
Deep Reinforcement Fuzzing

Konstantin Böttinger
Fraunhofer AISEC

85748 Garching, Germany

konstantin.boettinger@aisec.fraunhofer.de

Patrice Godefroid
Microsoft Research

98052 Redmond, USA

pg@microsoft.com

Rishabh Singh
Microsoft Research

98052 Redmond, USA

rishabh.iit@gmail.com

Abstract—Fuzzing is the process of finding security vulnera-
bilities in input-processing code by repeatedly testing the code
with modified inputs. In this paper, we formalize fuzzing as a
reinforcement learning problem using the concept of Markov
decision processes. This in turn allows us to apply state-of-the-
art deep Q-learning algorithms that optimize rewards, which
we define from runtime properties of the program under test.
By observing the rewards caused by mutating with a specific
set of actions performed on an initial program input, the
fuzzing agent learns a policy that can next generate new higher-
reward inputs. We have implemented this new approach, and
preliminary empirical evidence shows that reinforcement fuzzing
can outperform baseline random fuzzing.

I. INTRODUCTION

Fuzzing is the process of finding security vulnerabilities

in input-processing code by repeatedly testing the code with

modified, or fuzzed, inputs. Fuzzing is an effective way to

find security vulnerabilities in software [1], and is becoming

standard in the commercial software development process [2].

Existing fuzzing tools differ by how they fuzz program

inputs, but none can explore exhaustively the entire input space

for realistic programs in practice. Therefore, they typically

use fuzzing heuristics to prioritize what (parts of) inputs to

fuzz next. Such heuristics may be purely random, or they may

attempt to optimize for a specific goal, such as maximizing

code coverage.

In this paper, we investigate how to formalize fuzzing as a

reinforcement learning problem. Intuitively, choosing the next

fuzzing action given an input to mutate can be viewed as

choosing a next move in a game like Chess or Go: while an

optimal strategy might exist, it is unknown to us and we are

bound to play the game (many times) in the search for it. By

reducing fuzzing to reinforcement learning, we can then try to

apply the same neural-network-based learning techniques that

have beaten world-champion human experts in Backgammon

[3], Atari games [4], and the game of Go [5].

Specifically, fuzzing can be modeled as learning process

with a feedback loop. Initially, the fuzzer generates new inputs,

and then runs the target program with each of them. For each

program execution, the fuzzer extracts runtime information

(gathered for example by binary instrumentation) for evaluat-

ing the quality (with respect to the defined search heuristic) of

the current input. For instance, this quality can be measured

as the number of (unique or not) instructions executed, or

the overall runtime of the execution. By taking this quality

feedback into account, a feedback-driven fuzzer can learn from

M

I

P

r(x, a) x a

Fig. 1. Modeling Fuzzing as a Markov decision process.

past experiments, and then generate other new inputs hopefully

of better quality. This process repeats until a specific goal

is reached, or bugs are found in the program. Similarly, the

reinforcement learning setting defines an agent that interacts

with a system. Each performed action causes a state transition

of the system. Upon each performed action the agent observes

the next state and receives a reward. The goal of the agent is

to maximize the total reward over time.

Our mathematical model of fuzzing is captured in Figure 1.

An input mutation engine M generates a new input I by

performing a fuzzing action a, and subsequently observes

a new state x directly derived from I as well as a reward

r(x, a) that is measured by executing the target program P

with input I. We reduce input fuzzing to a reinforcement

learning problem by formalizing it using Markov decision

processes [6]. Our formalization allows us to apply state-of-

the-art machine learning methods. In particular, we experiment

with deep Q-learning.

In summary, we make the following contributions:

• We formalize fuzzing as a reinforcement learning prob-

lem using the concept of Markov decision processes.

• We introduce a fuzzing algorithm based on deep Q-

learning that learns to choose highly-rewarded fuzzing

actions for any given program input.

• We implement and evaluate a prototype of our approach.

