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Abstract—The plethora of mobile apps introduce critical chal-
lenges to digital forensics practitioners, due to the diversity
and the large number (millions) of mobile apps available to
download from Google play, Apple store, as well as hundreds
of other online app stores. Law enforcement investigators often
find themselves in a situation that on the seized mobile phone
devices, there are many popular and less-popular apps with
interface of different languages and functionalities. Investigators
would not be able to have sufficient expert-knowledge about every
single app, sometimes nor even a very basic understanding about
what possible evidentiary data could be discoverable from these
mobile devices being investigated. Existing literature in digital
forensic field showed that most such investigations still rely on
the investigator’s manual analysis using mobile forensic toolkits
like Cellebrite and Encase. The problem with such manual
approaches is that there is no guarantee on the completeness
of such evidence discovery. Our goal is to develop an automated
mobile app analysis tool to analyze an app and discover what
types of and where forensic evidentiary data that app generate
and store locally on the mobile device or remotely on external
3rd-party server(s). With the app analysis tool, we will build a
database of mobile apps, and for each app, we will create a list of
app-generated evidence in terms of data types, locations (and/or
sequence of locations) and data format/syntax. The outcome from
this research will help digital forensic practitioners to reduce
the complexity of their case investigations and provide a better
completeness guarantee of evidence discovery, thereby deliver
timely and more complete investigative results, and eventually
reduce backlogs at crime labs. In this paper, we will present the
main technical approaches for us to implement a dynamic Taint
analysis tool for Android apps forensics. With the tool, we have
analyzed 2,100 real-world Android apps. For each app, our tool
produces the list of evidentiary data (e.g., GPS locations, device
ID, contacts, browsing history, and some user inputs) that the app
could have collected and stored on the devices’ local storage in
the forms of file or SQLite database. We have evaluated our tool
using both benchmark apps and real-world apps. Our results
demonstrated that the initial success of our tool in accurately
discovering the evidentiary data.

I. INTRODUCTION

Mobile device forensics has been a challenging problem

in digital forensics domain. With the thriving of the mobile

device markets and usage among all the people over the world,

mobile devices have been more and more critical and helpful

in generating relevant and meaningful evidences to prove the

innocence of people or existence of certain criminal activities

in many civil and criminal investigations. Most such evidences

are generated by the apps installed on the mobile devices

(implicitly or explicitly). However, the plethora of mobile apps

introduce critical challenges to digital forensics practitioners,

due to the diversity and the large number (millions) of mobile

apps available to download from Google play, Apple store, as

well as hundreds of other online app stores. Law enforcement

investigators often find themselves in a situation that on the

seized mobile phone devices, there are many popular and less-

popular apps with interface of different languages and func-

tionalities. Investigators would not be able to have sufficient

expert-knowledge about every single app, sometimes nor even

a very basic understanding about what possible evidentiary

data could be discoverable from these mobile devices being

investigated.

With the mobile app market having been rapidly growing

in the past decade, Android has become the largest mobile

application platform in terms of the number of available apps.

In this study, we focus on Android apps. We propose to

develop an automated Android app analysis tool to analyze

apps and discover what types of and where forensic evidentiary

data that apps generate and store locally on the mobile device

or remotely on external 3rd-party server(s). This tool will

help an investigator to quickly locate and extract evidence

from a device being investigated. For example, with more and

more people using their devices via all kinds of apps for web

browsing, driving navigation, paying bills, etc, it is apparent

that apps will generate and store evidence about geo-location,

time, contacts, browsing history, and many others on the device

or remotely elsewhere. Existing literature in digital forensic

field showed that most such investigations still rely on the

investigator’s manual analysis using mobile forensic toolkits

like Cellebrite and Encase. The problem with such manual

approaches is that there is no guarantee on the complete-

ness of such evidence discovery. Also, current mobile device

forensic investigation practice are often very time-consuming

for forensic analysts to manually examine and pinpoint the

evidence from the mobile device under investigation since

it may have installed many different types of apps which

contains massive amount of relevant or irrelevant information

on them. The outcome from this research will help digital

forensic practitioners to reduce the complexity of their case

investigations and provide a better completeness guarantee of

evidence discovery, thereby deliver timely and more complete

investigative results, and eventually reduce backlogs at crime

labs.

