space, resulting

in an adversarial sequence (adversarial examples in the text

case). This procedure may, however, replace words in an

input sequence with totally irrelevant words since there is

no hard guarantee that words close in the embedding space

are semantically similar. [12] used the “saliency map” of

input words and complicated linguistic strategies to generate

adversarial sequences that are semantically meaningful to

a human. However, this strategy is difficult to perform

automatically.
We instead design scoring functions to adversarial se-

quences by making small edit operations to a text sequence

such that a human would consider it similar to the original

sequence. I.e., the small changes should produce adversarial

words which are imperceptibly different from the original

words. We do this by first targeting the important tokens

in the sequence and then executing a modification on those

tokens (defined in Section II) that can effectively force a

deep classifier to make a wrong decision. An example of

the adversarial sequence we define is shown in Figure 1.

The original text input is correctly classified as positive

sentiment by a deep RNN model. However, by changing

only a few characters, the generated adversarial sequence can

mislead the deep classifier to a wrong classification (negative

sentiment in this case).
Contributions: This paper presents an effective algo-

rithm, DeepWordBug (or WordBug in short), that can gen-

erate adversarial sequences for natural language inputs to

evade deep-learning classifiers. Our novel algorithm has the

following properties:

• Black-box: Previous methods require knowledge of the

model structure and parameters of the word embedding

layer, while our method can work in a black-box setting.

• Effective: Using several novel scoring functions, with two

real-world text classification tasks our WordBug can fool

two different deep RNN models more successfully than

the state-of-the-art baseline.

• Simple: WordBug uses simple character-level transforma-

tions to generate adversarial sequences, in contrast to

previous works that use projected gradient or multiple

linguistic-driven steps.

• Small perturbations to human observers: WordBug can

generate adversarial sequences that look quite similar to

seed sequences.

II. DEEPWORDBUG

For the rest of the paper, we denote samples in the form of

pair (x, y), where x = x1x2x3...xn is an input text sequence

and y ∈ {1, ...,K} is a label of K classes. A machine

learning model is represented as F : X → Y, a function

mapping from the input set to the label set.

A. Recurrent Neural Networks
Recurrent neural networks (RNN) [13] are a group of

neural networks that include a recurrent structure to capture

the sequential dependency among items of a sequence.

RNNs have been widely used and have been proven to be

effective on various NLP tasks including sentiment analysis

[14], parsing [15] and translation [16]. Due to their recursive

nature, RNNs can model inputs of variable length and can

capture the complete set of dependencies among all items

being modeled, such as all spatial positions in a text sample.

To handle the “vanishing gradient” issue of training basic

RNNs, Hochreiter et al. [17] proposed an RNN variant called

the Long Short-term Memory (LSTM) network that achieves

better performance comparing to vanilla RNNs on tasks with

51



long-term dependencies.

B. Word based modification for adversarial sequences
In typical adversarial generation scenarios, gradients are

used to guide the change from an original sample to an

adversarial sample. However, in the black-box setting, calcu-

lating gradients is not available since the model parameters

are not observable.
Therefore we need to change the words of an input

directly without the guidance of gradients. Consider the

vast search space of possible changes (among all words

and all possible character changes), we propose to first

determine the important words to change, and then modify

them slightly by controlling the edit distance to the original

sample. More specifically, we need a scoring function to

evaluate which words are important and should be changed

to create an adversarial sample and a method that can be

used to change those words with a control of the edit

distance.
To find critical words for the model’s prediction in a

black-box setting, we introduce a temporal score (TS) and a

temporal tail score (TTS). These two scoring functions are

used to determine the importance of any word to the final

prediction.
We assume the perturbation happens directly on the input

words (i.e., not on embedding, or at the “semantic” level).