• We present preliminary empirical evidence that reinforce-

ment fuzzing can outperform baseline random fuzzing.

II. RELATED WORK

Our work is influenced by three main streams of research:

fuzzing, grammar reconstruction, and deep Q-learning.

116

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Konstantin Böttinger. Under license to IEEE.
DOI 10.1109/SPW.2018.00026



A. Fuzzing

There are three main types of fuzzing techniques in use

today: (1) black-box random fuzzing [1], [7], (2) white-
box constraint-based fuzzing [8], and (3) grammar-based
fuzzing [9], [1], which can be viewed as a variant of model-

based testing [10]. Black-box and white-box fuzzing are fully

automatic, and have historically proved to be very effective at

finding security vulnerabilities in binary-format file parsers.

In contrast, grammar-based fuzzing is not fully automatic:

it requires an input grammar specifying the input format of

the application under test. This grammar is typically written

by hand, and this process is laborious, time consuming, and

error-prone. Nevertheless, grammar-based fuzzing is the most

effective fuzzing technique known today for fuzzing applica-

tions with complex structured input formats, like web-browsers

which must take as (untrusted) inputs web-pages including

complex HTML documents and JavaScript code.

State-of-art fuzzing tools like SAGE [8] or AFL [11]

use coverage-based heuristics to guide their search for bugs

towards less-covered code parts. But they do not use machine

learning techniques as done in this paper.

Combining statistical neural-network-based machine learn-

ing with fuzzing is a novel approach and, to the best of

our knowledge, there is just one prior paper on this topic:

Godefroid et al. [12] use character-based language models to

learn a generative model of fuzzing inputs, but they do not

use reinforcement learning.

B. Grammar Reconstruction

Research on reconstructing grammars from sample inputs

for testing purposes started in the early 1970’s [9], [13].

More recently, Bastani et al. [14] proposed an algorithm for

automatic synthesis of a context-free grammar given a set of

seed inputs and a black-box target. Cui et al. [15] automatically

detect record sequences and types in the input by identification

of chunks based on taint tracking input data in respective

subroutine calls. Similarly, the authors of [16] apply dynamic

tainting to identify failure-relevant inputs. Another recently

proposed approach [17] mines input grammars from valid

inputs based on feedback from dynamic instrumentation of

the target by tracking input characters.

C. Deep Q-Learning

Reinforcement learning [18] emerged from trial and error

learning and optimal control for dynamic programming [6].

Especially the Q-learning approach introduced by Watkins

[19], [20] was recently combined with deep neural networks

[21], [3], [4], [5] to efficiently learn policies over large state

spaces and has achieved impressive results in complex tasks.

III. REINFORCEMENT LEARNING

In this section we give the necessary background on rein-

forcement learning. We first introduce the concept of Markov

decision processes [6], which provides the basis to formalize

fuzzing as a reinforcement learning problem. Then we discuss

the Q-learning approach to such problems and motivate the

application of deep Q-networks.

Reinforcement learning is the process of adapting an agent’s

behavior during interaction with a system such that it learns

to maximize the received rewards based on performed actions

and system state transitions. The agent performs actions on

a system it tries to control. For each action, the system

undergoes a state transition. In turn, the agent observes the

new state and receives a reward. The aim of the agent is to

maximize its cumulative reward received during the overall

time of system interaction. The following formal notation

relates to the presentation given in [18].

The interaction of the agent with the system can be seen as

a stochastic process. In particular, a Markov decision process

M is defined as M = (X,A, P0), where X denotes a set

of states, A a set of actions, and P0 the transition probability

kernel. For each state-action pair (x, a) ∈ X × A and each

U ⊂ X × R the kernel P0 gives the probability P0(U |x, a)
such that performing action a in state x causes the system to

transition into some state of X that yields some real-valued

reward U . P0 directly provides the state transition probability

kernel P for single transitions (x, a, y) ∈ X ×A×X

P (x, a, y) = P0({y} × R|x, a). (1)

