
Exploring the Use of Autoencoders for Botnets Traffic Representation

Ruggiero Dargenio
CSAIL
MIT

dargenio@mit.edu

Shashank Srikant
CSAIL
MIT

shash@csail.mit.edu

Erik Hemberg
CSAIL
MIT

hembergerik@csail.mit.edu

Una-May O’Reilly
CSAIL
MIT

unamay@csail.mit.edu

Abstract—Botnets are a significant threat to cyber security.
Compromised, a.k.a. malicious hosts in a network have, of late,
been detected by machine learning from hand-crafted features
directly sourced from different types of network logs. Our
interest is in automating feature engineering while examining
flow data from hosts labeled to be malicious or not. To auto-
matically express full temporal character and dependencies of
flow data requires time windowing and a very high dimensional
set of features, in our case 30,000. To reduce dimensionality,
we generate a lower dimensional embedding (64 dimensions)
via autoencoding. This improves detection. We next increase
the volume in the flows originating from hosts in our dataset
known to be malicious or not by injecting noise we mix in from
background traffic. The resulting lower metaphorical signal to
noise ratio makes the presence of a bot even more challenging
to detect so we resort to a filter encoder or an off-the-shelf
denoising autoencoder. Both the filter encoding and denoising
autoencoder improve upon detection compared to when hand-
crafted features are used and are comparable in performance
to the autoencoder.

1. Introduction

Botnets are a critical threat to cyber security [10]. A
botnet setup consists of malicious software copied onto
different devices, all of which are connected to the internet.
Each compromised device is typically controlled from a
central system to perform large scale, distributed attacks [7].

Recent works describe a number of approaches to de-
tecting botnets [4], [8], [10]. Typically these systems refer-
ence network activity. They analyze information present in
packets or flow logs and learn a malicious host detection
model. Features are chosen by hand and consist mostly
of information logged from standard network routers. Ad-
vanced feature engineering to better express information
present in logs is uncommon and requires significant hu-
man expertise and effort. Despite the cost, it promises to
improve the detection of malicious hosts particularly when
the network traffic directed by the malicious software, i.e.
signal, is deeply hidden in the background, i.e. noise, of its
host’s normal network communications. Automated feature
engineering methods supporting detection in the face of low
signal to noise ratios are our central interest.

The advent of deep learning systems has significantly
reduced feature engineering efforts in computer vision and
natural language processing (NLP) [11], [14]. Given just
an objective function and input data, these systems can
learn reduced dimensionality representations that efficiently
support supervised learning. In a majority of common vision
and NLP tasks, these learned representations have been
shown to clearly outperform models built on traditional,
hand-engineered features.

Encouraged by such positive results, we investigate how
to likewise use deep learning to obtain reduced dimension-
ality representations of network data that can support the
detection of botnets. This automation will relieve the burden
of hand-crafting features. While we demonstrate that an
autoencoder can improve detection, our primary motivation
is not to outperform state of the art detection systems but
to develop a methodology that can handle traffic of lower
bot to background, i.e. signal to noise ratio. Therefore,
in this work, we propose methods which would hold true
irrespective of the specific choices of detection models and
datasets one would use to build and test detection systems.
We explore two related questions a) How can we automat-
ically learn features which support the accurate detection
of malicious hosts? b) How can we model “noisy” hosts
that have background traffic similar to real world conditions
and ensure such automated feature learning systems support
detection well even in such noisy environments?

Specifically, our work makes the following contributions

• We use flow logs from the CTU-13 dataset [1] and
show that organizing their features into time-windows
improves a baseline detection model. We utilize this
organization when learning features to detect botnets.

• We design autoencoders to learn feature spaces from
temporally ordered flow data to better detect botnets. To
the best of the authors’ knowledge, this is the first work
to demonstrate how traditional flow log-based features
can be improved upon by using autoencoding.

• In an attempt to encourage the community to build
more robust detectors, we also suggest a way to model
noisier host traffic conditions by exploiting ignored
background traffic within this dataset.

• We present an encoder architecture, named filter en-
coders, which extracts features from a noisy model
of host traffic. Detectors trained on these extracted

57

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Ruggiero Dargenio. Under license to IEEE.
DOI 10.1109/SPW.2018.00017

representations perform as well as those trained on
less noisy host traffic. We propose this architecture for
tasks beyond cyber security to handle signal to noise
separation.