We assume the perturbation approximately minimizes the

edit distance to the seed sample. We find an efficient strategy

to change a word slightly and is sufficient for creating

adversarial text sequences.
In summary, the process of generating word-based ad-

versarial samples on NLP data in the black-box setting is

a 2-step approach: (1) use a scoring function to determine

the importance of every word to the classification result,

and rank the words based on their scores, and (2) use a

transformation algorithm to change the selected words.

C. Step 1: Token Scoring Function and Ranking
First, we construct scoring functions to determine which

words are important for the final prediction. The proposed

scoring functions have the following properties:

• 1. Our scoring functions are able to correctly reflect the

importance of words for the prediction.

• 2. Our scoring functions calculate word scores without

the knowledge of the parameters and structure of the

classification model.

• 3. Our scoring functions are efficient to calculate.

In the following, we explain three scoring functions we

propose: temporal score, temporal tail score, and a combi-

nation of the two.
1) Temporal Score (TS)

Suppose the input sequence x = x1x2...xn, where xi

represents the word at the ith position. To rank words by

importance for prediction, we need to measure the effect of

the ith word on the output classification.
In the continuous case (e.g., image), suppose a small

perturbation changes xi to x′i. The resulting change of

prediction output ΔiF (x) can be approximated using the

partial derivative of this ith feature:

ΔiF (x) = (x′i − xi)∇xi
F (x)

However, in a black-box setting, ∇xiF (x) is not available.

Also in the text case it is difficult to measure x′i − xi since

words are discrete.
Therefore, we directly measure ΔiF (x) by removing the

ith word. Comparing the prediction before and after a word

is removed reflects how the word influences the classification

result. RNNs models words of an input in a sequential

(temporal) manner. Therefore we define a so-called temporal

score (TS) of the ith word in an input x as

TS(xi) = F (x1, x2, ..., xi−1, xi)− F (x1, x2, ..., xi−1)

The temporal score of every word in an input x can be

calculated by one forward pass of the RNN, which is

inexpensive.

2) Temporal Tail Score (TTS)
The problem with the temporal score is that it scores

a word based on its preceding words. However, words

following a word are often important for the purpose of

classification. Therefore we define the Temporal Tail Score

as the complement of the temporal score. It compares the

difference between two trailing parts of a sentence, the

one containing a certain word versus the one that does

not. The difference reflects whether the word influences the

final prediction when coupled with words after itself. The

Temporal Tail Score (TTS) of word i is calculated by:

TTS(xi) = F (xi, xi+1, xi+2, ..., xn)−F (xi+1, xi+2, ..., xn)
3) Combined Score

Since the temporal score and temporal tail scores model

the importance of a word from two opposition directions of

a text sequence, we can combine the two. We calculate the

combined scoring function as:

Combined Score = TS + λ(TTS),

where λ is a hyperparameter.
Once we calculate the importance score of each word in

an input, we select the top m words to perturb in order to

create an adversarial sequence.

D. Step 2: Token Transformer
Previous approaches (summarized in Table V) change

words following the gradient direction (gradient of the target

adversarial class w.r.t the word), or following some pertur-

bation guided by the gradient. However, in our case there

is no gradient direction available. Therefore, we propose

an efficient method to modify a word, and we do this by

deliberately creating misspelled words.
The key observation is that words are symbolic and

learning-based classification programs handle NLP words

through a dictionary to represent a finite set of possible

words. The size of the typical NLP dictionary is much

smaller than the possible combinations of characters at

a similar length (e.g., about 26n for the English case).

52



(a) Prediction process on an input sentence. (b) The curve of prediction score and temporal score.
Figure 2: Illustration of RNN model prediction process and Temporal Score

Table I: Different transformer functions and their results

Original Substitute Swap Delete Insert
Team → Texm Taem Tem Tezam
Artist → Arxist Artsit Artst Articst

Computer → Computnr Comptuer Compter Comnputer

This means if we deliberately create misspelled words on

important words, we can easily convert those important

words to “unknown” (i.e., words not in the dictionary). The

unknown words are mapped to the “unknown” embedding

vector in deep-learning modeling. Our results (Section III)

strongly indicate that this simple strategy can effectively

force RNN models to make a wrong classification.
To create such a misspelling, many strategies can be used.