This naturally gives rise to a stochastic process: An agent

observing a certain state chooses an action to cause a state

transition with the corresponding reward. By subsequently

observing state transitions with corresponding rewards the

agent aims to learn an optimal behavior that earns the maximal

possible cumulative reward over time. Formally, with the

stochastic variables (y(x, a), r(x, a)) distributed according to

P0(·|x, a) the expected immediate reward for each choice

of action is given by E[r(x, a)]. In the following, for a

stochastic variable v the notation v ∼ D indicates that v
is distributed according to D. During the stochastic process

(xt+1, rt+1) ∼ P (·|xt, at) the aim of an agent is to maximize

the total discounted sum of rewards

R =
∞∑
t=0

γtrt+1, (2)

where γ ∈ (0, 1) indicates a discount factor that prioritizes

rewards in the near future. The choice of action at an agent

makes in reaction to observing state xt is determined by its

policy at ∼ π(·|xt). The policy π maps observed states to

actions and therefore determines the behavior of the agent.

Let

Qπ(x, a) = E

[ ∞∑
t=0

γtrt+1|x0 = x, a0 = a

]
(3)

denote the expected cumulative reward for an agent that

behaves according to policy π. Then we can reduce our

problem of approximating the best policy to approximating

117



the optimal Q function. One practical way to achieve this is

adjusting Q after each received reward according to

Q(xt, at)← Q(xt, at) (4)

+ α
(
rt + γmax

a
Q(xt+1, a)−Q(xt, at)

)
,

(5)

where α ∈ (0, 1] indicates the learning rate. The process

in this setting works as follows: The agent observes a state

xt, performs the action at = argmaxa Q(xt, a) (where

argmaxa f(a) denotes the argument value a that maximizes

f(a)) that maximizes the total expected future reward and

thereby causes a state transition from xt to xt+1. Receiving

reward rt and observing xt+1 the agent then considers the

best possible action at+1 = argmaxa Q(xt+1, a). Based on

this consideration, the agent updates the value Q(xt, at). If

for example the decision of taking action at in state xt led to

a state xt+1 that allows to choose a high reward action and

additionally invoked a high reward rt, the Q value for this

decision is adapted accordingly. Here, the factor α determines

the rate of this Q function update.

For small state and action spaces, Q can be represented as a

table. However, for large state spaces we have to approximate

Q with an appropriate function. An approximation using deep

neural networks was recently introduced by Mnih et al. [4]. For

such a representation, the update rule in Equation (4) directly

translates to minimizing the loss function

L =
(
r + γmax

a
Q(xt+1, a)−Q(xt, at)

)2

. (6)

The learning rate α in Equation (4) then corresponds to the

rate of stochastic gradient descent during backpropagation.

Deep Q-networks have been shown to handle large state

spaces efficiently. This allows us to define an end-to-end

algorithm directly on raw program inputs, as we will see in

the next section.

IV. MODELING FUZZING AS A MARKOV DECISION

PROCESS

In this section we formalize fuzzing as a reinforcement

learning problem using a Markov decision process by defining

states, actions, and rewards in the fuzzing context.

A. States

We consider the system that the agent learns to interact with

to be a given “seed” program input. Further, we define the

states that the agent observes to be substrings of consecutive

symbols within such an input. Formally, let Σ denote a finite

set of symbols. The set of possible program inputs I written

in this alphabet is then defined by the Kleene closure I := Σ∗.
For an input string x = (x1, ..., xn) ∈ I let

S(x) := {(x1+i, ..., xm+i) | i ≥ 0, m+ i ≤ n)} (7)

denote the set of all substrings of x. Clearly, ∪x∈IS(x) = I
holds. We define the states of our Markov decision process to

be I. In the following, x ∈ I denotes an input for the target

program and x′ ∈ S(x) ⊂ I a substring of this input.

