
Extending Detection with Privileged Information via
Generalized Distillation

Z. Berkay Celik and Patrick McDaniel

SIIS Laboratory, Department of CSE, Pennsylvania State University

{zbc102, mcdaniel}@cse.psu.edu

Abstract—Detection systems based on machine learning models
are essential tools for system and enterprise defense. These
systems construct models of attacks (or non-attacks) from past
observations (i.e., features) using a training algorithm. After that,
the detection systems use that model for detection at run-time. In
this way, the detection system recognizes when the environmental
state becomes—at least probabilistically—dangerous. A limita-
tion of this traditional model of detection is that model training
is limited to features available at run-time. However, many
features are either too expensive to collect in real-time or only
available after the fact. In traditional detection, such features are
ignored for the purpose of detection. In this paper, we consider
an alternative detection model learning approach, generalized
distillation, that trains models using privileged information—
features available at training time but not at run-time—to
improve the accuracy of detection systems. We use a deep neural
network to implement generalized distillation for the training of
detection models and making predictions. Our empirical study
shows that detection with privileged information via generalized
distillation increases precision and recall in systems of user face
authentication, fast-flux bot detection, and malware classification
over systems with no privileged information.

Index Terms—Detection systems, privileged information, gen-
eralized distillation, deep learning

I. INTRODUCTION

Detection systems use machine learning (ML) algorithms

such as support vector machines and neural networks to learn

detection models. These models aim at learning patterns to

estimate an underlying dependency, structure or behavior of

a system with a limited number of features (also referred to

as inputs) from historical data (also referred as training data).

For instance, in network malware detection, the features can

be obtained from packets of incoming/outgoing traffic [1], and

in mobile phone malware detectors, features can be obtained

from user permissions [2]. Yet, a limitation of this traditional

model of detection is that the detection systems use features

that will be available at run-time. However, many features are

either too expensive to collect in real-time or only available

after the fact. Therefore, in traditional detection, such features

are ignored for the purposes of detection.

Consider a security data repository that stores a myriad

of information from packets, log files and other sources. For

example, security information and event management (SIEM)

systems capture raw data from web proxies, DHCP servers,

VPN servers, and more at rates of up to 100K events per second

stores up to 42 TB of data [3]. However, much of the useful

information only becomes available after further investigation

and human processing [4], [5]; thus it cannot be leveraged by

detection systems in real-time. In other contexts, features may

be available at run-time but infeasible or undesirable to collect

because of environmental or system constraints. For example,

a large number of features collection in mobile phones [2],

Internet of Things (IoT) [6] is often too slow or requires too

many resources to be feasible in practice.
We turn recent advances in learning theory that support

learning models on a superset of features used at run-time [7],

[8]. Our goal is to leverage these additional features, called priv-
ileged information, features available at training time, but not at

run-time, to improve the accuracy of detection. More concretely,

we explore an alternate approach generalized distillation [9]

to train detection systems that exploit privileged information.

Generalized distillation is an extension of distillation [10] or

model compression [11] designed for Deep Neural Networks

(DNNs). At training time, generalized distillation creates a

novel distilled model that improves the model training by

transferring knowledge from privileged features available at

training time. At detection time, the distilled models trained

with generalized distillation do not require all features; thus a

new sample without privileged information is evaluated with a

distilled model. The motivation behind the distilled models is to

build a detection model with better generalization capabilities

which retains the detection accuracy sufficiently close to the

accuracy of a model trained and tested on the complete features.
In this, we make the following contributions:

• We consider generalized distillation to train detection

models with privileged information—features available at

training time, but not at run-time.

• We present several privileged information-augmented

detection systems. This highlights the inherent tension

between information utilization, detection accuracy, and

robustness of a system.

• We empirically validate generalized distillation in a range

of detection domains. The use of privileged information

via generalized distillation decreases the relative detection

error on average 3.53% for fast-flux domain bot detec-

tion, 3.33% for malware classification, 11.2% for face

authentication over benchmarked systems that do not use

privileged information.