This paper is organized in the following manner -
Section 2 describes related work. Section 3 describe the
CTU-13 [1] dataset we work with. Section 4 describes
our methodology. Section 5 details the research questions
and our experiments while Section 6 discusses results from
the experiments. We conclude and discuss future work in
Section 7

2. Related Work

Botnet detection is widely pursued by the cyber security
community. While rule-based systems were initially devel-
oped to detect bots [2], recent approaches have employed
machine learning and other statistical techniques [3], [5],
[6], [13], [15]. Throughout the work features are extracted
from one of two sources - packets or flow logs, and used
(fully or with feature selection) as inputs to either super-
vised or unsupervised learning models. We, like others,
also reference flow logs which provide information in the
context of a connection established by one host with another.
However, our work departs from this general approach in
two important ways a) We specifically choose to organize
the logs temporally, per host, divided into time windows.
b) We focus on then reducing the high dimensionality of
the feature space extracted from the flow logs in order to
improve our detection models.

Specifically, Pellegrino, et. al. [8] use time windows to
aggregate information. However, they do not derive machine
learning based models. Haddadi et. al. [6] use machine
learning models and demonstrate high classification accu-
racies on varying datasets using “raw” features directly
extracted at flow level. We go a step further in investi-
gating automated feature representations. This likely would
improve state of art detection accuracies on benchmarks
but in this work we choose to focus on studying feature
representations.

Another key distinction of our work is that we step off
from the conventional approach of learning from flow data
only from hosts that are known through curation to be either
malicious or not. We insert the flows of background traffic
into curated hosts with labels. To the best of our knowledge
no other work learns from more challenging noisy host flows
or explores similar automated representation techniques the
way we do. We now proceed to describe the dataset we use
and introduce our terminology.

3. Dataset

The botnet detection research community acknowledges
that access to accurate, reliable datasets is an open concern
[9], [10]. While some public datasets are poor represen-
tations of botnet behavior, others are outdated and do not
reflect current botnet behavior. We use the CTU-13 dataset

recently released by Garcia et. al. [1]. Terms specific to our
work and the CTU-13 dataset [4] are:

• Host Any device connected to the network. Can poten-
tially be compromised and act as a malicious bot.

• Flow A log created, typically by the network router,
whenever an established connection by a host ends.
It contains information like total packets sent over
during the connection, the protocol used to establish
the connection, time of established connection etc.

• Scenarios A scenario is a snapshot of network activity
over a period of time. Within a scenario, during data
capture for dataset creation, bots can be introduced into
the network. Each scenario therefore has one or more
types of bots associated with it. See, e.g. Table 1.

Hosts (and consequently all flows originating from them)
can be labeled as bot, normal or background.

• Bots Hosts which have a copy of malicious software.
• Normal Hosts manually identified as NOT being a part

of a botnet.
• Background Hosts labeled neither Bot or Normal with

flows that express everyday network activities. We add
the flow information of background hosts to our dataset
when modeling noisy, everyday traffic in networks.

CTU-13 consists of network information gathered for
13 scenarios under controlled (i.e. dataset creation) condi-
tions. In addition to information sent by hosts compromised
by malicious bots, it comprises information generated by
normal hosts on the network in the form of both packets
and flows. It has a recommended train-test split between
the different scenarios. Table 1 summarizes the different
scenarios. CTU-13 also contains additional background in-
formation from random devices on the network that have
not been labeled because there is no knowledge of whether
they are malicious or not [4]. This information is more than
85% of the entire volume of information, yet is typically
unused in developing detectors. More details can be found
in Garcia et. al. [4].

4. Method

We now proceed to describe, in Section 4.1, the features
we extract from each flow, and, in Section 4.2, how we
divide the flow logs according to host, organize them into
time windows and aggregate the high dimensional set of raw
values to form inputs to our auto, filter and noise encoders.
In Section 4.3 we describe how we use an autoencoder
to reduce the high dimensional raw values. In Section 4.4
we explain our framework for learning detection models
for windows and hosts, the latter using labeling from the
former. Then, in Section 4.5, we describe how we inject
noise from unlabeled hosts into the those of labeled hosts.
In Section 4.6 we develop a filter encoder and describe a
standard denoising autoencoder that address the noisier host
traffic.