B. Actions

We define the set of possible actions A of our Markov

decision process to be random variables mapping substrings

of an input to probabilistic rewriting rules

A := {a : I → (I × I, F , P ) | a ∼ π(x′)} , (8)

where F = σ(I × I) denotes the σ-algebra of the sample

space (I × I) and P gives the probability for a given rewrite

rule. In our implementation (see Section VI) we define a small

subset A ⊂ A of probabilistic string rewrite rules that operate

on a given seed input.

C. Rewards

We define rewards independently for both characteristics of:

1) the next performed action a and 2) the program execution

with the next generated input x, i.e., r(x, a) = E(x) +G(a).
In our implementation in Section VI we experiment with E

providing number of newly discovered basic blocks, execution

path length, and execution time of the target that processes

the input x. For example, we can define the number of newly

discovered blocks as

E1(x, I
′) :=

∣∣∣∣∣∣B(cx) \
⎛
⎝ ⋃

χ∈I′
B(cχ)

⎞
⎠
∣∣∣∣∣∣ . (9)

where cx denotes the execution path the target program takes

when processing input x, B(cx) is the set of unique basic

blocks of this path, and I ′ ⊂ I is the set of previously

processed inputs. Here, we define a basic block as a sequence

of program instructions without branch instructions.

V. REINFORCEMENT FUZZING ALGORITHM

In this section we present the overall reinforcement fuzzing

algorithm.

A. Initialization

We start with an initial seed input x ∈ I. The choice of x
is not constrained in any way, it may not even be valid with

regard to the input format of the target program. Next, we

initialize the Q function. For this, we apply a deep neural net

that maps states to the estimated Q values of each action, i.e.,

we simultaneously approximate the Q values for all actions A
given a state x′ ∈ S(x) as defined in Equation (7). The x′ 
→
Q(x′, a) representation provides the advantage that we only

need one forward pass to simultaneously receive the Q values

for all actions a ∈ A instead of |A| forward passes. During

Q function initialization we distribute the network weights

randomly.

B. State Extraction

The state extraction step State() takes as input a seed x ∈ I
and outputs a substring of x′ ∈ S(x). In Section IV we defined

the states of our Markov decision process to be I = Σ∗. For

the given seed x ∈ I we extract a strict substring x′ ∈ S(x)
at offset o ∈ {0, ..., |x| − |x′|} of width |x′|. In other words,

the seed x corresponds to the system as depicted in Figure 1

118



and the reinforcement agent observes a fragment of the whole

system via the substring x′. We experimented with controllable

(via action) and predefined choices of offsets and substring

widths, as discussed in Section VI.

C. Action Selection

The action selection step takes as input the current Q
function and an observed state x′ and outputs an action a ∈ A
as defined in Equation (8). Actions are selected according to

the policy π following an ε-greedy behavior: With probability

1 − ε (for a small ε > 0) the agent selects an action

a = argmaxa′ Q(x′, a′) that is currently estimated optimal

by the Q function, i.e., it exploits the best possible choice

based on experience. With a probability ε it explores any other

action, where the probability of choice is uniformly distributed

within |A|.

D. Mutation

The mutation step takes as input a seed x and an action

a. It outputs the string that is generated by applying action

a on x. As indicated in Equation (8) we define actions to

be mappings to probabilistic rewriting rules and not rewriting

rules on their own. So applying action a on x means that we

mutate x according to the rewrite rule mapped by a within the

probability space (I × I, F , P ). We make this separation to

distinguish between the random nature of choice for the action

a ∼ π(·|x′) and the randomness within the rewrite rule.

E. Reward Evaluation

The reward evaluation step takes as input the target program

P , an action a ∈ A, and an input x ∈ I that was generated

by the application of a on a seed. It outputs a positive number

r ∈ R
+. The stochastic reward variable r(x, a) = E(x)+G(a)

sums up the rewards for both generated input and selected

action. Function E rewards characteristics recorded during the

program execution as defined in Section IV-C.