However, we prefer small changes to the original word as

we want the generated adversarial sequences and its seed

input appear (visually or morphological) similar to human

observers. Therefore, we prefer methods with a small edit

distance and use the Levenshtein distance [18], which is

a metric measuring the similarity between sequences. We

propose four similar methods: (1) substitute a letter in the

word with a random letter, (2) delete a random letter from

the word, (3) insert a random letter in the word, and (4)

swap two adjacent letters in the word. The edit distance for

the substitution, deletion and insertion operations is 1 and 2

for the swap operation.
These methods do not guarantee the original word is

changed to a misspelled word. It is possible for a word

to “collide” with another word after the transformation.

However, the probability of collision is very small as there

are 267 ≈ 8× 109 combinations for 7 letter words without

hyphens and apostrophes, but a dictionary often includes no

more than 30000 words, making the space very sparse.
The adversarial sample generation of DeepWordBug is

summarized in Algorithm 1.

III. EXPERIMENTS ON EFFECTIVENESS OF

ADVERSARIAL SEQUENCES

We evaluate the effectiveness of our algorithm by con-

ducting experiments on different RNN models across two

real-world NLP datasets. In particular, we want to answer

the following research questions: (1). Does the accuracy of

Algorithm 1 DeepWordBug algorithm with the combined

score
Input: Input sequence x = x1x2 . . . xn, RNN classifier F (·), maximum
allowed number of words changed m, hyperparameter λ.

1: for i = 1..n do
2: Stemporal(i) = F (x1x2...xi)− F (x1x2...xi−1)
3: end for
4: for i = n..1 do
5: Stail(i) = F (xi+1xi+2...xn)− F (xixi+1...xn)
6: end for
7: Scombined = Stemporal + λStail

8: Sort Scombined into an ordered index list: L1 .. Ln

9: x′ = x
10: for i = 1..m do
11: x′Li

= Transform(x′Li
)

12: end for
13: Return x′

deep learning models decrease when feeding the adversarial

samples? (2). Does the adversarial samples generated by our

method transfers between models?

A. Experimental Setup
Datasets: In our experiments, we use the Large Movie

Review Dataset (IMDB Dataset) [19] and the Enron Spam

Dataset [20].
The IMDB Movie Review Dataset contains 50000 highly

polarized movie reviews, 25000 for training and 25000 for

testing. We train an RNN model to classify the movie

reviews into 2 classes: positive and negative.
The Enron Spam Dataset is a subset of the original Enron

Email Dataset. The goal is to train a spam filter that can

determine whether a certain message is spam or not. We

use a subset containing 3,672 ham (i.e. not spam) emails,

and 1,500 spam emails.
Details of the datasets are listed in Table II.

Target deep models: To show that our method is effec-

tive, we performed our experiments on both uni- and bi-

directional LSTMs.
The first model contains a random embedding layer, a

uni-directional LSTM with 100 hidden nodes and a fully

connected layer for the classification. Without adversarial

examples, this model achieves 84% accuracy on the IMDB

Dataset and 99% accuracy on the Enron Spam Dataset.
The second model is the same as the first, except with a

53



Table II: Dataset details

IMDB Movie Review
Dataset

Enron Spam Dataset

Sample type Movie reviews Emails
Task Sentiment analysis Spam Detection
#Training 25,000 3,672
#Testing 25,000 1,500
Avg. length 215.63 words 148.96 words

Table III: Comparison of the accuracy on different methods, first
row shows the original model accuracy in non-adversarial setting.
Each row after show the model accuracy on generated adversarial
samples of one algorithm. (Number of words changed m = 20,
The lower score represents a better performance.)