83

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Z. Berkay Celik. Under license to IEEE.
DOI 10.1109/SPW.2018.00021



II. GENERALIZED DISTILLATION

Model compression [11] or distillation [10] are techniques

to reduce the size of statistical models. Model distillation

compresses large models flarge by training a small model

fsmall(x) that imitates the predictions of the large model flarge(x).
Remarkably, model distillation is often able to compress models

without incurring any loss in accuracy [10].

Consider feature-target pairs D = {(xi,yi)}n
i=1, where xi ∈R

d

is a vector of d features describing the i-th sample, and yi ∈R

is the target defined for a sample. Distillation assumes that the

large model flarge has been learned by minimizing a model,

and proceeds to learn the small model fsmall by minimizing

(1−λ)L({(xi,yi)}n
i=1, fsmall)+λL({xi,si}n

i=1, fsmall), (1)

where λ∈ [0,1] is an imitation parameter trading-off how much

does the small model imitate the big model, versus directly

learning the data. In Equation 1, a second dataset is introduced

with targets si = flarge(xi)/T ; these are the softened predictions
made by the large model. Here, T > 0 is a temperature

parameter scaling the predictions of the large model1.

Lopez-Paz et al. recently introduced generalized distillation,

an extension of model distillation. Generalized distillation

compresses the models built on a set of features into models

built on a different set of features [9]. It is one specific instance

of learning using privileged information (LUPI) [7], [8], a

learning paradigm assuming that some of the features used to

train a machine learning model will be unavailable at run-time2.

Generalized distillation assumes that the statistical model

will be trained on some data {(xi,x�i ,yi)}n
i=1, and that it will

be tested on some data {x j}n+m
j=n+1. Therefore, the set of

features {x�i }n
i=1 is available at training but not at test time.

However, these features may contain important information

that would lead to machine learning models of higher accuracy.

Generalized distillation tackles the problem of learning using

privileged information as follows (see Figure 1): First, it trains

a privileged model fpriv(x) on the complete feature-target set

{(xi,x�i ,yi)}n
i=1 which have an access to privileged features at

training. Second, it trains a distilled model fdist by minimizing

Equation 1 where si = fpriv(xi)/T .

The imitation parameter λ in a distilled model controls

the trade-off between privileged features and accuracy. For

λ ≈ 0, the objective of the distilled model approaches the

standard objective which amounts to learning a model solely on

standard features. However, as λ→ 1, the objective transfers the

knowledge acquired by the privileged model into the distilled

model. The intuition here is that whenever the privileged model

makes a prediction error on a sample, the distilled model should

forget about getting the detection right on that sample, and

focus on the rest of the samples. Therefore, the distilled model

learns by simultaneously imitating the privileged predictions of

the privileged model and learning the targets of original data.

1The temperature parameter was recently interpreted as a defense mechanism
to adversarial data perturbations in DNNs [12].

2We refer the reader our technical report for implementation and formulation
of LUPI paradigm through SVM+ [13] and our recent paper for application of
LUPI paradigm of knowledge transfer and SVM+ in a security setting [14].

������	�
��
����

��

�
�����������������

���������������

�
�����������������

���������

��� ��� ��

��

�
�
�

�

��������������� ��������������� ��

!���
�� !���
��������	�
�
����������

�����������	
� �
�

������	
�

Fig. 1: Scheme of generalized distillation. The distilled model

f (x3,x4) learns a model using the standard features, since it

only requires access to available features (x3,x4) at detection

time. However, the distilled model was trained to imitate the

predictions of a model f (x1,x2,x3,x4), which have an access

to the privileged features (x1,x2) available at training time.

Through this transference of knowledge, the distilled model

provides more accurate detection results than the models trained

using only the standard features (x3,x4), and similar results to

the models assuming access to the complete data (x1,x2,x3,x4).

These teachings from the privileged model do, in many cases,

significantly help the learning process of the distilled model.