58

Scenario Bots (B) Normal (N) Type # bots Tr/Te
1 57% 43% Neris 1 Te
2 70% 30% Neris 1 Te
3 19% 81% Rbot 1 Tr
4 9% 91% Rbot 1 Tr
5 16% 84% Virut 1 Tr
6 38% 62% Menti 1 Te
7 4% 96% Sogou 1 Tr
8 8% 92% Murlo 1 Te
9 86% 14% Neris 10 Te

10 87% 13% Rbot 10 Tr
11 75% 25% Rbot 3 Tr
12 22% 78% NSIS.ay 3 Tr
13 56% 44% Virut 1 Tr

Total 56% 44% # flows
Train 55% 45% 378,104 (B) + 307,755 (N)

Test 57% 42% 66,595 (B) + 48,678 (N)

TABLE 1: Ratio of bot and normal flows in each scenario.
Tr/Te denotes if the scenario is used for training or testing.
Each scenario also includes background data which is not
included in these ratios. Background data covers >85% of
the overall data per scenario.

FEATURE TYPE # FEATURES
Protocol Categorical* 19
Duration Float 1
Direction Categorical* 7
Total packets Integer 1
Host bytes Integer 1
Total bytes Integer 1
Host IP String Not considered
Port Integer Not considered

Total number of features 30

TABLE 2: “Raw” features directly extracted from a flow.
Categorical features are represented by one-hot encodings.

4.1. Flow Log Features

To prepare the input to our encoders, from each flow log
we first directly extract a set of “raw” features per Table 2
that are most frequently used in the literature. We use them
as our stepping off point in investigating whether we can
synthesize more features through deep learning techniques.
We do not use the host IP and port information because
they can be easily spoofed. In the next section we describe
how we next build our feature space by concatenating these
features from multiple flow logs into windows, organized
by labeled host.

4.2. Time-Windows of Flows from Labeled Hosts

We aim to preserve temporal information within a con-
nection and among connections for its potential discrimi-
natory value. We demonstrate in our experiments the case
where not capturing this temporal aspect performs signifi-
cantly worse. Thus, for each labeled host, we elect to create
time windows that, concatenate the flow features of each of
the host’s distinct flows within the window. We introduce
a hyperparameter max-flows to bound the flows per time-
window. The temporally ordered, concatenated features of

Figure 1: Construction of labeled time windows from la-
beled (i.e. curated) flows (comprising labeled dataset) and
mixed labeled and background flows (comprising noisy
dataset.)

each window then comprise a training (or test) input. Associ-
ated with each input is the label (malicious or normal) of the
host. The transformed dataset for every labeled host is then
passed into the encoders (see Section 4.6) of our detection
framework to reduce the dimensionality and generate a more
efficient representation for the subsequent window and host
detection model learning tasks, see Figure 1. The time-
window duration is a second hyperparameter that we tune.

To illustrate this, assume we have 60 minutes of flow
logs for a host. Further, assume that the host creates 60,000
connections in this time frame. Each connection is character-
ized by the feature set described in Table 2. If we consider a
time-window of 1 second, we will witness a varying quantity
of flows in each of the 3,600 resulting windows. Assuming
max-flows equals 10, our feature space is 300 dimensional,
i.e. 30 × 10 features. Time-windows containing less than
max-flows flows are padded with 0s.

4.3. Feature Autoencoding

Autoencoders are unsupervised methods to learn a
lower-dimensional representation from a higher dimensional
space by reconstructing its own inputs (instead of learning
a target value) [12]. An autoencoder takes an input vector
x ∈ R

d, and first maps it to a hidden representation y ∈ R
d′

through a deterministic mapping y = fθ(x) = s(Wx+ b),
parameterized by θ = {W,b}. W is a d′×d weight matrix
and b is a bias vector. The resulting latent representation y is
then mapped back to a “reconstructed” vector z ∈ R

d in in-
put space z = gθ′(y) = s(W′y + b′) with θ′ = {W′,b′}.
Each training xi is thus mapped to a corresponding yi and
a reconstruction zi. The average reconstruction error is then
minimized:

θ∗, θ′∗ = argmin
θ,θ′

1

n

∞∑

i

L(xi, zi) (1)

where L is the squared loss ||x− z||2.

59

Figure 2: Experimental framework with blue path indicating
labeled dataset steps and yellow path indicating “noisy”
dataset steps that stem from mixing background unlabeled
host flows with labeled ones to create mixed time-windows.

Figure 3: Autoencoder and filter-encoder architecture.