F. Q Update

The Q update step takes as input the extracted substring

x′ ∈ S(x), the action a that generated x, the evaluated

reward r ∈ R
+, and the Q function approximation, which

in our case is a deep neural network. It outputs the updated

Q approximation. As indicated above, the choice of applying

a deep neural network Q is motivated by the requirement to

learn on raw substrings x′ ∈ S(x). The Q function predicts

for a given state the expected rewards for all defined actions

of A simultaneously, i.e., it maps substrings according to

x′ 
→ Q(x′, a). We update Q in the sense that we adapt

the predicted reward value Q(xt, at) according to the target

r + γmaxa Q(xt+1, a). This yields the loss function L given

by Equation (6) for action at. All other actions A \ {at} are

updated with zero loss. The convergence rate of Q is primarily

determined by the learning rate of stochastic gradient descent

during backpropagation as well as the choice of γ.

Input: Program P

x ← Seed()
Q ← Qnet()

do:
x′ ← State(x)
a ← Action(x′, Q)
x ← Mutate(x, a)
r ← Reward(P, x)
Q ← Update(Q, x′, a, r)
x ← Reset()

while (true)

Fig. 2. Reinforcement fuzzing algorithm.

G. Joining the Pieces

Now that we have presented all individual steps we can

proceed with combining them to get the overall fuzzing

algorithm as depicted in Figure 2.

We start with an initialization phase that outputs a seed x
as well as the initial version of Q. Then, the fuzzer enters

the loop of state extraction, action selection, input mutation,

reward evaluation, Q update, and test case reset. Starting with

a seed x ∈ I, the algorithm extracts a substring x′ ∈ S(x) and

based on the observed state x′ then chooses the next action

according to its policy. The choice is made looking at the best

possible reward predicted via x′ 
→ Q(x′, a) and applying an

ε-greedy exploitation-exploration strategy. To guarantee initial

exploration we initially define a relatively high value for ε
and monotonically decrease ε over time until it reaches a final

small threshold, from then on it remains constant. The selected

action provides a string substitution as indicated in Equation

(8) which is applied to x for mutation. The generated mutant

input is fed into the target program P to evaluate the reward

r. Together with Q, x, and a, this reward is taken into account

for Q update. Finally, the Reset() function periodically resets

input x to a valid seed. In our implementation we reset the

seed after each mutation as described in Section VI. After

reset, the algorithm continues the loop.

We formulated the algorithm with just one single input seed.

However, we could generalize this to a set of seed inputs by

choosing another seed within this set for each iteration of the

main loop.

The algorithm above performs reinforcement fuzzing with

activated policy learning. We show in our evaluation in Sec-

tion VI that the Q-network generalizes on states. This allows

us to switch to high-throughput mutant generation with a fixed

policy after a sufficiently long training phase.

VI. IMPLEMENTATION AND EVALUATION

In this section we present details regarding our implemen-

tation together with an evaluation of the prototype.

119



A. Target Programs

As fuzzing targets we chose programs processing files in

the Portable Document Format PDF. This format is complex

enough to provide a realistic testbed for evaluation. From the

1,300 pages long PDF specification [22], we just need the fol-

lowing basic understanding: each PDF document is a sequence

of PDF bodies each of which includes three sections named

objects, cross-reference table, and trailer. While our algorithm

is defined to be independent of the targeted input format, we

used this structure to define fuzzing actions specifically crafted

for PDF objects.

Initially we tested different PDF processing programs in-

cluding the PDF parser in the Microsoft Edge browser on

Windows and several command line converters on Linux.

All results in the following presentation refer to fuzzing the

pdftotext program mutating a 168 kByte seed file with 101
PDF objects including binary fields.

B. Implementation

In the following we present details regarding our imple-

mentation of the proposed reinforcement fuzzing algorithm.

