
Forensic-Aware Anti-DDoS Device
C.Y. Tseung, K.P. Chow 

The University of Hong Kong 
Hong Kong 

{cytseung, chow}@cs.hku.hk 
 

Abstract—When defending DDoS and other types of 
network attack, most products or service providers perform 
the protection by dropping the attack traffics. It cures the 
symptoms but not the disease. To help eliminate network 
attack, a more proactive approach is to trace back the attack 
source and stop the attack before it starts. Collecting the attack 
data is essential in attack trace-back. In this paper, we propose 
a live capture device to record the attack efficiently without 
disturbing the original network performance. The device is 
also integrated with anti-DDoS technique so that forensic data 
collection when be performed even under DDoS attacks. We 
made use of a network bridge and utilized packet capturing 
functionality provided by Linux, plus our packet storing 
mechanisms to build the forensic aware data collection device. 
The anti-DDoS protection uses machine learning to extract 
features of attacks, and then use a customized Bloom filter to 
defend attacks based on selected features. We implemented 
and tested the performance of the proposed technique in a lab 
environment. 

Keywords—live packet capture; data collection; network 
forensic; live forensic; Bloom filter; DDoS attack 

I.  INTRODUCTION 
Network attack is still one of the major threat in 

nowadays’ Internet world. DDoS protection service provider 
NexusGuard published a report saying that DDoS reflection 
attacks in Q2 2016 increased sharply in APAC Region[1]. 
Kaspersky[2] lab also said that resources in 70 countries 
were targeted by DDoS attacks in Q2 2016. Another famous 
attack protection service provider Cloudflare[3] also 
suggested the network attacks on the Internet is getting larger 
and larger in scale. 

Purchasing such protection service bring a moment of 
peace, but never able to stop attacks from the source. Almost 
none of these service providers or firewall products provide 
attack traffic capture and trace back service. Their services 
focus on identifying and discarding attack traffics. No action 
will be taken to find out the hacker behind. 

A live attack capturing and forensic-sound solution is in 
need for law enforcement agencies to analyses and trace the 
attack, and to take action to stop the attack right from where 
it starts. 

Our contribution is to demonstrate our new light-weight 
network data capturing forensic device, with functionality of 
adding extended tailor-made features. We have tested the 

forensic device in our lab environment to compare and 
experiment results of our solution will be presented. 

II. RELATED WORK 
Researches have been done on traffic capturing, attack 

mitigation and anti-DDoS protection using machine learning 
and defending with Bloom filter. 

Chan[4] proposed a method of packet capturing in his 
intrusion detection router system. But in his design, victim 
network architecture has to be changed to deploy the extra 
router, making it difficult for end users to setup on their own. 
Also, his design focused mainly on detection instead of data 
collection. Deri[5] discussed some efficient packet capturing 
methods though out Linux and Windows based system. 
However, he did not mention about storing the data. 

Lu[6] proposed a robust and efficient detection of DDoS 
attacks. He tried to apply Bloom filter on incoming packets 
to extract features to differentiate normal and attack traffic. 
He also made use of machine learning to analyses traffic in 
time-varying patterns, and to extract features of network 
traffic that can be used to identify bad packets. Lee[7] 
conducted cluster analysis on the 2000 DARPA Intrusion 
Detection Scenario Specific Data Set. The purpose is to 
proactively detect DDoS attack in each attack scenario. The 
selection of the detection parameter applies Shannon entropy 
to packet header fields of consecutive packets. However, he 
fixed sampling periods.  

Li[8] and Saied[9] both treated DDoS detection as a 
supervised learning problem. They trained different neural 
network with normal and different types of simulated attack 
data. Their experiments show that the detection accuracy is 
very high. Balkanli[10] even reached a 99% detection rate in 
his experiments for detecting DDoS using supervised 
learning. Despite such high detection rate, mitigation of the 
attack was not discussed in their studies. Seufert[11] 
proposed using machine learning for both detection and 
filtering of bad packets. However, his experiment did not 
show the detailed performance benchmark.  

III. FORENSIC-AWARE TRAFFIC COLLECTION 
In order to keep the same network topology for users, our 

device, in the form of a box, is transparent to the existing 
network. A good place of interception is the link between 
ISP and victim’s network. The box will have two interfaces 

148

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Chi Yuen Tseung. Under license to IEEE.
DOI 10.1109/SPW.2018.00030



configured as a network bridge connecting the ISP and 
victim’s network entrance point. Our packet capturing and 
processing happens inside the box while allowing the packet 
to pass through without delay.  

Furthermore, we can place a hook in the incoming 
direction to manipulate traffic. Attack defense algorithms can 
be implemented in the hook, such as using a combination of 
Bloom filter and machine learning algorithms to block 
certain attack traffic. Figure 1 shows the overall network 
diagram of our proposed system. 

Server 2Box

OUTIN
sniff/hook

Server 1

Victim 
NetworkStorage

ISP/Other 
Network

Other Servers

Attacker

 Figure 1 Forensic Box 
 

A. Packet Storing 
Before collecting packets, we first consider where to 

store the collected data. 

a) Medium of storage 
Many existing tools provided functions to dump network 

packets into pcap files. However, we do not have full control 
on these functions. We will implement our own packet 
dumping mechanism such that we can control the output 
format and perform selectively dump (e.g. sometimes we 
want only UDP packets with certain predefined features). 