IMDB Enron
LSTM bi-LSTM LSTM bi-LSTM

No adversary 86.30% 86.70% 99.10% 98.84%

Random 84.00% 84.40% 74.52% 75.48%
Replace-1 score 55.30% 55.00% 82.24% 82.63%
FGSM 66.88% 58.60% 84.94% 80.12%

WordBug -
Temporal 72.70% 48.10% 73.17% 72.78%

WordBug - Tail 56.10% 33.20% 69.88% 69.88%
WordBug -
Combined

41.60% 25.80% 44.79% 39.96%

bi-directional LSTM (also with 100 hidden nodes) instead

of uni-directional. Without adversarial examples, it achieves

86% accuracy on the IMDB Dataset and 98% accuracy on

the Enron Spam Dataset.
Baselines: We implemented the following attacking algo-

rithms to generate adversarial samples:

• Projected FGSM: L∞ attack from [11]. In our imple-

mentation, we use the Fast Gradient Sign Method code

from Cleverhans [21], a library developed by the original

authors. As we discussed, this method is not black-box.

• Random + DeepWordBug Transformer: This technique

randomly selects words to change and use our transformer

to change the words.
Our method: We use our socring functions to better mutate

words. In our implementations, we use different score func-

tions: replace-1 score, temporal score, temporal tail score

and the combined score. After that, we use our tranformer

to change the words.
Platform: We train the target deep-learning models and

implement attacking methods using Keras with Tensorflow

as back-end. We use Nvidia GTX Titan cards.
Performance: Performance of the attacking methods is

measured by the accuracy of the deep-learning models on

the generated adversarial sequences. The lower the accuracy

the more effective the attacking method is. Essentialy it

indicates the adversarial samples can successfully fool the

deep-learning classifier model. The number of words that is

allowed for modification is a hyperparameter.

B. Experimental Results on Classification
We analyze the effectiveness of the attacks on two deep

models (uni- and bi-directional LSTMs). The results of

model accuracy are summarized in Table III. Detailed ex-

perimental results at different numbers of allowed word

Table IV: Result of the transferability of WordBug: The values
are the accuracy of the target model tested on the adversarial
samples. Different from LSTM1 and Bi-LSTM1 which are trained
with randomly-initialized embedding, LSTM2 and Bi-LSTM2 are
models trained with a pretrained word embedding.

From \Target at LSTM1 Bi-LSTM1 LSTM2 Bi-LSTM2
LSTM1 41.60% 37.50% 57.90% 60.70%
Bi-LSTM1 38.20% 25.80% 49.60% 50.60%
LSTM2 39.10% 30.90% 41.40% 44.70%
Bi-LSTM2 40.70% 32.60% 45.10% 44.60%

modifications are presented in Figure 3. The results of uni-

directional LSTM are in Figure 3 (a)(b), and the results of

bi-directional LSTM are in Figure 3 (c)(d).
From Figure 3, we first see that the model has a sig-

nificantly lower accuracy when classifying the adversarial

samples generated by our method on both datasets when

compared to the accuracy results from the original test

samples. On the IMDB Dataset, changing 20 words per

review using WordBug-Combined reduced the model ac-

curacy from 86% to around 41%. As the movie reviews

have an average length of 215 words, we consider the 20-

word modification as effective. On the Enron Spam Dataset,

changing 20 words following WordBug-Combined reduced

the model accuracy from 99% to around 44%. For the bi-

directional model, changing 20 words on every sequence

reduce model accuracy from 86% to around 26% on the

IMDB Dataset and from 99% to around 40% on the Enron

Spam Dataset. We can see that randomly choosing words to

change (i.e., Random in Table III) has little influence on the

final result.
Surprisingly our method achieves better results when

compared with the projected FGSM which is a white-box

attack. The improvement is most likely because the selection

of words is more important than how to change the words.

Since the projected FGSM selects words randomly, it does

not achieve as sound performance as ours.
It is also interesting to compare different score functions

that we proposed. On both the IMDB and Enron datasets, the

combined score performs notably better than the temporal

score and the tail temporal score. It utilizes more information

compared to other score functions. The Replace-1 score does

not perform well in these datasets, presumably because it

does not consider the temporal relationship among words.

