
Forensic Analysis of Ransomware Families using
Static and Dynamic Analysis

Kul Prasad Subedi, Daya Ram Budhathoki, Dipankar Dasgupta
Department of Computer Science

University of Memphis

Memphis, TN 38152, USA

Email: {kpsubedi,dbdhthki,ddasgupt}@memphis.edu

Abstract—Forensic analysis of executables or binary files
is the common practice of detecting malware characteristics.
Reverse engineering is performed on executables at different
levels such as raw binaries, assembly codes, libraries, and
function calls to better analyze and interpret the purpose of
malware code segments.
In this work, we applied data-mining techniques to correlate
multi-level code components (derived from reverse engineer-
ing process) for finding unique association rules to identify
ransomware families. However a reverse process and analysis
of code structure do not always provide run-time behavior
of executables so we used a combined approaches (static and
dynamic) to better unveil hidden intent of the program. We per-
formed analysis of 450 samples of ransomware and experimental
results reported some important correlation among different
code components from our combined analysis.

Keywords—Forensic, Malware, Reverse Engineering, Ran-
somware, Data-mining

I. INTRODUCTION

Ransomware attack uses many tricks of Social
Engineering (to get into the system), Virus properties
(propagation, triggering and execution), cryptographic
techniques (to lock system), use remote command and
control (C&C) channel and crypto-currencies. In addition,
ransomware attack exploits system weakness such as
SMB vulnerabilities (MS-17-010) to get into the system.
Ransomware generally encrypts the data in a victim’s
computer and ask for ransom to get the decryption key.
Cyber criminals are using ransomware attacks frequently
because it is very easy to make quick money. Moreover,
the monetary transactions performed remained intractable
due to the use of crypto-currencies like bitcoin. Each
year new ransomware are released with advanced exploit
techniques and attack vectors. Recently in May 2017, a
widespread ransomware campaign was launched affecting
as many as 150 countries including the United States,
United Kingdom, Spain, Russia, France and Japan. The
latest version of this ransomware is named as WannaCry,
WCry or WannaDecryptor and requested a ransom amount
of 0.1781 bitcoins roughly $300 US dollars [1]. Another
variant of ransomware is named as SamSam and impacted
multiple industries including Healthcare, Government and
requested a total of roughly $325K US dollars ransom [4].
Similar to malware, ransomware utilizes all types of means
(e.g., spam emails, mal-advertisements, social engineering)

to propagate to a victim’s computing system. Then, it will
either lock the victim’s system (i.e., locker ransomware) or
encrypt the data (i.e., crypto-ransomware) in the victim’s
systems. Finally, it will require the victim to pay the ransom
money in order to unlock the system or obtain the key
for decrypting the data. According to the recent Internet
Security Threat Report [2], the crypto-ransomware has now
dominated the ransomware family. Therefore in this work,
we mainly focused on static analysis assisted with reverse
engineering of crypto-ransomware families. Examples
of typical crypto-ransomware includes CryptoWall [11],
CryptoLocker [16], and Locky [10], and typical locker
ransomware includes Winlocker [21]. In comparison, the
crypto-ransomware is much more harmful than the locker
ransomware, since locker ransomware only locks the victim
system, and the victim can still have access to his/her data
by removing the storage from the infected system to an
uninfected machine. Crypto-ransomware uses cryptographic
encryption algorithms to encrypt the victim’s data and the
key may be stored in a remote C&C server, rendering it
difficult to recover the data without paying the ransom money.

Most of the work on ransomware focuses on dynamic
analysis using sandbox, a technique for running an untrusted
program in safe environment without causing real harm to
the system. Dynamic analysis has several drawbacks; for
example, ransomware may detect the sandbox environment
and may not execute in the sandboxing environment.
Additionally, we are unaware of the arguments required
for some command line malware unless we performed a
thorough analysis. We claim that static analysis and reverse
engineering is required to have through understanding of
ransomware functionalities.

Figure 1 depicts the components of crypto-ransomware.
These components are specific to the ransomware execution
sequences. In Section VI, we described our methodology to
discover assembly instructions, libraries, and function calls
present in the code using objdump and pe-parser. In addition
to these components, the propagation strategy is the first step
used by the ransomware to get into the victim’s machine.
There are different methods being used to propagate as
shown in Table I on the next page.