Privileged features– The first challenge to build detection

models via generalized distillation is determining which

features should be used as privileged. Asked another way,

given some potentially large set of features, which are the most
likely not available at run-time and will improve detection?
To address this, we define the privileged features in a security

domain that represent the relevant features of a detection

task, yet they have constraints on obtaining them at run-

time. The main constraints includes but not limited to the

high resource consumption, computational overhead, and

semantic information produced by human experts. Therefore,

the acquisition of the privileged features are often too slow,

available after the fact, or require too many resources to be

feasible in practice. Using this definition, we determine the

privileged features that include useful information for detection,

yet they have one of the constraints above at run-time. We

note that defining privileged features sometimes requires a

level of domain expertise. However, trained security experts

will find most of the privileged features straightforward after

determining the run-time constraints on features. We believe

that privileged information will change the way of building

new datasets in complement with the existing datasets, and in

turn, make it easier to construct systems with complete related

84



System Goal Standard features Privileged features Constraints on privileged features at detection time

User Face
Authentication

Authenticate users from
their face images

User face images Bounding boxes, and cropped ver-
sions of the face images

(1) Human efforts and additional software is required to
acquire features, (2) Processing overhead in low energy
sensors prevents acquiring features

Fast-flux Bot
Detection

Detect fast IP-changing do-
main names

A and NS record information
from DNS packets, the process-
ing time of servers

Features from domain names, spatial,
and network features

Time-consuming and resource intensive operations (do-
main name processing, WHOIS processing, and IP co-
ordinate database lookup) prevents real-time detection

Malware
Classification

Classify malware binaries
to their respective families

Frequency count of hexadecimal
duos of the binary contents

Frequency count of meta-data infor-
mation extracted from the assembler

Software-dependency of obtaining assembly source code
introduces a computational overhead and error-prone
feature extraction

TABLE I: Description of detection systems. Each system is depicted with its standard features and privileged features. We

incorporate the privileged features into detection system via generalized distillation.

privileged features. A recent example is the Animals with

Attributes dataset which has 30K images of 50 animal classes,

annotated with 85 semantic attributes like color, texture, shape,

and behavior among others [15]. The images are considered

as standard, and semantic attributes are as privileged.

Motivating Example– We consider a malware detector de-

signed for mobile phones that monitors system-level features

such as capabilities of the hypervisor and the nonexecutable

page table at run-time to find malicious rootkits [2]. However,

some features have high energy costs and induce noticeable

interface lag. This drains the battery and causes users disable

the detection mechanism to save power. In the following,

let us denote all the features required for rootkit detection

by (x1,x2,x3,x4), being (x1,x2) the “system-level features”.

Thus, a system considers the “no system-level features” (x3,x4)
standard as they are available at both at training and run-time

of the detection system, and the features (x1,x2) privileged as

they are not available at run-time. However, it is reasonable

to assume that the system-level features (x�i ) contain useful

information to identify malicious rootkits, but such information

will be unavailable at run-time. Once privileged features are

defined, we built an ML model through generalized distillation.

Generalized distillation incorporates privileged features into ML

models without requiring them at run-time. The learning pro-

cess proceeds as follows: a model ŷ = f (x1,x2,x3,x4) is trained

that uses all the features to estimate the malicious rootkits ŷ.

Second, another model ỹ = f (x3,x4) is trained, this time only

on “no system-level features”. However, the model ỹ= f (x3,x4)
is built to learn the true malicious rootkits available in our

database, as well as to imitate ŷ = f (x1,x2,x3,x4) predicted by
the privileged model that uses all the features. Finally, when a

new sample belonging to the “no system-level features” comes

for detection, we can use the model ỹ = f (x3,x4) to predict

the probability of a malicious rootkit while we preserve the

low energy costs and prevent the interface lag.