C. Transferability of the adversarial sequences
Next, we evaluate the transferability of adversarial se-

quences generated from our methods. Previous studies have

found that transferability is an important property of ad-

versarial image samples: adversarial images generated for

a certain DNN model can successfully fool another DNN

model for the same task, i.e., transferred to another model.
We use the combined score and the substitution trans-

former to generate adversarial samples. The number of

words we change is 20. The results in Table IV are acquired

by feeding adversarial sequences generated by one RNN

model to another RNN model on the same task.

54



(a)

(c)

(b)

(d)

Figure 3: Experiment results. The
X axis represents the number of
modified words, and the Y axis
corresponds to the test accuracy on
adversarial samples generated us-
ing the respective attacking meth-
ods. (a) Uni-directional LSTM
on the IMDB Dataset (b) Uni-
directional LSTM on the Enron
Spam Dataset (c) Bi-directional
LSTM on IMDB Dataset (d) Bi-
directional LSTM on the Enron
Spam Dataset

Table V: Prior works
Adversary Distance Space Modifications

Ours Black-
box

Edit (L0) Input
space

Swapping two char-
acters

[11] White-
box

L∞ Embedding
space

Gradient + Projec-
tion

[12] White-
box

Num. words
modified (L0)

Input
space

Complicated &
Linguistic-driven

From the table, we see that most adversarial samples can

successfully transfer to other models, even to those models

with different word embeddings. This experiment demon-

strates that our method can successfully find those words

that are important for classification and the transformation

is effective across multiple models.

IV. CONNECTING TO PREVIOUS STUDIES

Compared to studies of adversarial examples on images,

little attention has been paid on generating adversarial se-

quences on text. We compare the most relevant two and

ours in Table V. (1) Papernot et.al., applied gradient-based

adversarial modifications directly to NLP inputs targeting

RNN-based classifiers in [11]. The resulting samples are

called “adversarial sequence,” and we also adopt the name in

this paper. The study proposed a white-box adversarial attack

called projected Fast Gradient Sign Method and applied

it repetitively to modify an input text until the generated

sequence is misclassified. It first randomly picks a word,

and then uses the gradient to generate a perturbation on the

corresponding word vector. Then it maps the perturbed word

vector into the nearest word based on Euclidean distance

in the word embedding space. If the sequence is not yet

misclassified, the algorithm will then randomly pick another

position in the input. (2) Recently, [12] used the embed-

ding gradient to determine important words. The technique

then uses heuristic driven rules together with hand-crafted

synonyms and typos. Differently, from ours, this study is

a white-box attack because it accesses the gradient of the

model. (3) Another paper [22] measures the importance of

each word to a specific class using the word frequency

from that class’s training data. Then the study uses heuristic

driven techniques to generate adversarial samples by adding,

modifying or removing important words. Differently, this

method needs to access a large set of labeled samples.
In summary, previous approaches do not apply to black-

box settings. Besides previous approaches mostly used

heuristic-driven and complicated modifications. We summa-

rize the differences between our method and the previous

studies on generating adversarial text samples in Table V.

Our method is black-box while previous approaches all used

the stronger white-box assumption. Our method uses the

edit distance at the sequence input space to search for the

adversarial perturbations. Also, our modification algorithm

is simpler compared to previous approaches.

V. CONCLUSION

In this paper we introduce a vulnerability with deep

learning models for text classification. We present a novel

framework, DeepWordBug to generate adversarial text se-

quences that can mislead deep learning models by exploiting

this vulnerability. Our method has the following advantages:

• Black-box: DeepWordBug generates adversarial samples

in a black-box manner.

• Performance: While minimizing edit distance (approxi-

mately minimized), DeepWordBug achieves better per-

formance comparing to baseline methods on two NLP

datasets across multiple deep learning architectures.