To facility further packet analysis and our proposed 
“storage-hot-swap” function, we utilize a MySQL database 
server instance to store raw packet data. A simple table 
containing a timestamp column and a blob column for 
storing the binary data of a packet is enough. This table 
essentially stored all information we need to replay the 
network traffic, thus making further forensic analysis 
possible. 

b) Storage performance 
When under attack, the traffic volume is relatively high, 

our device must be fast enough in writing packet raw data to 
storage and avoid causing further degrade to network 
performance. We conducted tests for both classic mechanical 
hard-drive(HDD) and solid-state drive(SSD). 

Assume a network traffic rate of 1Gbps: 

������ � 	�
���� � ������� 

Take a common product on market, WD BLUE 
WD1003FZEX[12] offers 150MB/s theoretical data transfer 
rate with 1TB storage and 7200rpm. While a SSD, take 
SAMSUNG SSD 850 PRO[13] for example, offers 520MB/s 
write speed. A normal HDD seems to be good enough to 

handle a network traffic rate of 1Gbps, however, the 
overheads are yet to be calculated. The actual performance 
will be tested later. 

c) Storage hot-swaping 
Assume a 1Gbps network attack and we only capture 

incoming packets, for a 1TB device, by a rough calculation, 
can hold data for: 

���
����� � ���������

������ � 
����� � ������ � ����� 

For an attack of higher traffic, the time will be lesser. We 
cannot assume a single storage device can withstand and 
store the whole attack, as some attacks last for even a whole 
day long. 

Taking advantage of SATA3’s hot-plug feature, we can 
program our system to alert user when the storage is full and 
then notify user to replace the existing storage with a new 
empty one to continue collecting data. 

B. Packet Capture 
Our forensic box is placed between the ISP network and 

customer’s network. It can be placed between any two 
networks to monitor and capture packet data passing through 
them. 

The two network interfaces on the box are configured as 
a “bridge”, this configuration makes the box transparent to 
the network. 

C. Packet Extraction 
There are many kernel level networking tools available 

for Linux-based system that can fulfil our needs for 
capturing packets passing through the bridge. After capturing 
the packet, we have a “data collector” background process to 
write the packet data to storage. 

Other Application Data Collector

Socket
(Ring Buffer)

Write 
Index

Read 
Index

Socket
(Ring Buffer)

Write 
Index

Read 
Index

Network Device

Ingress Traffic

PF_PACKET

Outgoing Packets Outgoing Packetsmmap() mmap()

User-space

Kernel-space

 
Figure 2 netsniff workflow 

a) netsniff  
The open source tool “netsniff-ng”[14] utilize the 

interfaces RX_RING and TX_RING in Linux to provider a 

149



zero-copy packet extracting functionality. It offers the fastest 
performance for capturing network flows in user space. 
Based on the original source code, we can also modify it to 
add our own feature like basic filtering of unwanted packets. 
All packet data will then be sent to the data collector running 
on user-space via mmap function.  

b) netfilter 
Another way to capture packet is to use the hooking 

functionality provided by netfilter[15]. A memory buffer 
sk_buff containing all data of a network frame will be passed 
to a custom hook function registered when loading the 
module. In the hook function we then can examine and send 
the packet data to the data collector running on user-space 
via netlink socket. 

The netfilter is also where we can implement our packet 
filtering features. It makes discarding network packets in the 
middle of the network possible. As long as we introduce 
algorithms like Bloom filter and machine learning, we are 
able to identify attack packets when they pass through the 
network, and discard them to protect the affected victim 
network.  

Data Collector

Network Device

Ingress Traffic

netfilter - hook_func

Outgoing Packetsnetlink sockets

User-space

Kernel-space

sk_buff

 
Figure 3 netfilter workflow 

 
c) Data collector 

The collector can be configured to receive packet data 
from either method above. We implement a “double buffer” 
in our data collector. Memory space for buffers of same 
fixed size A and B are reserved, incoming packet will be 
written to buffer A first, once buffer A is full, new packet 
data will be written to buffer B. At the same time, data on 
buffer A will start writing to database for permanent storage. 
Buffer A will be cleared after all data are written to storage. 
When buffer B is full, buffer A will be receiving new packets 
in turn, then data on buffer B will be written to storage. 

Depends on the writing speed from buffer to storage, 
packet lost will happen if a buffer is full while the other 
buffer hasn’t yet finished its data writing, thus new arriving 
packets have to be discarded. Note that this “packet lost” 
means only we are not able to store lost packets into our 
storage, “lost packets” will still pass through the bridge and 
network. 

IV. ANTI-DDOS TECHNIQUE 
In order to protect against DDoS attack while capturing 

forensic data, we integrated the self-learning anti-DDoS 
technique into the box, which combines the Bloom filter and 
machine learning algorithms, which as shown in Figure 4.  

Incoming 
traffic

Packet capture Machine learning algorithms
(Feature Extraction)

Pass packet data to

Bloom Filter
(Packet filtering)

Allow good 
packets to go 

through

Enable/Update
Bloom Filter configuration

Step 1 Step 2

Step 3

 
Figure 4 Anti-DDoS brief defense flow 

 
Following are the details of the steps: 

A. Step 1 – Capture and manipulation of incoming packets 
To avoid changing the topology of victim’s network, we 

make our interception transparent to the network. At the 
same time, we must be able to inspect, modify and block 
every packet coming through the network. We utilize the 
built-in network bridge and hook of Linux system to inspect 
and modify network flow transparently. 

Making use of “bridge-utils”[16] provided by the Linux 
kernel, we are able to build a network bridge between two 
network interfaces, make it like a normal network switch. By 
this configuration, our device is transparent to victim’s 
network and no extra changes of network structure needed to 
be made. 