In our work, we use encoders to derive representations
of information from time-windows. While the equations
described above model a shallow one-layer network, we
use multiple layers. The top half of Figure 3 illustrates the
autoencoder we train and subsequently use for the labeled
dataset’s representations. The red line indicates the repre-
sentation advanced forward in the framework for malicious
window detection.

4.4. Malicious Window and Host Detection

Our malicious window detection task involves predicting
whether a window belongs to a malicious host or not. For
detection we simply train a linear SVM. It is trained on

encoded features and labels that are propagated from the
host labels. We note here that we do not use more complex
models since the aim of our work is not to achieve state
of the art detection accuracy but is instead to investigate
whether neural representations are able to support the im-
proved accuracy of a specific detection model vs conven-
tional, directly extracted raw features.

Once we have predicted labels for each window, we train
a detector to learn a threshold to classify a host as being
malicious. For host detection we use the number of windows
detected as malicious and the number of windows in the host
as features to learn this threshold. We use logistic regression
to learn the threshold.

In summary this framework (see, Figure 2) for learning
from labeled hosts consists of Step 1) flow feature extraction,
Step 2) time-window feature assembly by ordered feature
concatenation and transfer of host label, Step 3) autoen-
coding of time-window features to a lower dimensional
representation, Step 4) window detection with the lower
dimensional representation, Step 5) host bot detection with
the label quantities of a host’s windows and total windows.

4.5. Modeling Additional Noisy Host Traffic

Recall our ultimate goal is to detect malicious hosts that
are burying their bot-directed communication deeply within
normal network traffic. We therefore need a method to in-
crease the background traffic originating from labeled hosts
in curated datasets like CTU-13. For this we will mix CTU-
13’s background data, itself organized into time windows,
into the already prepared time windows of each labeled host,
see Figure 1. For each host that is labeled, i.e curated, we
uniformly randomly pick without replacement one window
from a random host in background and add its flows to
the curated host’s window. We thus randomly distribute
flows from the background dataset into the curated dataset
and have the option of retuning the max-flows parameter to
account for extra flows in every time-window (although in
this dataset the distribution of the number of flows per time
window per host for both the background and the curated
dataset is similar so our value for max-flows remains the
same). We refer to the resulting dataset as mixed in the
remainder of this work.

We can now run experiments with mixed to observe the
impact of “noise” on encoded feature support for malicious
window and host detection accuracy. However, it would be
futile to use the autoencoding step of our existing frame-
work. If we do, we will encode the noise and bury the signal.
Instead, as we next explain in Section 4.6, we resort to filter
encoders or denoising autoencoders.

4.6. Filter and Denoising Encoders

After adding background flows to model “noise” in real
hosts, we do not wish to utilize any properties directly
from the background set, since in a real scenario, we
would be unaware of such information. Instead we take a

60

neural network approach, see Figure 3, similar to denois-
ing autoencoders, to sift through the noise while learning
lower dimensional feature representations. Our intuition is to
move the representations learned by the noise-added dataset
(mixed set) in the direction of the representations learned
from the dataset without noise (curated set). Therefore we
train the mixed data on the intermediate representation yc

learned from the curated set. Specifically, for an input xc

from the curated dataset, we proceed as discussed in the
previous subsection - we learn an intermediate representa-
tion yc = fθc(xc) = s(Wxc + bc), by mapping it back
to zc = gθc(yc) = s(WTyc + b′). For an input xm from
the mixed set, we learn a representation ym = fθm(xm) =
s(Wmxm + bm), parametrized by θm = {Wm,bm}. We
then use yc to minimize the average reconstruction error:

θ∗m, θ∗c = arg min
θm,θc

1

n

∞∑

i

L(yi
m,yi

c) (2)

where L is the squared loss ||ym − yc||2
A denoising autoencoder is a stochastic version of the

autoencoder. Intuitively, a denoising autoencoder does two
things: encode the input, and undo the effect of a cor-
ruption process stochastically applied to the input of the
autoencoder. The latter can only be done by capturing the
statistical dependencies between the inputs. Vincent et al.
[12] discuss different perspectives to understanding how
denoising autoencoders work.

5. Experiments

We experimentally investigate the following questions:

• Q1 Does capturing temporal dependency in low level
features by consolidating multiple flows in a window
help detect presence of malicious flows in the hosts?
How does it compare to detections made by individual
flows. Through this question, we validate our design to
consider flows features per window for each host.

• Q2 Can autoencoders learn feature representations that
perform better than just the raw features sourced from
flow logs?