Our experimental results indicate that DeepWordBug re-

sults in about 70% decrease from the original classification

accuracy for two state-of-the-art word-level LSTM models

across two different datasets. We also demonstrate that

the adversarial samples generated on one model can be

successfully transferred to other models, reducing the target

model accuracy from around 90% to 30-60%.

55



REFERENCES

[1] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolu-
tional networks for text classification,” in Advances in neural
information processing systems, 2015, pp. 649–657.

[2] M. Miwa and M. Bansal, “End-to-end relation extraction
using lstms on sequences and tree structures,” arXiv preprint
arXiv:1601.00770, 2016.

[3] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey et al.,
“Google’s neural machine translation system: Bridging the
gap between human and machine translation,” arXiv preprint
arXiv:1609.08144, 2016.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” in International Conference on Learning Repre-
sentations (ICLR), 2014.

[5] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explain-
ing and harnessing adversarial examples,” arXiv preprint
arXiv:1412.6572, 2014.

[6] N. Carlini and D. Wagner, “Towards evaluating the robustness
of neural networks,” in Security and Privacy (SP), 2017 IEEE
Symposium on. IEEE, 2017, pp. 39–57.

[7] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami, “The limitations of deep learning
in adversarial settings,” in IEEE European Symposium on
Security and Privacy (EuroS&P), 2016.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and Harnessing Adversarial Examples,” arXiv:1412.6572
[cs, stat], Dec. 2014, arXiv: 1412.6572. [Online]. Available:
http://arxiv.org/abs/1412.6572

[9] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,
and A. Swami, “Practical black-box attacks against deep
learning systems using adversarial examples,” arXiv preprint
arXiv:1602.02697, 2016.

[10] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks
are easily fooled: High confidence predictions for unrecog-
nizable images,” in CVPR. IEEE, 2015.

[11] N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Craft-
ing adversarial input sequences for recurrent neural net-
works,” in Military Communications Conference, MILCOM
2016-2016 IEEE. IEEE, 2016, pp. 49–54.

[12] S. Samanta and S. Mehta, “Towards crafting text adversarial
samples,” arXiv preprint arXiv:1707.02812, 2017.

[13] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learn-
ing representations by back-propagating errors,” Cognitive
modeling, vol. 5, no. 3, p. 1, 1988.

[14] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning,
A. Ng, and C. Potts, “Recursive deep models for semantic
compositionality over a sentiment treebank,” in Proceedings
of the 2013 conference on empirical methods in natural
language processing, 2013, pp. 1631–1642.

[15] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng, “Parsing
natural scenes and natural language with recursive neural net-
works,” in Proceedings of the 28th international conference
on machine learning (ICML-11), 2011, pp. 129–136.

[16] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” arXiv
preprint arXiv:1409.0473, 2014.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” vol. 9, no. 8. MIT Press, 1997, pp. 1735–1780.

[18] V. I. Levenshtein, “Binary codes capable of correcting dele-
tions, insertions, and reversals,” in Soviet physics doklady,
vol. 10, no. 8, 1966, pp. 707–710.

[19] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and
C. Potts, “Learning word vectors for sentiment analysis,” in
Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies-
Volume 1. Association for Computational Linguistics, 2011,
pp. 142–150.

[20] V. Metsis, I. Androutsopoulos, and G. Paliouras, “Spam
filtering with naive bayes-which naive bayes?” in CEAS,
vol. 17, 2006, pp. 28–69.

[21] N. Papernot, I. Goodfellow, R. Sheatsley, R. Feinman, and
P. McDaniel, “cleverhans v1.0.0: an adversarial machine
learning library,” arXiv preprint arXiv:1610.00768, 2016.

[22] B. Liang, H. Li, M. Su, P. Bian, X. Li, and W. Shi,
“Deep text classification can be fooled,” arXiv preprint
arXiv:1704.08006, 2017.

56