In order to examine and manipulate network packets, we 
use the hook provided by netfilter[16]. As we are only 
interested in the traffic coming into the victim network, we 
place a hook at NF_BR_PREROUTING[16] on the traffic 
incoming interface. A memory buffer sk_buff will be passed 
to our hook and we can examine the buffer to extract packet 
information. The packet will then be judged, if Bloom filter 
is later turned on, it will either get “allowed to pass through”, 
“discarded” or “to be determined by the next hook” 
depending on our hook’s return value. 

In short, making use of these functionalities, we can 
inspect and modify network flow transparently. 

150



B. Step 2 – Self-learning Feature Extraction 
We apply machine learning algorithms in a background 

process to monitor network traffic to identify whether the 
victim is being attack. Once an attack is detected, our 
algorithm will learn from incoming traffics, and information 
of features will be extracted and automatically applied to the 
Bloom filter to block attack packets. 

One may say that if we already know the features of 
attack packets, for example they all come from a fixed IP 
range and have the same TTL value for IP packets, we can 
simply apply these filtering rules in a simple rule-based 
firewall system to block attack traffics. Modern DDoS 
attacks are not as simple as a brutal force flooding. Moreover, 
the old-fashioned method requires lots of human interactions 
and rule-based firewall does not support advance filtering 
based on customized features of packets. We therefore 
automate the learning process of different attack types and 
judge packets using more advanced algorithms instead of 
simple rules. 

In the next section, we will show the feasibility and 
details of using machine learning algorithms to detect 
abnormal traffic and extract features to be used in defending 
the attack. 

C. Step 3 – Defend with Bloom filter 
When an attack is happening and features of packets are 

extracted, such as network protocol, source address, TTL. 
The final step is to use our tailor-made Bloom filter to block 
attack traffics based features given. 

Bloom filter can test if an object, which in our scenario is 
a packet, is inside a set. Using features selected by machine 
learning, we can define a set of evil packets, then easily use 
Bloom filter to tell whether the next packet is inside the set, 
i.e. the next packet is evil. For example, in a TCP SYN 
flood, all evil packets will have the same set of features, 
namely SYN bit set to on, same TTL value and same source 
IP. Our machine learning is expected to find out these 
features. 

Our implementation of Bloom filter can discard spam 
packets having selected features in common exceeding a 
certain volume over a certain period of time. 

Based on an implementation proposed by Chan[4], we 
use a multi-layer counting Bloom filter to tell whether an 
object with similar features is encountered multiple times. 
We implement N layers, and M bins per layer, then we have 
N  M bins in total. Each bin is simply a non-negative 
counter. For each packet, it will be hashed and increment one 
of the bins in each layer. Once a bin excess a certain 
threshold (overflow threshold) after a packet is hashed in, we 
can conclude that we have received many similar packets 
before. Counters cannot be increased indefinitely, thus a 
leaky bucket algorithm is also used to decrease all bin 
counters as a “cool-down” method, allowing legitimate 
packets to pass through continuously. 

Given the basic design of our Bloom filter, the key point 
is what packet properties or features we use and how to do 
hash them. It directly affects how the Bloom filter judges 
whether a packet is similar with previous packets. For each 
packet, we first construct a byte-array, namely characteristic 
array, which combines the selected features of the packet. 
For example, for a TCP packet, we make first two bytes in 
the array the source port, the following byte indicates 
whether a SYN bit is set and so on. Thus, packets have the 
same features will result in the same characteristic array, 
which can later be judged by the Bloom filter. We hash the 
array by iterating N times (number of layers) through a 
simple shift-register random number generator and get N 
random value. The random values indicate which bin in a 
layer is hit and should be incremented. Once a bin counter 
exceeds the overflow threshold after a packet’s hash is 
added, we can judge that this packet is an attack packet and 
thus discard it. The overflow threshold and leaky bucket 
algorithm together volume of spam packets that can pass the 
blocking. We use a parameter named init_of_th(initial value 
of the threshold) to store the overflow threshold, which can 
be adjusted automatically or manually during operation. In 
our settings, we will test the suitable value of init_of_th later 
for different network environments and situations. 

D. Self-leaning Automatic Defense 
Bloom filter is implemented as a kernel module, giving it 

the highest system privilege, also allowing us to dynamically 
insert or remove the filter. As minor delays are expected 
when analyzing packet data with machine learning, a 
background process will be responsible for the job to avoid 
degradation of network performance. This technique is 
implemented inside the forensic device.  

The forensic device is programed to: 

1. Collect normal traffic periodically when victim 
network is not under attack to train the attack-
detection machine learning algorithms and determine 
suitable configuration for Bloom filter, e.g. 
“init_of_th” thresholds. 

2. Activate the Bloom filter, use the packet features 
learnt from the machine learning analysis. 

3. Adjust the option of Bloom filter from time to time 
during the attack. 

By using the methodologies above, we have an effective 
technique which helps mitigate the DDoS attack. 

V. ATTACK DETECTION 
Before Bloom filter can function, we have to teach it 

what features of a packet to look at. In this section, we will 
discuss how to make machine learning algorithms be aware 
of an attack. We will show that given a traffic data input, our 
algorithms can extract features of the traffic automatically, 
which can be used in Bloom filter. 

151



A. Preliminaries of attack dataset for machine learning 
Datasets of DDoS attacks are needed to replay an attack 

for us to study. They are usually in format of packet captures 
(PCAP file) of a real or simulated DDoS attacks. There are 
many open source tools for simulating a DDoS attack. Our 
focus is on analyzing the attack traffic; we therefore captured 
some simulated attack traffics as PCAP files to replay the 
attack. We also sourced datasets from variety of places. 
Table I shows the datasets we used. 