In the literature, there have been several known dynamic
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app analysis tools such as TaintDroid [1] and TaintART [2],

designed for identify privacy data leakage problems. After our

careful analysis and experimental evaluation, none of them

works for mobile device forensics purposes, for the following

reasons: Firstly, these tools were designed mainly for privacy

purpose. With them, one can detect whether there exists any

private data leaks or detects whether there are any sensitive

data being transferred from one to another app, but the tools

are unable to identify and locate all the possible evidence,

except those that are not considered to be private or sensitive.

This is a fundamental limitation for them to be used for

forensic purposed. Secondly, these tools only support a very

limited number of taint tags. For instance, TaintDroid can

only analyze up to 32 types of evidence, while TaintART can

analyze only 5 types of evidence, due to their special design

for taint management and propagation. Thirdly, TaintDroid can

only work with Dalvik Virtual Machine, which was outdated.

Right now, TaintDroid does not work with the current Android

Runtime platform (ART), which translates an Android app into

binary code. As a result, TaintDroid is unable to analyze most

current Android apps being developed for the current Android

devices.

In this paper, we will present the main technical approaches

for us to implement a dynamic Taint analysis tool for Android

apps forensics. In our implementation, we modify the Android

ART platform. Specifically, we use a 32-bit taint tag to

represent type of evidence, which allows us to follow 232 types

of evidence possibly generated by an Android app. For each

variable (possible evidence) in the app, we treat all of its taint

tags as a set, and dynamically update the set according to

the data flow processed by the app. Using a set to store all

possible taint tags for a given variable allows us to analyze

a large number of fine-grained evidences. To do so, there

is a key challenge in deciding how the taint tags are stored

and processed. Existing tools, for example, TaintDroid stored

the taint tag next to the variable on the app’s stack-frame,

while TaintART stores the taint tag in a register of the mobile

device. None of these methods works for our purpose, for the

following reasons: First, the number of registers on a mobile

device is too small to store the large set of taint tags for our

purpose; Second, the set can be dynamically updated, which

makes it even harder to store it next to a variable on the app’s

stack space. Thus, in our design, we store the set of taint tags

for each variable in the app’s heap space.

The innovative design and implementation of our tool can

overcome the limitations of existing dynamic taint analysis

approaches. Specifically, our tool can support a very fine-

grained analysis of evidence, e.g., 232 types of evidence. We

have implemented the tool with the special design. With the

prototyped tool, we have analyzed 2,100 real-world Android

apps. For each app, our tool produces the list of evidentiary

data (e.g., GPS locations, device ID, contacts, browsing his-

tory, and some user inputs) that the app could have collected

and stored on the devices’ local storage in the forms of file

or SQLite database. We have evaluated our tool using both

benchmark apps and real-world apps. Our results demonstrated

that the initial success of our tool in accurately discovering the

evidentiary data.

A. Organization of the Manuscript

We have organized the rest of this paper in the following

way. We will provide a literature survey in Section II. We

then proceed to the motivation and technical overview of

our designs in Section III. This section gives an overview

of design architecture and points out some issues to be

solved in the current research. Section IV provides an in-

depth description of the implementation details. Experiments

regarding the effectiveness of the prototyped tool in analyzing

Android apps are presented in Section V. Finally, conclusions

are collected in Section VI.

II. RELATED WORK

In this section, we will review the mobile device forensics

efforts as well as some relevant work that attempted to solve

a similar (but different) problem - app private data leakage.

A. Mobile Device Storage Forensics

Permanent-storage forensics for Android is still an under-

developed research area. Most existing studies and tools on

this topic simply leverage either manual analysis or keyword

search. As a result, they can only analyze a small number

of apps or construct an inaccurate App Evidence Database

(AED). Our work represents the first one to perform large-

scale automated permanent-storage forensic analysis for An-

droid Apps (via program analysis).

a) Manual analysis: Some studies [3]–[6] manually an-

alyzed apps in order to construct an AED. Specifically, they

install apps on an Android device or run the apps in a sandbox

environment (e.g., Android Emulator [7] and YouWave [8]).