We apply existing frameworks for binary instrumentation and

neural network training and implement the core framework

including the Q-learning module in Python 3.5.

a) State Implementation: Our fuzzer observes and mu-

tates input files represented as binary strings. With Σ = {0, 1}
we can choose between state representations of different

granularity, for example bit or byte representations. We encode

the state of a substring x′ as the sequence of bytes of this

string. Each byte is converted to its corresponding float value

when processed by the Q-network. As introduced in Section

V we denote o ∈ {0, ..., |x| − |x′|} to be the offset of x′ and

w = |x′| to be the width of the current state.

b) Action Implementation: We implement each action as

a function in a Python dictionary. As string rewriting rules we

take both probabilistic and deterministic actions into account.

In the following we list the action classes we experiment with.

• Random Bit Flips. This type of action mutates the

substring x′ with predefined and dynamically adjustable

mutation ratios.

• Insert Dictionary Tokens. This action inserts tokens from

a predefined dictionary. The tokens in the dictionary

consist of ASCII strings extracted from a set of selected

seed files.

• Shift Offset and Width. This type of action shifts the

offset and width of the observed substring. Left and right

shift take place at the PDF object level. Increasing and

decreasing the width take place with byte granularity.

• Shuffle. We define two actions for shuffling substrings.

The first action shuffles bytes within x′, the second action

shuffles three segments of the PDF object that is located

around offset o.

• Copy Window. We define two actions that copy x′ to a

random offset within x. The first action inserts the bytes

of x′, the second overwrites bytes.

• Delete Window. This action deletes the observed substring

x′.
c) Reward Implementation: For evaluation of the reward

R(x, a) we experimented with both coverage and execution

time information.

To measure E(x) = E1(x, I ′) as defined in Equation (9),

we used existing instrumentation frameworks. We initially

used the Microsoft Nirvana toolset for measuring code cover-

age for the PDF parser included in Edge. However, to speed up

training of the Q-net we switched to smaller parser targets. On

Linux we implemented a custom Intel PIN-tool plug-in that

counts the number of unique basic blocks within the pdftotext
program.

d) Q-Network Implementation: We implemented the Q-

learning module in Tensorflow [23] by constructing a feed for-

ward neural network with four layers connected with nonlinear

activation functions. The two hidden layers included between

64 and 180 hidden units (depending on the state size) and we

applied tanh as activation function. We initialize the weights

randomly and uniformly distributed within wi ∈ [0, 0.1]. The

initial learning rate of the gradient descent optimizer is set to

0.02.

C. Evaluation

In this section we evaluate our implemented prototype. We

present improvements to a predefined baseline and also discuss

current limitations. All measurements were performed on a

Xeon E5-2690 2.6 Ghz with 112 GB of RAM. The summary

of the improvements obtained in accumulated rewards based

on different reward functions, modifying state size, and gen-

eralization to new inputs is shown in Table I. We now explain

the results in more detail.

1) Baseline: To show that our new reinforcement learning

algorithm actually learns to perform high-reward actions given

an input observation, we define a comparison baseline policy

that randomly selects actions, where the choice is uniformly

distributed among the action space A. Formally, actions in

the baseline policy πB are distributed uniformly according to

a ∼ πB(·|x) and ∀a ∈ A : πB(a|x) = |A|−1. After ng =
1000 generations, we calculated the quotient of the most recent

500 accumulated rewards by our algorithm and the baseline

to measure the relative improvement.

2) Replay Memory: We experimented with two types

of agent memory: the recorded state-action-reward-state se-

quences as well as the history of previously discovered basic

blocks. The first type of memory is established during the

fuzzing process by storing sequences et := (xt, at, rt, xt+1)
in order to regularly replay samples of them in the Q update

step. For each replay step at time t a random experience out of

{e1, ..., et} is sampled to train the Q-network. We could not

measure any improvement compared to the baseline with this

method. Second, comparing against the history of previously

discovered basic blocks also did not result in any improvement.

Only a memoryless choice of I ′ = ∅ yielded good results.

Regarding our algorithm as depicted in Figure 2 we reset the

basic block history after each step via the Reset() function.