TABLE I.  ATTACK TRAFFIC DATASETS 

Source Attack Type Size Description 

CAIDA 2007 
DDoS[16] ICMP  21 GB 

Approximately one hour of 
anonymized traffic traces from 
an ICMP Flooding attack on 
August 4, 2007. 

ISCX IDS 
2012 Data 
Set[17] 

TCP + Normal 
traffic 

23.4 
GB DDoS using botnet on TCP. 

DARPA 
2000 
DDoS[18] 

TCP  + Normal 
traffic 

0.1 
GB 

Contains two scenarios of DDoS 
attack on TCP on AFRL network 
testbed. 

Lab-
simulated 

NTP 
amplification 

0.3 
GB 

Simulated attacks on our own 
testbed. 

Lab-
simulated 

UDP 
amplification  22 GB 

Simulated attacks on our own 
testbed using CHARGEN 
protocol. 

Lab-
simulated DNS DrDoS 8 GB Simulated DrDoS attacks on our 

own testbed. 

ISCX 2012 
Data Set[17] Normal traffic 37.9 

GB 

7 days of network activity of the 
testbed of University of New 
Brunswick 

B. Features of network frame 
Taking advantages of netfilter and sk_buff, we are able to 

examine every network frame passing through and extract 
their properties. Table II is a list of features we are interested 
in. 

TABLE II.  USEFUL FEATURES OF NETWORK FRAMES 

Index 0 1 2 3 4 5 6 
Feature frame.len ip.src ip.ttl ip.proto ip.srcport ip.dstport tcp.flags 

 

Note that ip.* means if the frame contains an IP packet, 
tcp.*/udp.* means if the packet is a tcp/udp packet. We are 
not interested in the packet’s destination IP because we are 
only intercepting packets coming into the victim’s network, 
thus all destination IPs will be the victim’s server IPs which 
makes these properties not useful. 

C. Entropy calculation for features 
A packet alone will provide no discriminating info for us 

to determining whether it is an attack packet or a normal 
packet. Only statistical feature of consecutive packets will 
provide such information. Among different statistical 
measures, we find that entropy is an effective one in 
describing the change of distribution of a certain feature. The 
occurrence of DDoS attack will cause a difference in 

distribution of certain features (e.g. source IP will become 
dispersed in the case of IP spoofing) of network traffic. 

The existing entropy-based method in literature divide 
the PCAP file into bins of equal time intervals (e.g. Lee[7] 
uses 1-min interval), and calculate the entropy using the 
following formula: 

���� � �� �!
" # $%&'  �!

" #
(

!)*
�+ 

where � � ,�!- � � �+ . + /�0, means feature X takes on 
N possible value, with each value occurs ��!  times in the 
sample. And 1 �! � "(!)*  equals to packet number in the 
sample.  The maximum value of ����  is $%&'�"�  and is 
achieved when every packet in the sample has different 
value. If " is different in each equal-interval bin, there scale 
of ���� will be different. And " is the measure of packet 
rate. As a consequence, the packet rate will be a dominant 
factor and make entropy less informative. To overcome the 
flaw, we fix ", so that the entropy is all of the same scale and 
thus comparable. The choice of " is highly heuristic. Large " 
will lead to stable result but incur more detection delay and 
less data point in training phase. Small  " will cause high 
variance but less detection delay and more data point in 
training phase. In our setting, we find " � ���� is a proper 
choice. 

We gather consecutive 1000 packets to form one record, 
and then calculate the entropy of our interested features. 

D. Principal component analysis and SVM 
Principal component analysis (PCA) gives us some ideas 

of what learning algorithm to use. The data is drawn in 
scatter plot. The co-ordinate is formed by 3 most weighted 
principle components, they explain 65.79%, 20.10%, 9.42% 
of the total variance. Table III is the mapping of color to 
traffic for the scatter plot in Figure 5. 

TABLE III.  ATTACK TYPES COLOR INDICATION AND RECORDS 

Attack 
Type Normal ICMP NTP UDP DNS TCP DARPA 

Color Green Red Blue Cyan Magenta Black Yellow 
Count 1359 359648 602 19039 11221 3769 124 

 

152



Figure 5 PCA scatter plot of different types of attack 
traffic 

 

From the scatter plot, we find that different types of 
traffic will form different clusters. New type of attack is 
predicted to form clusters different than existing ones. 
Ideally, we can draw the boundary of normal cluster. If a 
data point is within the boundary, it is normal. If it is outside 
the boundary, it is attack. One-class Support Vector Machine 
(One-Class SVM) is the learning algorithm we are looking 
for to determine whether the network is being attack. 

We trained a classifier using the library OneClassSVM 
from a tool scikit-learn in Python with the parameters 
(nu=0.001, kernel="rbf", tol=1e-5, gamma=0.05). Then 
verify the accuracy using 5, 3, 2-fold cross validation and 
obtained the following table: 

TABLE IV.  DETECTION ACCURACY OF NORMAL AND ATTACK 
RECORDS 

“Normal” 
records  

Normal ICMP NTP UDP DNS TCP DARPA

1088 96.3% 100% 98.4% 100% 100% 93.2% 100% 
906 97.9% 100% 98.3% 100% 100% 92.5% 100% 
680 95.4% 100% 99.0% 100% 100% 99.7% 100% 

 

To reduce the chance of getting false alarm, we only 
trigger the “Under-attack” alarm when a number of records 
are being labelled as attack packets in a fixed period of time. 
Later when in another period of time, when less than a 
number of attack records are labelled, the system will back to 
“Normal” status. The experiment also shows that 1000 
records (i.e. 1,000,000 normal packets) is enough to build the 
normal profile. 