Then, they retrieve an image of the file system from the device

or the sandbox environment. Specifically, the file system image

can be retrieved from a device using the Android Debug

Bridge. The file system image can be either logical or physical,

where a physical image could also include the deleted files

that are not overwritten yet. By running apps under a sandbox

environment, researchers have control over the file system and

main memory, so they can also retrieve images of the RAM

and NAND flash memories.

After obtaining a file system image, they manually examine

the files generated by the apps, e.g., analyzing the files under

a directory /data/data/ < package name > /files/, where

< package name > refers to the package name of the app to

be analyzed.

Since manual analysis is time-consuming, error-prone, and

costly, these studies often only analyzed a very small number

of apps. In particular, they often focused on instant messaging

apps (e.g., WhatsApp [5], WeChat [6]) and maps navigation

apps [9]. They found that instant messaging apps often save

messages (i.e., a certain type of text input) on the local file sys-

tem, while maps navigation apps collect GPS location history

and post on databases. Interestingly, these studies concluded

that SQLite database is the major sink of evidentiary data.
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However, our results on a large amount of real-world apps

indicate that SQLite database is the major sink only for visited

URL. SharedPreferences is the major sink for location and

time, while text file is the major sink for text input. The

reason for such discrepancy is that these studies only analyzed

a very small number of apps, and their statistical results are

not representative.

b) Keyword search: Several commercial tools (e.g.,

Cellebrite UFED [10], XRY [11], and FTK [12]) are available

to analyze the files on a device. Specifically, given a device,

these tools first retrieve an image of the device’s file system.

Then, these tools provide Graphical User Interface (GUI)

for forensic investigators to search files that could contain

evidentiary data. However, the search is only performed by

keyword matching or regular expression matching, which

clearly has limitations. For instance, if a file contains GPS data

but does not have the regular expressions or keywords such

as GPS, latitude, or longitude, then the file will be incorrectly

labeled as a file that does not contain evidentiary data. Indeed,

studies [13] showed that tools based on keyword matching

can only identify a small fraction of files that could store

evidentiary data.

B. Dynamic Program Analysis

In this subsection, we will review some relevant work that

attempted to solve a similar problem-apps lead to private data

leakage and apps contain malicious behaviors. Due to that

the goals set forth for these works are different from that

in our research, none of these tools are directly applicable

to solve our problem and the major differences are listed as

followed. We compare our tool with following analysis tools:

TaintDroid [1] modified DVM to monitor the apps running on

for sensitive information leakage. Although TaintDroid track

taint propagation in DVM, it does not support ART and only

support up to 32 different tags, which is insufficient for the

forensic purposes. Both TaintART [2] and ARTist [14] inserted

the taint propagation instructions into the complied codes by

modifying the compilers, however, TaintART only support five

types of evidences, and both of them only focus on private

information leakage. DroidScope [15] and CopperDroid [16]

are both built upon QEMU, DroidScope reconstructs the OS-

level and Java-level semantics, and exports three tiered APIs

which mirror the three levels of an Android device, hardware,

OS and Dalvik Virtual Machine, to analysis tools to collect

detailed native and Dalvik instruction traces, profile API-

level activity, and track information leakage through both the

Java and native components using taint analysis, however, it

cannot monitor the Java methods that are running on ART

or compiled into native code. CopperDroid is also built on

top of QEMU and reconstructs OS and Android- specific

behaviors, however, it runs on modified Android emulator and

could only monitor limited number of behaviors. Dagger [17],

MADAM [18], ProfileDroid [19] track sensitive behavior by

monitoring the system calls, where Dagger collects system

calls through strace, recodes accessing transactions via sysfs

and process details extracted from Android /proc file system.