• Q3 With a lower signal to noise ratio from labeled
hosts, i.e. when using the mixed dataset, how well do
the baseline features support detection? How effective
are the filter and denoising autoencoders in distilling
the additional noise and supporting detection?

Using the CTU-13 dataset we normalize all the features
values using min-max normalization and split the dataset
into its recommended training and test sets (see Table 1),
see [4] for more information. We further split the training
data into a validation set to tune our hyperparameters. Two
bots in the validation are not in the training set. The test set
has three bots that are not in the training set.

We implement the linear SVM (C=1, L2-penalty) and lo-
gistic regression (C=1, L2-penalty) with scikit-learn.
We develop the encoders with Keras 2.1.1. We run all
our experiments on a CUDA-enabled GTX 1080TI GPU.

Method Recall Precision F1-score
curated flow 1 0.61 0.75

curated windows 0.81 0.89 0.85
curated autoenc 0.87 0.9 0.88
mixed windows 0.58 0.79 0.67
mixed filterenc 0.78 0.81 0.79
mixed denoise 0.81 0.79 0.8

TABLE 3: Malicious window detection performances.

Method Recall Precision F1-score
curated flow 1 0.13 0.22

curated windows 0.79 1.0 0.88
curated autoenc 1.0 0.88 0.93
mixed windows 0.21 0.97 0.34
mixed filterenc 1.0 0.78 0.88
mixed denoise 0.7 0.87 0.71

TABLE 4: Malicious host detection performances.

For each of the 3 encoders, we train a 3 layer feed-forward
deep network. The dimensions of the layers are 128, 64, 64
respectively. We train the network on a batch size of 100
for 50 epochs. We use the ReLU activation function and
optimize the MSE loss. The learning rate and weight decay
for Adam are both 1e-3. The hyperparameter max-flows is
tuned to 1,000. Since there are 30 feature dimensions per
flow, the encoders’ input dimensions are 30,000. We select
the 64 dimension layer as the feature encoding that is input
to the SVM model. The duration of the time window is 1
second. The training data has 54,940 time windows labeled
malicious and 56,060 labeled normal. The testing dataset has
23,146 time windows labeled malicious and 28,541 labeled
normal.

We investigate the following encoders and baselines,
using the prefix curated or mixed to indicate which dataset
is used:

• curated flow uses raw, directly sourced flow features
(see Table 2) across hosts without time windows. This
is trained on a d × 30 dataset, where d is the total
number of flows across hosts (see Table 1).

• curated windows uses time-window features without
encoding.

• curated autoenc uses autoencoded representations of
time-window features.

• mixed windows uses mixed time-window features
without encoding.

• mixed filterenc uses a filter-encoded representation of
time-window features.

• mixed denoise uses a denoising encoded representa-
tion of time-window features

We report Precision, Recall and F1-score to measure how
well detection performs. We repeat encoder training 10 times
and report averages. We compute standard deviation and use
a Wilcoxon RankSum test to pairwise compare the methods.

6. Results And Discussion

Tables 3 and 4 show the results for windows and hosts
detection respectively. For Q1 we analyze the performance

61

of curated flow compared to curated windows. We see
that the detection accuracy of curated flow is poor – all
inputs are classified as the majority class. This suggests
using just the flow level features is inadequate. In con-
trast the curated windows method’s F1-score on window
detection is 0.85 and on host detection is 0.88. This is
an encouraging result and suggests the advantage of using
temporally organized and expressive flow information as
features.

For Q2 we next analyze the relative performance of
method curated autoenc that uses autoencoded feature rep-
resentations in addition to organizing data by time win-
dows. This comparison only applies to curated flow and
curated windows. We observe that, for both these compar-
isons, window detection is better for precision and F1-score.
Host detection, in recall and F1-score is better than cu-
rated windows but worse in precision. It is equivalent (re-
call) or better (precision and F1-score) than curated flow.

To answer Q3 we consult results from mixed dataset
methods. We notice that mixed windows performs very
poorly. Clearly noisier flows, even organized into time
windows, drastically degrade detection performance. This
seems intuitive since background flows are randomly placed
in windows which potentially distorts any intra or inter-
flow relationships previously present. We note at this point
though that, given the observed statistics on flows, the
current dataset calls for further investigation. The median
number of flows per source was as low of 4 for the curated
dataset and 32 for background flows which seems to be
counter to the intuitive number of flows a host has on a
campus network. It remains to be seen whether a higher
number of flows per source would have an adverse effect
on our framework.