E. Feature selection 
We assume that, when the victim network is under attack, 

for a short period of time, the attack type is the same. Feature 
selection algorithm has to be applied on incoming packets, to 
get the best determining feature(s) to be used in Bloom filter 
hashing and filtering. 

When the alarm is raised (i.e. 3 consecutive records are 
labelled as attack), the median of each feature of the 3 attack 
records are chosen to form a representative of an attack 
record. Also, from the normal profile, we use the median of 
each feature of the normal records to generate the 
representative of a normal record. 

233456��75%�8�9 � �2:�+ 2*�+ 2'�+ 2;�+ 2<�+ 2=�+ 2>�� 
/%��4$��75%�8�? � �/:�+ /*�+ /'�+ /;�+ /<�+ /=�+ />�� 
The index from 0 to 6 is the same as in Table II (i.e. 2: is 

median of entropy of frame.len of the 3 attack records, /* is 
median of entropy of ip.src of all normal records in normal 
profile etc.) Given a feature, say frame.len, if�2: @ /: , the 
attack traffic is more dispersed than normal traffic. So, if 
frame.len is used as a determining feature, normal traffic will 

be blocked more than attack traffic. Thus, only features that 
Attack record is smaller than Normal record should be 
selected. Based on this, a subset of feature is selected. The 
subset of features can be ranked based on the difference of 
attack record and normal record. For example, if the feature 
subset is (0, 1, 2) and�/' � 2' @ �/: � 2: @ /* � 2*, the 
feature ranking is (2, 0, 1) in descending order. Intuitively, 
the bigger the difference of entropy, the more expressive the 
feature is. The tradeoff is that, adding more features to the 
string for hashing will make each packet more unique, thus 
less normal traffic and less attack traffic will be blocked. In 
order to achieve a balance between block attack traffic and 
pass through normal traffic, a threshold of ranking score 
need to be set. We find 0.7 is a proper threshold. Consider 
only the selected subset of features, let the difference with 
respect to each feature be the ranking score. Scale the scores 
so that the highest score is 1 and lowest score is 0. The 
features with scaled scores higher than 0.7 should be chosen 
as a determining feature, which is reliable for identifying 
attacking packets. For feature selection, we have tested with 
median, ANOVA and Linear SVM. Experimental results will 
be discussed in the later section. 

To summarize, we can say that the attack packets are 
similar or even the same for in terms of some determining 
features. Bloom filter can identify an attack packet based on 
these features. 

VI. EXPERIMENTS 

We have conducted two sets of experiment: one set on 
performance of forensics traffic capture and another set on 
performance of defending against DDoS attacks. 

A. Experiments on Forensic Traffic Capture 
The purpose of these experiments is to test the 

performance and actual data collecting ability. These 
experiments also help us find out the best configuration and 
hardware requirement for different network environment. 

a) Experimental Settings 
A testbed, as shown in Figure 6, was built to test the 

performance of our proposed system. A network bandwidth 
measurement tool “iPerf”[19] was used to generate and 
receive network traffic. The traffic generation rate is 
adjustable though start up parameters “-b”. Our forensic box 
is placed between two servers, one for sending and one for 
receiving the traffic. The link speed of network interfaces are 
all 1Gbps. Experiment data are collected from the sender, 
receiver and our box. 

By calculating the packets sent, packets received and 
packets stored on database over a certain period of time, we 
can calculate how many packets we are able to capture and 
store, i.e. the performance of our packet capture system. 

153



Box

OUTIN
sniff/hook

iperf traffic receiver
Storage

iperf traffic generator

 

Figure 6 Forensic traffic capture testbed setup 
 

Bitrate to be tested are (Mbps): 

100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 

Storage device used are respectively: 

� A 7200rpm HDD claimed to have a maximum of 
150MB/s write speed 

� A SSD claimed to have 520MB/s write speed 

The following properties are measured in our experiments: 

� Duration – the period of time the test was 
performed 

� Packets Sent/Received/Dropped – the number of 
packets sent by the generator, received by the 
receiver, and the different between these two due to 
network congestion or malfunction of the network 
bridge in the box, etc.) 

� Packets Stored/Lost – the number of packets 
successfully/failed to store into database, however 
it doesn’t necessarily mean it can’t reach the 
receiver 

� Lost Rate – the percentage of packets passing 
through the network but not being able to store in 
database 

b) Experimental Results 
Appendix A and Appendix B showed the testing result 

for using HDD as storage and SSD. 

From the result, we find that even the theoretical speed of 
HDD is 150MB/s, it is far from enough to use as a storage 
device in our scenario. It may due to the high latency and 
high seek time of classic mechanical hard drive. A SSD 
performs good when the network traffic is below 1Gbps. As 
in our testbed setup, we use direct link between interfaces, 
the good linking quality resulted in no packet drop 
throughout our experiments. 

B. Experiments on Anti-DDoS Attacks  
The purpose of these experiments is to test the 

performance and blocking accuracy of our proposed 
technique. These experiments also help us find out the best 
machine learning algorithm to be used for feature extraction 
and the suitable configuration for Bloom filter for different 
network environment. We will use different types of attack 
data as source, i.e. the input of our machine learning 

algorithms, to do feature extraction then apply these features 
in Bloom filter for blocking. 

a) Experiment Settings 
A testbed, as shown in Figure 7, was built to test our 

proposed technique. PCAP files were replayed to simulate 
the attacking scenario. However, if we play both normal 
traffic and attack traffic to the same destination, it will be 
hard to identify which packet is normal and which comes 
from the attack traffic. Thus, we use 2 servers for receiving 
traffic of normal and traffic of attack to calculate the 
blocking rate of attack traffic and passing rate of normal 
traffic. As all traffics will go through the SmartBox, it 
simulates the situation that the victim is being attack during 
normal business operations. 