120



Improvement
Reward functions
Code coverage r1 7.75%
Execution time r2 7%
Combined r3 11.3%
State width w = |x′|
r2 with w = 32 Bytes 7%
r2 with w = 80 Bytes 3.1%
Generalization to new inputs
r2 for new input x 4.7%

TABLE I
THE IMPROVEMENTS COMPARED TO THE BASELINE (AS DEFINED

INVI-C1) IN THE MOST RECENT 500 ACCUMULATED REWARDS AFTER

TRAINING THE MODELS FOR 1000 GENERATIONS.

Since both types of agent memory did not yield any

improvement, we switched them off for the following mea-

surements. Further, we deactivated all actions that do not

mutate the seed input, e.g. random bit flip actions of adjusting

the global mutation ratio or shifting offsets and state widths.

Instead of active offset o and state width w = |x′| selection

via an agent action, we set the offset for each iteration

randomly, where the choice is uniformly distributed within

{0, ..., |x| − |x′|} and fixed w = 32 Bytes.

3) Choices of Rewards: We experimented with three dif-

ferent types of rewards: maximization of code coverage

r1(x, a) = E1(x, {}), execution time r2(x, a) = E2(x) =
T (x), and a combined reward r3(x, a) = E1(x, {}) + T (x)
with rescaled time for multi-goal fuzzing. While r1(x, a) is

deterministic, r2(x, a) comes with minor noise in the time

measurement. Measuring the execution time for different seeds

and mutations revealed a variance that is two orders of

magnitude smaller than the respective mean so that r2 is stable

enough to serve as a reliable reward function. All three choices

provided improvements with respect to the baseline.

When rewarding execution time according to r2 our pro-

posed fuzzing algorithm cumulates in average 7% higher

execution time reward in comparison to the baseline.

Since both time and coverage rewards yielded comparable

improvements with regard to the baseline, we tested to what

extent those two types of rewards correlate: We measured

an average Pearson correlation coefficient of 0.48 between

coverage r1 and execution time r2. This correlation motivates

the combined reward r3(x, a) = E1(x, {}) + T (x), where

T (x) is a simple rescaling of execution time by a multiplicative

factor 1 ∗ 106 so that the execution time contributes to the

reward equitable to E1. Training the Q-net with r3 yielded

an improvement of 11.3% in execution time. This result is

better that taking exclusively r1 or r2 into account. There are

two likely explanations for this result. First, the noise of time

measurement could introduce rewarding explorative behavior

of the Q-net. Second, deterministic coverage information could

add stability to r2.

4) Q-net Activation Functions: From all activation func-

tions provided by the Tensorflow framework, we found the

tanh function to yield the best results for our setting. We

initialized the weights randomly in [0, 0.1] and had a gradient

descent rate of 0.02 for all applied activation functions. The

following list compares the different activation functions with

respect to improvement in reward r1.

tanh sigmoid elu softplus softsign relu

7.75% 6.56% 5.3% 2% 6.4% 1.3%

5) State Width: Increasing the state width w = |x′| from

32 Bytes to 80 Bytes decreased the improvement (measured in

average reward r2(x, a) compared to the baseline) from 7% to

3.1%. In other words, smaller substrings are better recognized

than large ones. This indicates that our proposed algorithm

actually takes the structure of the state into account and learns

to perform best rewarded actions according to this specific

structure.

6) State Generalization: In order to achieve high-

throughput fuzzing we tested if the already trained Q-net

generalizes to previously unseen inputs. This would allow

us to switch off Q-net training after a while and therefore

avoid the high processing costs of evaluating the coverage

reward. To measure generalization we restricted the offset

o ∈ {0, ..., |x| − |x′|} in the training phase to values in the

first half of the seed file. For testing, we omitted reward

measurement in the Q update step as depicted in Figure 2

to stop the training phase and only considered offsets in the

second half of the seed file. This way, the Q-net is confronted

with previously unseen states. This resulted in an improvement

in execution time of 4.7% compared to the baseline.