We next compare mixed filterenc and mixed denoise
using a Wilcoxon RankSum test. They are statisti-
cally comparable and both statistically are better than
mixed windows for recall and F1 metrics and both win-
dow and host detection. These are very encouraging re-
sults and suggest that complex feature engineering can
be achieved through such automated feature representation
techniques. Likewise, we notice that mixed filterenc is able
to fully filter the added noise to detect almost as well
curated filterenc. Although it does well on recall, it under
performs in precision. This is expected, since the filtering
step is lossy.

7. Conclusion And Future Work

We present in this work an exploration of automated
feature engineering through deep learning encoders. It ap-
plies to flow logs in support of botnet window and host
detection. The lower dimensional feature representations of
the encoders can be used with challenging volumes of host
background, i.e. noisy, traffic.

There are numerous directions for future work. One is
to assess the value of the encoding across multiple datasets
with state of the art selections for detection methods. An-
other is to study the interpretability of such transformed

feature spaces. It will be useful to learn how the raw features
non-linearly combine and embed to support detection of
the final outcome. Another is to investigate variation of
the detection task we set up. We currently detect a variety
of bots in a single learning task. We do not investigate
the performance of our detectors on individual bots in the
training and test set.

Acknowledgments

The authors thank Sebastian Garcia for answering
queries related to the dataset. This work was partly sup-
ported by the CyberSecurity@CSAIL initiative at CSAIL,
MIT.

References

[1] Ctu-13 dataset. Available on https://mcfp.weebly.com/. Accessed:
2017-09-30.

[2] J. R. Binkley and S. Singh. An algorithm for anomaly-based botnet
detection. SRUTI, 6:7–7, 2006.

[3] Z. B. Celik, J. Raghuram, G. Kesidis, and D. J. Miller. Salting public
traces with attack traffic to test flow classifiers. In CSET, 2011.

[4] S. Garcia, M. Grill, J. Stiborek, and A. Zunino. An empirical
comparison of botnet detection methods. computers & security,
45:100–123, 2014.

[5] G. Gu, R. Perdisci, J. Zhang, W. Lee, et al. Botminer: Clustering
analysis of network traffic for protocol-and structure-independent
botnet detection. In USENIX security symposium, volume 5, pages
139–154, 2008.

[6] F. Haddadi, D. Le Cong, L. Porter, and A. N. Zincir-Heywood. On
the effectiveness of different botnet detection approaches. In ISPEC,
pages 121–135, 2015.

[7] E. Kartaltepe, J. Morales, S. Xu, and R. Sandhu. Social network-based
botnet command-and-control: emerging threats and countermeasures.
In Applied Cryptography and Network Security, pages 511–528.
Springer, 2010.

[8] G. Pellegrino, Q. Lin, C. Hammerschmidt, and S. Verwer. Learning
behavioral fingerprints from netflows using timed automata.

[9] R. A. Rodrı́guez-Gómez, G. Maciá-Fernández, and P. Garcı́a-Teodoro.
Survey and taxonomy of botnet research through life-cycle. ACM
Computing Surveys (CSUR), 45(4):45, 2013.

[10] S. S. Silva, R. M. Silva, R. C. Pinto, and R. M. Salles. Botnets: A
survey. Computer Networks, 57(2):378 – 403, 2013. Botnet Activity:
Analysis, Detection and Shutdown.

[11] S. Srinivas, R. K. Sarvadevabhatla, K. R. Mopuri, N. Prabhu, S. S.
Kruthiventi, and R. V. Babu. A taxonomy of deep convolutional
neural nets for computer vision. arXiv preprint arXiv:1601.06615,
2016.

[12] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting
and composing robust features with denoising autoencoders. In Pro-
ceedings of the 25th international conference on Machine learning,
pages 1096–1103. ACM, 2008.

[13] P. Wurzinger, L. Bilge, T. Holz, J. Goebel, C. Kruegel, and E. Kirda.
Automatically generating models for botnet detection. In Euro-
pean symposium on research in computer security, pages 232–249.
Springer, 2009.

[14] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends
in deep learning based natural language processing. arXiv preprint
arXiv:1708.02709, 2017.

[15] D. Zhao, I. Traore, B. Sayed, W. Lu, S. Saad, A. Ghorbani, and
D. Garant. Botnet detection based on traffic behavior analysis and
flow intervals. Computers & Security, 39:2–16, 2013.

62