III. EXPERIMENTAL DETECTION SYSTEMS

We present our efforts to build privileged-augmented systems

from recently proposed systems for evaluation of distilled

models. We show models of three detection systems through

generalized distillation: (1) user face authentication, (2) fast-

flux bot detection, and (3) malware classification. Table I

summarizes the goal of detection systems, shows their standard,

Feature definition Run-time dependency Type*

Number of unique A records
Number of NS records

DNS packet headers �

Network delay1

Processing delay1

Document fetch delay1
HTTP requests �

Edit distance
KL divergence2

Jaccard similarity2
Whitelist of benign domain

names
�

Time zone entropy of A records
Time zone entropy of NS records
Minimal service distances1

IP coordinate database lookup �

Number of distinct autonomous systems
Number of distinct networks

WHOIS processing �

* �: standard features, �: privileged features.
1 Both mean and std. deviation are computed.
2 Both unigrams and bigrams are computed.

TABLE II: Fast-flux bot detection system standard and privi-

leged feature descriptions.

and privileged features, and the constraints on privileged

features at run time. Our goal is evaluating the capacity

of privileged features via generalized distillation to analyze

efficacy on detection performance. In particular, a system’s

reverse engineering should let us process the privileged features

in addition to its standard features. Thus, we consider the

selection of privileged features is complete as long as we can

obtain as many privileged features as we can from a system.

User Face Authentication– We implement a face authentica-

tion system to recognize a facial image corresponding to the

individual depicted in the image. We use a subset of the images

with three RGB channels in the Labeled Faces in the Wild

dataset [16]. The dataset includes 1348 images with at least

50 images per person. We build the standard features from

human facial images, and add bounding box of cropped faces

and funneled face images as privileged features. These images

aim at specifying the facial localization of the faces which

gives useful information about each users face by eliminating

statistical correlation from the background noise. However, the

privileged features of the images can be obtained with the help

of commercial software and human processing and may not be

available in low energy and slow processing sensors [16]–[18].

Fast-flux Bot Detection– Fast-flux servers are employed by

attackers to hide the actual IP addresses of the servers used for

malicious activities. We built the dataset of a recent fast-flux

detector [19] that includes features acquired from the domain

names, DNS packets, packet timing intervals, WHOIS and

85



""#"$�""�%&�'(�')�""��%��&��*��"�&(��"�"%��(��%�%&�'(�')�
""#"$�%"�""��%��&�%%��*��"�&(��"�"%��(��%�%&�'(�')�""��%�
""#"$�)"��&�")��*��"�&(��"�"%��(��%�%&�'(�')�""��%��&�"(�
""#"$�("��*��"�&(��"�"%��(��%�%&�'(�')�""��%��&�"#��*��"�
""#"$�#"�&(��"�"%��(��%�%&�'(�')�""�&(��"�+"�((��$�(��+"�

������

���������������������������	������
����������������������	�������

��,���-�	
�,	��
,�."���
��
�-�	
�,	��
,�&�
�������
�-�	
�,	��
,�"���
���������
�����������,������"�

����

���������''��&���������
�+�*&�����'��%�%+�$��

/�
�

���������������
������,����,
��
��
���		��,���

����

��������	���
�������	����������
������������� �������	���
����
����
���������������

Fig. 2: An example of obtaining the standard (Left) and

privileged features (Right) of the malware classification system.

IP coordinate database [20], [21] (see Table II). The dataset

includes 4 GB benign and malicious fast-flux DNS requests

collected in early 2013 [19]. However, processing WHOIS

records, finding the KL-Divergence and Jaccard similarity

of a domain name from a whitelist of domain names, and

IP coordinate database lookup takes several minutes/hours to

process and update. These features introduce time-consuming

and resource-intensive operations at run-time and prevent real-

time detection. Therefore, we define such features as privileged

to assure real-time detection.

Malware Classification– We use Microsoft malware classi-

fication challenge dataset [22] to classify malware samples

to their correct family. The dataset consists of 1746 malware

samples with nine classes. Each malware sample includes

byte and metadata files and a class label. The byte files

include the raw hexadecimal representation of the malware

binary contents. We use byte files to construct the standard

features by counting the frequencies of each hexadecimal duos

(i.e., byte bigrams) (see Figure 2). The byte bigrams provide

discriminating characteristics between different families and

low computational complexity for real-time detection [23].