While MADAM and ProfileDroid also monitor user-level

malicious behaviors. However, all of them are incapable to

monitor the behaviors in the runtime layer. ARTDroid [20]

analyze Android apps and its malicious behaviors by hooking

the virtual framework methods under Android ART. It is able

to intercept virtual-method calls using both JNI and Java

reflection, and it supports integration with ”frida” framework

for hooking native functions. Boxify [21], on the other hand,

is an app sandbox which is based on application virtualization

and process-based privilege separation to securely encapsulate

untrusted apps in an isolated environment and it’s aimed at

enforcing established security policies without incurring a

significant runtime performance overhead. GroddDroid [22]

enhances the execution of the malicious code of unknown

malware by replacing conditional jumps with unconditional

jumps in order to jump into interested code. Similar to

GroddDroid, HARVESTER [23] combines program slicing

with code generation and dynamic execution to execute code

forcibly within the targeted area.

III. TECHNICAL OVERVIEW

A. Overall Framework

Our proposed dynamic taint analysis tool for Android app

forensics is based on a known concept - Taint Analysis. Dif-

ferent from traditional static program analysis methodology,

it is a dynamic program analysis based on app’s runtime

behavior. Taint analysis itself is a program analysis approach

which tries to add label (or tag. From now on, we use label

and tag exchangeably.) to the variables within the application

under investigation. Our app analysis tool is actually a runtime

platform that allows the execution of the apps while tracking

the data flows inside the app in its actual or emulated usage.

During the execution of a given app, variables store data (likely

useful evidence), which are passed around via the instructions

of the app (like assignment in a programming language). The

goal of the taint analysis is to provide a way of tracking where

and how the evidentiary data of interest flows between method

calls within that app such that at the end, the source (type of

data) and flow (i.e., the way of its being processed within

that app) of which can be revealed. Such information will be

used for us to identify the type of evidence, where it went

(store locally or remote elsewhere), and the syntax/format of

the evidence data.

Figure 1 describes the framework for our dynamic App

analysis platform. To analyze an app, we first download

and install the app APK code onto either a real Android

phone device or an Android emulator. We can use a modified

MoneyRunner to generate touch-screen events to emulate the

actual use of the app. Our modified Android ART platform

taints the variables (possible evidentiary data) generated by

the app and keeps track of how they are processed within

the app before finally storing them into a local file or SQLite

database on the phone device. Our analysis engine will use

the tainted data as well as other event-generated data (via

ADB Logcat) to generate the list of of evidence data (types,
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Fig. 1: Android App Analysis Framework

destination paths/SQLite DB tables, syntax/formats) as output,

which will in turn written into our app database.

B. Major Concepts and Terms

a. Taint tag: Taint tag or tag refers to the type of information

which travels with variables of interest. If a variable is tainted

or has certain taint tag, then it means the variable carries

certain type(s) of evidential data, e.g., GPS locations or date

and time.

b. Source: Source refers to the starting point where a

variable gets tainted. Typically, a system method can be treated

as a source of variable (to represent the type of data generated

by the app, and start to be processed within the app). Whenever

the return value is assigned to a variable, we say that the

variable become tainted.

c. Sink: Sink refers to the destination where the evidence

data of interest went to. Methods like file write API call can

be treated as a sink. Whenever a data (variable) is sent to such

file write methods, the taint tag of that data will be reported

as well as where it is stored (maybe a path name or SQLite

database table).

d. Evidential data: Not all data deserves attention or could

be valuable evidence to certain case work, because many of

them are just temporary data or simply of no exact meaning.

But some data like geo-location, device ID, browsing history,

some user input, or temporary video or image objects left by

the apps, for example, Snapchat, Twitter, Facebook, or Wechat.

We try to keep track of most possible evidence data.

e. Taint propagation: Variables inside an app are often

processed in different ways, for example, reassignment or

appended to a string object, and so on. In such process,

along with that data (variable) flows through method calls

within an app, the taint tag associated with these variables

should be maintained and processed appropriately such that

we can follow how such data are processed inside an app.

Whenever a variable is assigned to another variable, both

variables should have the same taint tag. Take an addition

varA = varB+varC for example, the variable varA should

have the taint tags from both varB and varC.

f. Taint tag storage: The taint tag requires some additional

memory space, which is referred as taint tag storage. De-

pending on the total number of taint tags being maintained,

the space requirement can be large. For mobile app forensics

purpose, the number of possible types of evidence can be large.