“Normal” ReceiverSmartBox

CMD

OUTIN
hook

Victim Server

Victim 
Network

Bloom Filter module

machine learning

WAN

“Normal” Replayer

Attacker

 
Figure 7 Anti-DDoS attack testbed setup 

 

“Normal” Replayer is the PC plays the normal traffic to 
the “Normal” Receiver. Attacker is the PC that plays the 
attacking PCAP to the Victim Server. Wireshark is used in 
both receiving server to calculate the packet volume 
received. Compare with the packets sent, which is known 
and controllable, we can measure the blocking efficiency of 
our technique. 

Chan’s[4] implementation of Bloom filter uses fixed 
feature list: ip.dst, ip.proto, ip.dstport in hashing, which is in 
the case of a router. In our case, since the destination IP, 
protocol and port will mostly be like the same (traffics 
coming in to a single or limited victim servers and services), 
we use ip.src, ip.proto, ip.srcport as the enabled Bloom filter 
determining feature for the baseline comparison. 

b) Experiment 1 
We set both normal packet rate and attack packet rate to 

15000/s. And bloom filter parameter init_of_th = 20000. 
This is to simulate the DDoS attack when the attack traffic 
does not lead to a significant increase in the traffic volume. 
In this experiment we calculate the followings: Attack Block 
Rate, the percentage of attack traffic is blocked; Normal Pass 
Rate, the percentage that normal traffic passes through. The 
higher the better for both values. The result shows that the 
Baseline option only works for NTP attack, and ANOVA, 
SVM, Median improves a lot in Attack Block Rate and 
Normal Pass Rate. ANOVA and Median outperforms SVM 
in most types except TCP attacks.  

Appendix C showed the experiment result. We note from 
the result that Normal Pass Rate is very low, this is due to the 
configuration of init_of_th parameter. The higher init_of_th 
is, the more traffic volume will be allowed to pass by Bloom 

154



filter. In our next experiment we set init_of_th to 80000, so 
that normal traffic will pass through when Bloom filter is on 
Baseline Option. The proposed SVM feature selection 
algorithm gives poor “normal pass rate” compare to the other 
two, thus, we skip the test for SVM in next experiments. 

c) Experiment 2 
We set both normal packet rate and attack packet rate to 

15000/s. And bloom filter parameter init_of_th = 80000. 

The result in Appendix D showed that Bloom filter let 
almost all normal traffic pass through and blocks very 
limited amount of attack traffic. This is because init_of_th 
determines the threshold packet rate Bloom filter let pass 
through. And it does not differentiate between attack packet 
and normal packet, it will let attack packet pass through if 
attack packet rate is similar to normal packet rate. 

In many cases, DDoS attack will incur a bit rate much 
higher than the victim’s normal traffic. We set attack packet 
rate = 75000/s to simulate brutal force DDoS attack, normal 
packet rate = 15000/s and bloom filter parameter 
init_of_th=80000. 

From the result in Appendix E, we find that both 
ANOVA (with feature selection threshold = 0.4) and Median 
(with feature selection threshold=0.7) improves Attack Block 
Rate and Normal Pass Rate significantly. ANOVA 
outperforms Median in UDP attack. In other types of attack, 
the performance of ANOVA and Median are almost the 
same. We can the configuration of Bloom filter option 
follows the following procedure: 

1. Alarm is raised when One-Class SVM detects 3 
consecutive attack records, Bloom filter is on and use 
the features according to the output of Median 
Approach. 

2. Compute the output of Median Approach for every 3 
new incoming attack records. Update features enabled 
when 3 consecutive feature selection output is 
different than the current option. 

3. When 500 attack records are generated, use ANOVA 
to select the features accordingly. Update features 
selected every 500 attack records. 

The configuration procedure uses Median approach as 
“warm-up” and ANOVA when there are enough records. 
The advantage over using Median approach at all time is 
twofold, first ANOVA produce more stable results than 
Median approach, second the update of ANOVA is less 
frequent than Median approach and thus reduces the 
computation overhead.  

The feature selection algorithm is based on the statistics 
of normal profile and incoming attack records and does not 
rely on any attack profile. It will work for both known and 
unknown attacks. 

VII. CONCLUSION AND FUTURE WORKS 
We proposed a forensic box that is able to capture live 

traffic and perform basic attack defense. We then conducted 
experiment to test the completeness of network packets we 
captured. We further conclude that for such a network traffic 
capturing device, it’s essential to use a SSD as the storage 
device. 

A lot of work needed be done in the future, including: 

1. Latency measurement. Average delays after inserting 
our forensic box into the network should be measures. 

2. Testing for higher bandwidth. As per our result, a 
single SSD can handle 1Gbps traffic, for higher 
traffic rate, we may need to implement RAID 
configuration into the box. 