VII. CONCLUSION

Inspired by the similar nature of feedback-driven random

testing and reinforcement learning, we introduce the first

fuzzer that uses reinforcement learning in order to learn high-

reward mutations with respect to predefined reward metrics.

By automatically rewarding runtime characteristics of the

target program to be tested, we obtain new inputs that likely

drive program execution towards a predefined goal, such as

maximized code coverage or processing time. To achieve this,

we formalize fuzzing as a reinforcement learning problem

using Markov decision processes. This allows us to construct

an reinforcement learning fuzzing algorithm based on deep

Q-learning that chooses high-reward actions given an input

seed.

The policy π as defined in Section III can be viewed

as a form of generalized grammar for the input structure.

Given a specific state, it suggests a string replacement (i.e., a

fuzzing action) based on experience. Especially if we reward

execution path depth, we indirectly reward validity of inputs

with regard to the input structure, as non-valid inputs are likely

to be rejected early during parsing and result in small path

depths. We presented preliminary empirical evidence that our

reinforcement fuzzing algorithm can learn how to improve

its effectiveness at generating new inputs based on successive

feedback. Future research should investigate this further, with

more setup variants, benchmarks, and experiments.

121



REFERENCES

[1] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery, 1st ed. Boston, MA, USA: Addison-Wesley Professional,
2007.

[2] M. Howard and S. Lipner, The Security Development Lifecycle. Mi-
crosoft Press, 2006.

[3] G. Tesauro, “Td-gammon: A self-teaching backgammon program,” in
Applications of Neural Networks, 1995, pp. 267–285.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[6] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[7] A. Takanen, J. DeMott, and C. Miller, Fuzzing for Software Security
Testing and Quality Assurance, 1st ed. Norwood, MA, USA: Artech
House, Inc., 2008.

[8] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox
fuzz testing.” in NDSS, vol. 8, 2008, pp. 151–166.

[9] P. Purdom, “A sentence generator for testing parsers,” BIT Numerical
Mathematics, vol. 12, no. 3, pp. 366–375, 1972.

[10] M. Utting, A. Pretschner, and B. Legeard, “A Taxonomy of Model-Based
Testing,” Department of Computer Science, The University of Waikato,
New Zealand, Tech. Rep, vol. 4, 2006.

[11] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/.
[12] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning

for input fuzzing,” in 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2017), January 2017.

[13] K. V. Hanford, “Automatic generation of test cases,” IBM Systems
Journal, vol. 9, no. 4, pp. 242–257, 1970.

[14] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing program
input grammars,” in Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 2017.
New York, NY, USA: ACM, 2017, pp. 95–110.

[15] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni:
Automatic reverse engineering of input formats,” in Proceedings of the
15th ACM Conference on Computer and Communications Security, ser.
CCS ’08. New York, NY, USA: ACM, 2008, pp. 391–402.

[16] J. Clause and A. Orso, “Penumbra: Automatically identifying failure-
relevant inputs using dynamic tainting,” in Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, ser. ISSTA
’09. New York, NY, USA: ACM, 2009, pp. 249–260.

[17] M. Höschele and A. Zeller, “Mining input grammars with autogram,”
in Proceedings of the 39th International Conference on Software En-
gineering Companion, ser. ICSE-C ’17. Piscataway, NJ, USA: IEEE
Press, 2017, pp. 31–34.

[18] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis lec-
tures on artificial intelligence and machine learning, vol. 4, no. 1, pp.
1–103, 2010.

[19] C. Wattkins, “Learning from delayed rewards,” Ph.D. dissertation, Cam-
bridge University, 1989.

[20] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[21] G. Tesauro, “Practical issues in temporal difference learning,” in Ad-
vances in neural information processing systems, 1992, pp. 259–266.

[22] PDF Reference, 6th ed., Adobe Systems Incorporated, Nov. 2006.
[23] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. A. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA,
November 2-4, 2016., 2016, pp. 265–283.

122