The metadata manifest includes the assembly logs of IDA

disassembler tool [24]. The distinct tokens such as mov(),

cmp() from manifest files capture the different execution of

malware families [23]. However, processing the manifest file

may prevent real-time automated malware classification because

of the disassembler overhead [25]. Additionally, different

disassembler versions may interpret byte sequences of malware

differently, and lead to inaccurate feature extraction. Therefore,

similar to the byte files, we add tokens frequencies acquired

from the malware manifest files as privileged features.

IV. EVALUATION

Evaluation Setup– We obtain the standard features of the

detection systems either by reverse engineering them or using

their publicly released datasets. We then learn three models.

First, complete model uses both standard and privileged features

for training and validation. Second, the standard model trains

and validates the model on standard features. The third model

is the distilled which trains the model on both standard

and privileged features via generalized distillation, yet it

uses standard features for the purpose of detection. We train

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
imitation parameter (λ)

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Standard set baseline
Privileged set baseline
T=1
T=2
T=5
T=10

�������������������

��
��
	�
��

��
		

�
�	
��

����
��
���
���
���������
���
���
��������
������
����
��������
������
����
��������
������
����
��������
������
�����

Fig. 3: Visualizing impact of privileged features on detection

accuracy of user face authentication system: Accuracy of

standard and privileged models are plotted as a baseline. The

impact of temperature (T ) and imitation (λ) parameters is
quantified on various values.

privileged models using a deep neural network with two hidden

layers of 10 rectifiers linear unit each using the Keras libary [26]
running the Theano backend [27]. This type of architecture
is commonly applied in security and privacy settings [28]
and gives affordable results in analyzed datasets. We split

the datasets into two cohorts; the training cohort is used to

learn the models, and the validation cohort is used to evaluate

the models. We show the experimental results of generalized

distillation with an imitation parameter values of λ ∈ [0,1] and
T ∈ {1,2,5,10}. Our goal is to identify the optimal T and λ
parameters leading to maximum detection gain in systems. The

performance of the systems is presented with three metrics;

accuracy, recall, and precision. Accuracy is the sum of the true

positive and true negatives over a total number of samples.

The recall is the number of true positives over the sum of false

negatives and true positives, and precision is the number of

true positives over the sum of false positives and true positives.

Higher values of accuracy, precision, and recall indicates a

higher quality of the detection.

Evaluation Results– We begin with the result of the gen-
eralized distillation on the user face authentication system.

We note that in some cases background of the images may

unrealistically increase the facial recognition of a user because

of the distinguishing effect on the background regions of a

face image. However, we manually verified that the images in

our dataset do not suffer from this effect.

Generalized distillation improves the accuracy of the face
authentication system compared to models built on standard

features. Figure 3 plots the average model accuracy of standard,

privileged models, and distilled model with varying imitation

and temperature values. We note that all models are imple-

mented using a DNN architecture defined in the evaluation

setup. Learning with only privileged features achieves on

average 89.2% correct classification rate, which is better than

86



Fast-flux Bot Detection Malware Classification

Model Accuracy Precision Recall Accuracy Precision Recall

Complete Model
RF 98.99±0.88 99.4 99.4 96.6±1.2 99.3 95.2

SVM 99.46±0.3 99.34 100 95.68±1 98.63 94.62

Standard Model
RF 96.5±2.57 98.68 96.75 91.2±0.97 91.34 94.35

SVM 95.0±2.3 94.38 95.5 91.78±1.1 93.17 93.55

Distilled Model DNN 97.47 ±0.3 97.35 99.32 92.56 ±0.7 92.57 95.31

TABLE III: Accuracy, precision, and recall of detection systems

with optimal temperature (T ) and imitation (λ) parameters.

the 66.5% of the standard model. We measure the distilled

model accuracy with various temperature T and imitation λ
parameters. Distilling the privileged features at specific T and

λ parameters gives better detection accuracy over the standard

model. The accuracy is maximized when T is between 1 and

3 for the most of the λ values. The accuracy improvement

is on average 6.56% when T = 1 and it is maximal when

λ= 0.2. This yields 11.2% increase in accuracy compared to the

model built on standard features. However, the more increase

in temperature parameter degrades the detection accuracy.