3. Implementation of storage hot-swapping feature. 

4. Find out the other minimum hardware requirement 
besides storage device, e.g. CPU and memory. 

 

 

REFERENCES 
[1] NexusGuard: DDoS Threat Report Q2 2016 - APAC 

Region, 
https://www.nexusguard.com/hubfs/Nexusguard_Q2_
2016_Threat_Report_APAC.pdf, 2016 

[2] Kaspersky Lab: Kaspersky DDoS Intelligence Report 
for Q2 2016, https://securelist.com/analysis/quarterly-
malware-reports/75513/kaspersky-ddos-intelligence-
report-for-q2-2016/, 2016 

[3] Cloudflare: 400Gbps: Winter of Whopping Weekend 
DDoS Attacks, https://blog.cloudflare.com/a-winter-
of-400gbps-weekend-ddos-attacks/ 2016 

[4] Eric Y. K. Chan, H. W. Chan, K. M. Chan, P. S. 
Chan, Samuel T. Chanson, M. H. Cheung, C. F. 
Chong, K. P. Chow, Albert K. T. Hui, Lucas C. K. 
Hui, S. K. Ip, C. K. Lam, W. C. Lau, K. H. Pun, Y. F. 
Tsang, W. W. Tsang, C. W. Tso, D. Y. Yeung, S. M. 
Yiu, K. Y. Yu, Weihua Ju: Intrusion Detection 
Routers: Design, Implementation and Evaluation 
Using an Experimental Testbed, IEEE Journal on 
Selected Areas in Communications, vol. 24, no. 10, 
2006 

[5] Deri, Luca & S P A Via, Netikos & Km, Brennero & 
La Figuretta, Loc.: Improving Passive Packet 
Capture: Beyond Device Polling, 
http://luca.ntop.org/Ring.pdf, 2017 

[6] K. Lu, D. Wu, J. Fan, S. Todorovic, A. Nucci: Robust 
and efficient detection of DDoS attacks for large-scale 
internet, Computer Networks, vol 51, pp. 5036-5056, 
2007 

[7] Keunsoo Lee, Ki Hoon Kwon, Younggoo Han, Sehun 
Kim: DDoS attack detection method using cluster 
analysis, Expert Systems with Applications: An 
International Journal, vol 34, issue 3, pp. 1659-1665, 
2008 

[8] J. Li, Y. Liu, G. Lin.: DDoS attack detection based on 
neural network, Aware Computing (ISAC), IEEE 
2010 2nd International Symposium, pp. 196-199, 
2010 

155



[9] Alan Saied, Richard E. Overill, Tomasz Radzik: 
Detection of known and unknown DDoS attacks using 
Artificial Neural Networks, Neurocomputing, vol 
172, pp. 385-393, 2016 

[10] E. Balkanli, J. Alves and A. N. Zincir-Heywood: 
Supervised learning to detect DDoS attacks, 2014 
IEEE Symposium on Computational Intelligence in 
Cyber Security (CICS), Orlando, FL, 2014, pp. 1-8, 
2014 

[11] S. Seufert and D. O'Brien: Machine Learning for 
Automatic Defence Against Distributed Denial of 
Service Attacks, 2007 IEEE International Conference 
on Communications, Glasgow, 2007, pp. 1217-1222, 
2007 

[12] WD: WD Black – Desktop Performance Internal 
Storage Hard Drive, 
https://www.wdc.com/products/internal-storage/wd-
black-desktop.html, 2017 

[13] Samsung: 850 PRO | Consumer SSD | Samsung V-
NAND SSD, 
http://www.samsung.com/semiconductor/minisite/ssd/
product/consumer/850pro.html, 2017 

[14] SysTutorials: netsniff-ng - the packet sniffing beast - 
Linux Man Page, 
https://www.systutorials.com/docs/linux/man/8-
netsniff-ng/, 2017 

[15] Richard Kelly: Common Functionality in the 2.6 
Linux Network Stack, 
http://www.intel.com/content/dam/www/public/us/en/
documents/white-papers/linux-2-6-network-stack-
paper.pdf, 2010 

[16] CAIDA: The CAIDA UCSD "DDoS Attack 2007" 
Dataset, https://www.caida.org/data/passive/ddos-
20070804_dataset.xml, 2007 

[17] UNB: UNB ISCX Intrusion Detection Evaluation 
DataSet, 
http://www.unb.ca/research/iscx/dataset/iscx-IDS-
dataset.html, 2010 

[18] Lincoln Laboratory: 2000 DARPA Intrusion 
Detection Evaluation Data Set, 
https://www.ll.mit.edu/ideval/data/2000data.html, 
2000 

[19] iPerf - The TCP, UDP and SCTP network bandwidth 
measurement tool, https://iperf.fr/, 2017 

  

156



VIII. APPENDICES 
 
 

Appendix A 
 

Performance benchmarking using HDD as storage 
 

Bitrate 
(Mbps) 

Duration 
(s) Packets Sent Packets Received Packet Dropped Packets Stored Packet Lost Lost Rate 

100 950.7 729818 729818 0 704801 25017 3.40% 
200 967.8 1234423 1234423 0 921370 313053 25.00% 
300 960.7 1722670 1722670 0 971666 751004 43.60% 
400 973 2159463 2159463 0 1022420 1137043 52.70% 
500 986.3 2597232 2597232 0 1026000 1571232 60.50% 
600 968.4 3039786 3039786 0 1044755 1995031 65.60% 
700 970.2 3562648 3562648 0 1076640 2486008 69.80% 
800 980.9 3969160 3969160 0 1070134 2899026 73.00% 
900 991.2 4363349 4363349 0 1105341 3258008 74.70% 
1000 971.5 4799481 4799481 0 1112474 3687007 76.80% 

 
 

Appendix B 
 

Performance benchmarking using SSD as storage 
 

Bitrate 
(Mbps) 

Duration 
(s) Packets Sent Packets Received Packet Dropped Packets Stored Packet Lost Lost Rate 