The approaches used by TaintDroid and TaintART would not

be large enough, so would not work for our tool. In the

following section, we will discuss it in details about how we

do it.

g. Propagation rules: Propagation rules define the ways of

how the taint tags shall flow and update when an instruction of

the app gets executed. For example, binary addition operation

should assign the resulted variable with a new taint tag, which

is a union set of both operands’ tags. For other operations like

array element access, taint tags should be appropriate in that

either an individual tag associated with the element or the tag

for the whole array object, depending on the situation and the

variable of interest.
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IV. IMPLEMENTATION DETAILS

Figure 2 shows a simplified procedure for Android runtime

platform (ART) when an application gets started to run. Upon

launching the application, a new process on ART is created

that runs that application. The ART platform first checks

if it is necessary to execute native code either because of

JNI or compiled code available under normal condition. If

not, it will call interpreter which loops over Dalvik bytecode

and executes instructions of the app accordingly. A special

situation is that if the method belongs to a core library like

object class, the system will execute native code compiled

from C++ code during OS Compilation. These codes mirror

the behavior of their java counterpart and is intended for

better performance. In our implementation, we modify the

ART platform such that we always force the Android system

enter interpreter mode and bypass the checking of trusted

mirror class. Doing so will guarantee that all the java-based

code are executed through the interpreter. Furthermore, our

modification of Android ART platform alters the interpreter

instruction case handling procedure such that our own taint

propagation rules can be implemented in the platform, which

enable us to analyze the Android apps on our platform, as that

showed in Figure 1

We have implemented two modes of operation: Bit-wise

mode and Tag-id mode in our App analysis platform. Our

system operations under bit-wise mode are similar to that

in TaintDroid, but with the major difference that we support

Android OS (7.0 or newer). Our work under bit-wise mode

focuses on improved app analysis efficiency. Our Tag-id mode

operations are completely different from the existing tools that

(1) We define a tag to be a 4-byte long variable, which each

of its 32 bits represents if a specific type of data (possibly

considered to be an evidence) is carried or not. With it, our

tag-id mode operations allows us to have a higher capability

of distinguishing much larger types of evidence data. (2) Our

system maintains a global mapping between id and tag-set.

The tag in tag-set ranges from 0 to 232−1. In comparison with

Artist [14] our system under tag-id mode assigns each field in

the app code a unique id (identifier) during runtime analysis,

and can support up to 232 types of tags. Another unique

difference between the two modes of operations are in the way

the tag being stored as well as how the tag union operation

is carried. Under bit-wise mode, bitwise OR operation is used

for both tags that are of 4-byte long size. Under tag-id mode,

our system performs a set-union operation on the two tag sets.

A. Storing Taint tag on Stack of the App Address Space

Whenever a method within the app is invoked, our system

will allocate a chunk of memory space for the possible taint

tags on the App’s stack space in the physical memory. In

the App source code, the method frame is represented by the

class ShadowFrame. The ShadowFrame mimics a conventional

method frame used in other architecture like ARM. It has a 4-

byte integer array, return value, and reference to ART method.

The array acts as virtual registers and holds the values used

by the instructions. For example, instruction like v1 = v2+v3

refers to the addition of virtual register 2 and 3 and the result

is saved into virtual register 1. Our implementation under

bit-wise mode introduces an array of 4-byte integer so that

each of the 32 virtual registers has a single bit (1 or 0)

in the corresponding 4-byte long tag. In the meanwhile, our

implementation under tag-id mode adds a vector of integer set

whose content are saved on the App’s stack and heap space.

Figure 3 illustrates the implementation of tag-id mode on stack

and heap space of the app’s address space on the Android

device. Under the bit-wise mode, the tag sets are replaced

with the 32-bit long variable, each bit of which represents

whether the data in the virtual register is tainted or not. Our

implementation only need to use the stack space, similar to

that in TaintDroid. Also, our implementation adds a special

field for the tag space for return value(s).