This is because increasing the temperature parameter after a

saturating point causes the distribution of the class probabilities

be smoother, which, in turn, prevents the proper weighting

between standard and privileged features.

We conduct similar experiments on the fast-flux bot detection

(FF) and malware classification (MC). In these set of exper-

iments, we use Random Forrest Classifier (RF) and Support

Vector Machines (SVM) to train standard, and complete

models because these classifiers give better results than other

ML algorithms and also preferred by the authors of the

detection systems. We apply grid search to find the optimal

parameters of the SVM and RF models. Distilled models of FF

and MC detection systems decrease both false positives and

negatives over benchmark systems that do not use privileged

features (i.e., standard models). Table III shows the generalized

distillation results and compares it with the standard and

complete models of SVM and RF. We observe that by distilling

at the proper temperature and imitation parameters, we improve

the detection results in both systems. In FF, the distilled model

at T = 2 and λ = 0.6 yields 97.47% accuracy which is 1.99%

less than the SVM complete model and 2.47% more than the

SVM standard model. In MC, the distilled model at T = 5

and λ = 0.3 yields 92.56% which is 4.04% less than the RF

complete model and 1.36% more than the RF standard model.

We note that the impact of various temperature and imitation

parameters in these datasets lower than the face authentication

results. In the worst case, we observe on average 8.2% less

accuracy than the standard model accuracy.

Our evaluation of three detection systems showed that

distilled models reduce both false positives and negatives

compared to the systems solely built with standard models. In

a security setting, false positives make extremely difficult for

the analyst that examines the reported incidents in order to

identify the mistakenly triggered benign events correctly. On

the other hand, false negatives may have a potential to cause

dreadful damage to both users and organizations. For instance,

in fast-flux bot detection, a false negative may allow a bot send

private data to a malicious server. In malware classification

and face authentication systems, it weakens the integrity of a

system by authenticating the wrong user or misclassifying a

malware family sample into an incorrect family. Thus, the use

of privileged features via generalized distillation does matter in

improving the false positives and negatives of these systems.

V. DISCUSSION AND LIMITATIONS

We applied generalized distillation, a technique of distilling

the knowledge of privileged features as class probability vectors

into the standard features of a detection system. The preceding

analysis of generalized distillation demonstrated that privileged

features enhance a detection model’s generalization capabilities

outside of their standard features. However, two crucial factors,

model selection and parameter tuning, need to be addressed to

maximize the detection accuracy. For the former, the objective

of generalized distillation can be minimized using an arbitrary

model that needs be picked carefully. For the latter, the imitation

λ and temperature parameter T should be tuned carefully to

find the optimal distilled model. We note that parameter tuning

is not a limitation of generalized distillation, yet applies to all

machine learning algorithms that require parameters. On the

other hand, we validated generalized distillation in a supervised

learning setting. However, its objective can be formulated in

other learning models such as semi-supervised, transfer and

universum learning [9], [28]. Indeed, Jonschkowski et al. have

provided a discussion of how privileged information can be

adapted to other learning settings [29].

VI. RELATED WORK

We validated the performance of generalized distillation

in detection systems of malware classification, fast-flux bot

detection, and user face authentication. Feature cultivation in

these detection systems has been a key effort within the security

communities. For example, researchers have previously used

specific patterns to group malware samples into families [23],

[30], have explored using DNS information to understand and

predict botnet domains [20], [31], [32], and have analyzed

system and network level features to identify malware traf-

fic [33]–[35]. Other works have focused on user authentication

using the facial images [36], [37]. These detection systems

can integrate privileged features into their standard features of

their detection models to strike a balance between accuracy

and run-time constraints.