100 963.6 714391 714391 0 714380 11 0.00% 
200 962.8 1201667 1201667 0 1201657 10 0.00% 
300 986.9 1674583 1674583 0 1674556 27 0.00% 
400 970.8 1796763 1796763 0 1796742 21 0.00% 
500 1002.9 2206004 2206004 0 2205956 48 0.00% 
600 942.4 2954443 2954443 0 2953432 1011 0.03% 
700 973.4 3412400 3412400 0 3407392 5008 0.15% 
800 950.2 3975492 3975492 0 3937488 38004 0.96% 
900 1005.6 4610815 4610815 0 4464809 146006 3.20% 
1000 950.1 5147195 5147195 0 4598193 549002 10.70% 

 
  

157



 
 

Appendix C 
 

Experiment 1 results 
 

Input Attack 
Type 

Learning 
Algorithm Feature Automatically Selected Attack Block 

Rate 
Normal Pass 

Rate 

ICMP 

Baseline ip.src, ip.proto, ip.srcport 0.05% 67.21% 
ANOVA frame.len, ip.srcport, tcp.flags 94.09% 80.33% 
SVM frame.len, ip.proto 94.29% 44.26% 
Median frame.len, ip.srcport 94.28% 72.13% 

NTP 

Baseline ip.src, ip.proto, ip.srcport 96.04% 75.81% 
ANOVA frame.len, ip.srcport,ip.dstport, tcpflags 94.53% 85.48% 
SVM ip.src, tcpflags 96.30% 33.87% 
Median frame.len, ip.srcport 96.38% 79.03% 

UDP 

Baseline ip.src, ip.proto, ip.srcport 0.00% 66.13% 
ANOVA tcp.flags 100.00% 16.13% 
SVM tcp.flags 100.00% 16.13% 
Median ip.srcport 41.26% 67.74% 

DNS 

Baseline ip.src, ip.proto, ip.srcport 0.00% 67.21% 
ANOVA ip.srcport, tcp.flags 90.84% 62.30% 
SVM tcp.flags 100.00% 26.23% 
Median ip.srcport 91.11% 60.66% 

TCP 

Baseline ip.src, ip.proto, ip.srcport 0.00% 66.13% 
ANOVA frame.len, ip.ttl, ip.proto, ip.dstport 75.74% 70.97% 
SVM ip.ttl, ip.dstport 99.99% 70.97% 
Median frame.len, ip.dstport 75.59% 70.97% 

DARPA 

Baseline ip.src, ip.proto, ip.srcport 0.00% 66.13% 
ANOVA frame.len, tcp.flags 99.99% 40.32% 
SVM tcp.flags 99.99% 13.57% 
Median frame.len 99.99% 40.32% 

 
 

Appendix D 
 

Experiment 2 results 
 

Input 
Attack Type 

Learning 
Algorithm Feature Automatically Selected Attack Block 

Rate 
Normal Pass 

Rate 

ICMP 
Baseline ip.src, ip.proto, ip.srcport 0.00% 100.00% 
ANOVA frame.len, ip.srcport, tcp.flags 0.02% 98.39% 
Median frame.len, ip.srcport 0.00% 100.00% 

NTP 
Baseline ip.src, ip.proto, ip.srcport 0.00% 100.00% 
ANOVA frame.len, ip.srcport,ip.dstport, tcpflags 0.00% 98.39% 
Median frame.len, ip.srcport 0.00% 100.00% 

UDP 
Baseline ip.src, ip.proto, ip.srcport 0.00% 100.00% 
ANOVA tcp.flags 49.65% 95.16% 
Median ip.srcport 0.00% 100.00% 

DNS 
Baseline ip.src, ip.proto, ip.srcport 0.00% 100.00% 
ANOVA ip.srcport, tcp.flags 0.00% 100.00% 
Median ip.srcport 0.00% 100.00% 

TCP 
Baseline ip.src, ip.proto, ip.srcport 0.00% 98.39% 
ANOVA frame.len, ip.ttl, ip.proto, ip.dstport 0.00% 98.39% 
Median frame.len, ip.dstport 0.00% 100.00% 

DARPA 
Baseline ip.src, ip.proto, ip.srcport 0.00% 100.00% 
ANOVA frame.len, tcp.flags 34.99% 98.39% 
Median frame.len 48.27% 96.77% 

 

158



 
Appendix E 

 
Experiment 2 results with updated parameters 

 
Input Attack 

Type 
Learning 

Algorithm Feature Automatically Selected Attack Block 
Rate 

Normal Pass 
Rate 

ICMP 
Baseline ip.src, ip.proto, ip.srcport 0.00% 98.39% 
ANOVA frame.len, ip.srcport, tcp.flags 94.09% 100.00% 
Median frame.len, ip.srcport 94.07% 100.00% 

NTP 
Baseline ip.src, ip.proto, ip.srcport 95.70% 98.39% 
ANOVA frame.len, ip.srcport,ip.dstport, tcpflags 95.70% 98.39% 
Median frame.len, ip.srcport 95.70% 100.00% 

UDP 
Baseline ip.src, ip.proto, ip.srcport 0.55% 100.00% 
ANOVA tcp.flags 100.00% 91.94% 
Median ip.srcport 41.16% 100.00% 

DNS 
Baseline ip.src, ip.proto, ip.srcport 1.34% 100.00% 
ANOVA ip.srcport, tcp.flags 91.59% 91.94% 
Median ip.srcport 91.20% 93.55% 

TCP 
Baseline ip.src, ip.proto, ip.srcport 0.00% 100.00% 
ANOVA frame.len, ip.ttl, ip.proto, ip.dstport 71.48% 100.00% 
Median frame.len, ip.dstport 72.13% 100.00% 

DARPA 
Baseline ip.src, ip.proto, ip.srcport 0.00% 98.39% 
ANOVA frame.len, tcp.flags 100.00% 96.77% 
Median frame.len 100.00% 96.77% 

 

159