B. Class Modification for Memory Alignment

When a class is loaded into the system, a memory layout is

generated by the Android ART platform. Figure 4 shows an

example of how a class class A gets translated into a memory

layout. The class A contains some number of variables of

different sizes and types. The memory layout does not follow

the same order as the one in the source code, instead follows

the order given in Figure 5. The memory layout starts with the

superclass and then continues with the fields in the descending-

size order. Our system implementation adds the taint tags

immediately after the 4-byte fields in the address space of the

app on the Android device. Contrary to what we have done,

TaintDroid added a tag next to every variable in the stack

space. Such a choice is made due to the problem of memory

alignment and memory gap. By default, an X-byte field should

have an address which is divisible by the integer X. For

example, a 4-byte field can have an address like 0b11111100
but cannot have 0b11111101, which is required by the CPU

design (as a general rule). Therefore, it is best to follow this

rule. However, if the rule is followed, memory gaps could be

created when a taint tag is added next to a field. We can take a

one-byte field as an example. The one-byte field could have an

address of 0b0001 and its taint tag has an address of 0b0100.

Such a treatment is consistent with the memory alignment,

but as a result, it leaves a gap of 3-byte created between the

one-byte field and its taint tag. This is not a desirable design,

because of the unnecessary wasted memory space. Therefore,

in our implementation, we decide to put taint tags immediately

after 4-byte fields as shown in Figure 6.

C. Storing Taint tag on Heap of the App Address Space

Heap stores instances of each class. According to the modi-

fied memory layout from the previous section, the taint tags or

tag-ids are added immediately after the 4-byte variable during

the app loading procedure. This is implemented via the fol-

lowing modification: (1) A method called ComputeClassSize

calculates the total size an object needs. Our implementation

modified this method to allow the memory expansion of an

object. The additional memory space is treated as memory gap,

instead of the fields from the perspective of normal execution.

164



Fig. 2: A Simplified Android ART procedure

(2) Another method called LinkFields enumerates fields and

calculates the offset of each field related to the starting point of

the object. Our implementation modified this method to allow

the calculation of the offset for the taint tags. A new field

called taint offset is added to Android ART. This field stores

the taint tag offset which will be used during runtime analysis

in order to find the location of taint storage for a given field.

D. Taint Propagation Rules

In our implementation, we have defined four types of

tain tag propagations: Local, Stack-heap, Inter-method, and

memory-file propagations. Table 7 is the summary for the first

two kinds.

1) The local propagation happens if a virtual register is as-

signed with a value. Take the algebra addition operation

for example, the result register gets the taint tags from

both operands. This propagation follows the propagation

rules which can found in Table 7 similar to that used in

TaintDroid. Our implementation modified the instruc-

tion handling cases in interpreter common.cc. For each

instruction case, we have added the implementation for

taint propagation procedure.

2) The stack-heap propagation happens for field-related in-

structions like instance-get and instance-set. Java object

and its fields are all stored on Heap of the app’s address

space. And the data must be loaded onto stack before

being processed. Our system first finds the ArtField
instance of the field of interest. From the ArtField, the

taint offset can be obtained. Our system then accesses

the tainted data using the offset relevant to the start

address of the object.

3) The Inter-method propagation happens when there is a

method invocation or return. For a method invocation,

our implementation modifies the argument setup proce-

dure so that the taint tags can travel with the arguments

of interest. For a method return, the current method

(stack) frame will be popped and destroyed. Before the

method eventually returns, the taint tag of the return

value will be put in a data holder in the caller method

stack frame. The instruction move − result moves the

return value to a virtual register, and meanwhile, our

implementation also moves the taint tag accordingly.

4) The memory-file propagation happens when there is a

file writing or reading. The current ART implementation

only handles file to memory propagation. When a vari-

able gets assigned value from a file, the variable also

will be assigned a special taint tag that represents that

file (as a type of data source).

E. Source and Sink Methods

Source methods called by the app can be used to infer

the type(s) of evidence data while sink methods can be used

to infer the where the evidence data goes to. Thereby, the

linkage of source and methods via the data flow path inside

the App can be used to generate critical information about the

evidence data in terms of evidence type(s), storage location,

and evidence data syntax/formats. In our current implemen-

tation, we have included 11 sources, including the frequently

evidence data types such as telephone, device ID, text input,

GPS locations, visited URLs, various account information,

and so on. Each of the sources is assigned with a unique

taint tag. During the execution of the app, whenever a file
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is opened, our implementation will assign a tag for that file.