The privileged information has recently used in a few others

domains such as computer vision, healthcare, image processing,

and finance. Wang et al. [38] and Sharmanska et al. [39] used

privileged features of images in the form of manually derived

attributes, textual descriptions and object bounding boxes. Celik

et al. used privacy-sensitive features as privileged in a healthcare

statistical model [28]. Niu et al. used privileged-augmented

robust classifiers for action and event recognition [40]. Ribeiro

et al. used annual turnover and global balance values as

87



a privileged in order to improve the financial models [41].

However, their approaches are not intended to work in a security

setting, yet they determine whether there is a possibility of

improvement using the domain-specific features.

VII. CONCLUSIONS

We explored the application of generalized distillation to

learn a detection model that exploits privileged information—

features available at training time, but not at run-time. Gen-

eralized distillation is a learning meta-algorithm which allow

systems to learn models using features that are not available at

run-time. By reusing the knowledge from privileged features

available at training time, generalized distillation showed nearly

optimal detection, competing with the idealized models that

assume access to complete data required for detection. We

showed that distilling privileged features into the recently

proposed three detection models of user face authentication,

fast-flux bot detection, and malware classification compete with

the idealized models that assume access to complete features.

Our future efforts will attempt designing new systems that

benefit from recent advances in learning theory to learn better

detection models. At a higher level, we will provide a guideline

for optimal temperature and imitation parameter selection in a

principled way as well as feature cultivation in distilled models.

ACKNOWLEDGMENTS

We thank Dr. David Lopez-Paz for his constructive comments

on generalized distillation and Dr. Rauf Izmailov for his

feedback on the application of Learning using Privileged

Information (LUPI) paradigm. Research was sponsored by

the Army Research Laboratory and was accomplished under

Cooperative Agreement Number W911NF-13-2-0045 (ARL

Cyber Security CRA). The views and conclusions contained

in this document are those of the authors and should not

be interpreted as representing the official policies, either

expressed or implied, of the Army Research Laboratory or

the U.S. Government. The U.S. Government is authorized to

reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation here on.

REFERENCES

[1] Z. B. Celik, J. Raghuram, G. Kesidis, and D. J. Miller, “Salting public
traces with attack traffic to test flow classifiers,” in Usenix CSET, 2011.

[2] J. Bickford et al., “Security versus energy tradeoffs in host-based mobile
malware detection,” in Mobile systems, applications, and services, 2011.

[3] ArcSight Data Platform, http://www8.hp.com/us/en/software-solutions/
arcsight-logger-log-management/, 2017, [Online; accessed 9-May-2017].

[4] A. A. Cardenas, P. K. Manadhata, and S. P. Rajan, “Big data analytics
for security,” IEEE System Security, 2013.

[5] R. Zuech, T. M. Khoshgoftaar, and R. Wald, “Intrusion detection and
big heterogeneous data: a survey,” Journal of Big Data, 2015.

[6] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection
in the internet of things,” Ad hoc networks, 2013.

[7] V. Vapnik and R. Izmailov, “Learning using privileged information:
Similarity control and knowledge transfer,” Journal of Machine Learning
Research, 2015.

[8] V. Vapnik and A. Vashist, “A new learning paradigm: Learning using
privileged information,” Neural Networks, 2009.

[9] D. Lopez-Paz, L. Bottou, B. Schölkopf, and V. Vapnik, “Unifying
distillation and privileged information,” ICLR, 2016.

[10] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[11] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in Advances
in neural information processing systems, 2014.

[12] N. Papernot et al., “Distillation as a defense to adversarial perturbations
against deep neural networks,” IEEE S&P, 2016.

[13] Z. B. Celik, R. Izmailov, and P. McDaniel, “Proof and Implementation
of Algorithmic Realization of Learning Using Privileged Information
(LUPI) Paradigm: SVM+,” NSCR, Department of CSE, Pennsylvania
State University, Tech. Rep. NAS-TR-0187-2015, Dec. 2015.

[14] Z. B. Celik, P. McDaniel, and R. Izmailov, “Feature cultivation in privi-
leged information-augmented detection,” in ACM CODASPY International
Workshop on Security And Privacy Analytics, 2017.