These taint tags are used to distinguish different files and

global mappings between tags. One or more file path(s) are

maintained for reporting the storage location of the evidence

data at some sink methods. Generally, the sink often includes

the LoggingPrintStream.println and file write operations.

V. EXPERIMENTAL EVALUATION

We have conducted three types of experiments to evaluate

our developed Android App analysis tool in this research:

(1) Benchmark APK testing, (2)Real-world APK with manual

test, (3)PlayDrone APK pool with auto test. Our system was

installed on a Nexus 6P phone and has been tested under tag-

set mode. Figure 8 and Figure 9 show the screenshots of our

Android mobile device running the benchmark APKs and the

PC-end analysis engine that monitors the device.

a) Benchmark APKs: : Our system was tested with a set

of testing apps (namely Benchmark Apps) in order to verify

the effectiveness of our system. For each benchmark app,

similar to real-world apps, some evidence data such as contacts

or location data were assigned to a variable, and following

that, the variable has been experienced with a sequence of

simple manipulations and eventually re-assigned to another

variable. Finally, the second variable is sent to a certain sink

method for file write operations including system.out and file

write method. Our experiment have demonstrated that the data

flows containing the variables of interest have been detected,

which showed that our system does work as expected. We

have compared the testing results of Benchmark APKs to

evaluate the accuracy of our dynamic App analysis tool. The

benchmark evaluation results shown in Table I demonstrated

that our proposed approach has achieved a good accuracy and

coverage on the evidence data discovery from Apps.

b) Manual testing: : We have used forty-five real world

applications to test with manual inputs. The 45 tested apps

included Facebook, Line, Taobao [24], Sideline [25], Alipay

[26], etc. We realized that our tool has a limitation that some

apps cannot be run properly due to the absence of Google play

service on our customized ROM. For all the applications that

Fig. 3: Taint Storage on App’s Stack and Heap Space

do not rely on the runtime support from Google Play service,

our tool has detected a total of 15,000 data flows. Although

there were some duplicates, most of these data flows actually

happened among temporary files. Evidence data that have been

detected from the experiments are shown in Table II.

One interesting case about Wechat App [27] showed that

our tool has detected data flow from some configuration files

to a png file, which demonstrated that it is possible to recover

meaningful evidence from the image png file, though the

raw evidence data may have been removed at the time of

investigation. Such data flow was also evidenced by a case

study showed in Figure V-0b. The results in Figure V-0b

showed that there was a configuration file (labeled as 292)

opened by the app. Some data from this file was latter written

to a image file (with tag 306). These case studies are the

very examples that apps embed potential critical evidence

data into a file (like image) that is seemly irrelevant to some

case investigations, thereby traditional mobile device forensic

methods cannot detect.

Another interesting case about Sideline App showed that

some data from Preference and Settings (configuration files)

were written to a mp3 file. Both cases demonstrated the

capability and usefulness of our tool. However, what exactly

have been written needs further work (as our next step).

c) Application pool with auto testing:: We have written

a testing script for the purpose of auto-testing with a large

set of apps we have collected. As the first step of large scale

experimental evaluation, we have randomly chosen 2,100 apps

from over 1.1M apps in our database from PlayDrone [28].

We have created a script program that modified Monkey [29],

a popular auto testing tool. Our modified Monkey script is

capable of firing a large amount of events continuously to test

the app. For each application, we have run a total of 5,000

random events fired with a gap of 50 milliseconds between two

events. The events we fired included clicking, sliding, volume

up & down, screen capture, etc. Our tool has detected nearly

1,500 data flows. For example, the FrameBlue app writed data

from a zip file to a png file.

Our experimental evaluation results showed that auto-testing

approach in general achieved only 10% of what is given

under manual test, given a short time period testing (mostly

Fig. 4: Memory layout for Class A
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TABLE I: Accuracy Results of Benchmark App Analysis

Benchmark App Number of Evidence Evidence detected by Dynamic Taint Analysis Accuracy

Benchmark1 6 5 83%
Benchmark2 4 3 75%

TABLE II: Testing Result on Popular Apps

App Type Destination File Format

Alipay Media Data /data/user/0/com.eg.android.AlipayGphone/app plugins/multimedia-live@1.0.0.170802165137.jar MIDI
Pinterest Image Files /data/user/0/com.tencent.mm/files/public/fts/res/temp/dist/f9011840880fec1d81e7db1572cca9ef.png fts template.zip
Sideline GMS Preference /storage/emulated/0/Notifications/Pinger.mp3 com.google.android.gms.measurement.prefs.xml

Phone Number /storage/emulated/0/Ringtones/Sideline.mp3 com.pinger.textfree.settings.xml
Wechat Configuration /data/user/0/com.tencent.mm/files/public/emoji/newemoji/smiley 17b.png systemInfo.cfg
Taobao Web Interface /data/user/0/com.taobao.taobao/files/wvapp/apps/newuserpop/0.0.1/main.html main.js

Fig. 5: General Memory Layout

Fig. 6: Modified Memory Layout

5 minutes in our experiments). We analyzed the results and

had the following observations: (1) The fired events may not

be sufficient (compared to manual test) given the short time

analysis. Some buttons or one of the execution path behind

hood require a certain sequence to trigger. For example, in

order to login, username and password must not be empty. As a

next step, we should carefully evaluate the effectiveness of the

auto-testing script to provide a stronger guarantee to fire more

effective and meaningful events to achieve a better coverage

about the app’s data paths. (2) Applications that require login

(such as Skype, Wechat, Facebook) oftentimes require valid

user credentials in order to proceed. During manual testing, the

tester registered an account so that the testing can proceed. (3)

Among the Apps available for download from Google Play,

there are still a relatively large number of APKs that cannot

run properly during the auto testing, due to the fact that some

apps downloaded from PlayDrone cannot run on Android 7.0+.

VI. SUMMARY AND FUTURE WORKS

We have prototyped a dynamic taint analysis tool for

Android app analysis. We have conducted a large scale ex-

perimental evaluation using both Benchmark Apps and real-

world apps. The initial success in using the tool for forensic

analysis on apps’ generated evidence data on seized Android

devices have attracted law enforcement and information secu-

rity practitioners as well as IT industry that use apps for a

variety of services. The built tool can not only help mobile

device forensic investigations but also help to solve private

data leakage and app correctness testing purposes.

For the future work, we are planning to address the follow-

ing issues to further improve the tool we built:

• Native Code: Our implementation of the tool modified the

ART Interpreter, and therefore ignored the native code.

This is a common problem for the analysis tool for java-

based program. For the native method in system API,

there could be manual modification of the source code,

which possibly helps to evade the detection of possible

evidence data. For some native code from a third party

like that identified in NDroid [8], there will be a need for

effective solution to handle native codes.

• Implicit Data Flow: Implicit data flow is also a com-

mon problem for the app analysis work. Code like

if(varA == 1)varB = 1; assigns varB with value 1
if the varA equals 1. In such cases, the variable varB
effectively gets the value from var, but such implicit data

flow poses challenges in handling the taint tags of varA
to varB. The App of “Da vinci secret message” uses

implicit data flow to embed a message from a user with

a bitmap of an image. However, with such implicit flow,

there will be a need for more effective methods to detect

implicit data flow when such combined data are written

into a file.

• Event Sequence: Without appropriate event inputs, ap-

plication cannot be explored/analyzed properly, therefore
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Fig. 7: Taint Propagation Rules

Fig. 8: Screenshot of Mobile Device Running Benchmark APK

there will be a need to develop a more effective event fir-

ing solution. Manual testing can generate reasonably good

results, but the scalability is an issue (only feasible for

a small scale app analysis). For larger scale experiments,

there will be a need for a better auto testing solutions.

Fig. 9: Screenshot of PC-end Analysis Engine

Fig. 10: Sample Output of Logcat
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