[15] C. H. Lampert et al., “Learning to detect unseen object classes by
between-class attribute transfer,” in CVPR, 2009.

[16] G. B. Huang et al., “Labeled faces in the wild: Updates and new reporting
procedures,” UMASS, Tech. Rep. UM-CS-2014-003, May 2014.

[17] L. Wolf, T. Hassner, and Y. Taigman, “Effective unconstrained face
recognition by combining multiple descriptors and learned background
statistics,” Pattern Analysis and Machine Intelligence, 2011.

[18] V. J. and E. Learned-Miller, “Fddb: A benchmark for face detection in
unconstrained settings,” UMASS, Tech. Rep. UM-CS-2010-009, 2010.

[19] Z. B. Celik and S. Oktug, “Detection of Fast-Flux Networks using various
DNS feature sets,” in ISCC, 2013.

[20] S. Yadav, A. K. K. Reddy et al., “Detecting algorithmically generated
malicious domain names,” in ACM Internet measurement, 2010.

[21] S. Huang et al., “Fast-flux service network detection based on spatial
snapshot mechanism for delay-free detection,” in ASIACCS, 2010.

[22] Microsoft Malware Classification Challenge, https://www.kaggle.com/c/
malware-classification/, 2017, [Online; accessed 10-May-2015].

[23] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel feature extraction, selection and fusion for effective malware
family classification,” Data and Application Security and Privacy, 2016.

[24] IDA Pro: Disassembler and Debugger, http://www.hex-rays.com/idapro/,
2017, [Online; accessed 9-Feb-2017].

[25] L. Nataraj, V. Yegneswaran et al., “A comparative assessment of malware
classification using binary texture analysis and dynamic analysis,” in
Security and Artificial Intelligence Workshop. ACM, 2011.

[26] Keras: Theano-based deep learning library, https://github.com/fchollet,
[Online; accessed 10-January-2018].

[27] J. Bergstra et al., “Theano: A cpu and gpu math compiler in python,” in
Python for Scientific Computing Conference (SciPy), 2010.

[28] Z. B. Celik, D. Lopez-Paz, and P. McDaniel, “Patient-driven privacy
control through generalized distillation,” IEEE Symposium on Privacy-
Aware Computing, 2016.

[29] R. Jonschkowski, S. Hfer, and O. Brock, “Patterns for learning with side
information,” 2015.

[30] M. Z. Rafique and J. Caballero, “Firma: Malware clustering and network
signature generation with mixed network behaviors,” in RAID, 2013.

[31] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From throw-away traffic to bots: detecting the
rise of DGA-based malware,” in USENIX Security, 2012.

[32] L. Bilge et al., “Exposure: Finding malicious domains using passive
DNS analysis.” in NDSS, 2011.

[33] B. Rahbarinia et al., “Segugio: Efficient behavior-based tracking of
malware-control domains in large isp networks,” in IEEE DSN, 2015.

[34] Z. B. Celik, R. J. Walls, P. McDaniel, and A. Swami, “Malware traffic
detection using tamper resistant features,” in IEEE MILCOM, 2015.

[35] Z. B. Celik, P. McDaniel, and T. Bowen, “Malware modeling and
experimentation through parameterized behavior,” Journal of Defense
Modeling and Simulation, 2017.

[36] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
British Machine Vision, 2015.

[37] Y. Sun, D. Liang, X. Wang, and X. Tang, “Deepid3: Face recognition
with very dnns,” arXiv preprint arXiv:1502.00873, 2015.

[38] Z. Wang and Q. Ji, “Classifier learning with hidden information,” in
IEEE Computer Vision and Pattern Recognition, 2015.

[39] V. Sharmanska et al., “Learning to rank using privileged information,”
in International Conference on Computer Vision (ICCV), 2013.

[40] L. Niu, W. Li, and D. Xu, “Exploiting privileged information from web
data for action and event recognition,” Journal of Computer Vision, 2016.

[41] B. Ribeiro et al., “Enhanced default risk models with SVM+,” Expert
Systems with Applications, 2012.

88