Table I depicts different ransomware families based
on the following attributes: Propagation Strategy, Date

180

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Kul Prasad Subedi. Under license to IEEE.
DOI 10.1109/SPW.2018.00033



TABLE I: The list of the ransomware families. different families, propagation strategies, date appeared, cryptographic
techniques used to encrypt data, and command and control (C and C) methods.

FAMILIES Propagation Strategy Date Appeared Cryptographic Techniques C and C Server

REVETON Accused of illegal activities 2012 RSA and DES Using MoneyPak

GPCODE Email Attachments 2013 660-bit RSA and AES Tor Network

CRYPTOLOCKER compromised websites and email attachments 2013 2048-bit RSA Tor Network

CRYPTOWALL compromised websites and email attachments 2013 2048-bit RSA Tor Network

FILECRYPTO compromised websites and email attachments 2013 2048-bit RSA Tor Network

TELSACRYPT compromised websites and email attachments 2013 2048-bit RSA Tor Network

CTB-LOCKER Email Attachments 2014 Elliptic Curve Cryptography Onion Network

CRYPTOMIX Spear-phishing Email 2014 2048-RSA and AES-256 and ROT-13 P-2-P Network

CERBER compromised websites and email attachments 2013 2048-bit RSA and RC4 Hardcoded IP range

PETYA Link in an Email purporting to be a job application 2016 Elliptic Curve Cryptography and Salsa Tor Network

SATANA Email Attachments 2016 256-bit AES in ECB Hardcoded IP Address

JIGSAW Word Document with Javascript 2016 RSA and AES Onion Network

SHADE Spam Email 2015 RSA-3072 and AES-256 Fixed Server as C and C server

WANNACRY Samba Vulnerability 2017 RSA and AES combination Onion Network

Appeared, Cryptographic Techniques, and Command and
Control Server. These attributes are very crucial and useful
to in-place multi-layer defense strategies against ransomware
attacks.

II. RELATED WORK

Several works have been done in Malware Structural
Analysis using Reversing Engineering and Static Analysis.
[7] presents the analysis of malware performing assembly
code analysis to identify and classify the malware. Another
work focused on malware using PE file structure analysis [28].
Taxonomy based [6] present an approach for preventing and
detecting ransomware. The focus of our work is to monitor
the encryption process of the victim’s data.
Mercaldo et al. [17] used a static analysis method on Android
system to automatically process ransomware sample. They
performed with the goal of observing the malicious behavior.
Modern techniques such as Software Defined Networking
(SDN) have also be used to detect and mitigate the ran-
somware. [9] [8] Another technique such as honeypot based
detection [18] was also used. In addition, recovery technique
such as [25] has been done to defend against ransomware
attack. There are approaches to deal with ransomware such
as File Hashes (Full or Portion), Byte Signatures, System
Behavior, and Network Signatures [23]. These approaches
are used by different antivirus engines, security tools, in-
trusion detection systems etc. The main problem with these
approaches is that it is very easy to perform evasion. For
example, File hashes can easily be bypassed by changing the
equivalent assembly instructions. Similarly, Byte Signatures
and network signatures are also prone to the same problem.
System behavior is a unique approach but it requires the
run time behavior of ransomware which is very difficult to
capture.

III. PROPOSED METHODOLOGY

We used an integrated approach which combines static
analysis (incorporating a data-mining technique) and run-time
analysis to correlate code segments with dynamic behavior of
ransomware.

Fig. 1: Components of typical Crypto Ransomware where
steps of execution are labelled with sequence numbers.

We developed an unique approach which perform static
analysis of ransomware in three different levels: Assembly,
Library, and Function calls. These three levels are able to
capture ransomware behaviors in-terms of equivalent assem-
bly instructions, function calls, and network signatures those
are being used. We then applied data-mining technique to
find association among components. The detail of these three
contexts is described in Section IV. We then ran dynamic
analysis of ransomware samples to validated the evolved
association rules.

IV. DETAILS OF THE PROPOSED METHODOLOGY

Our approach first uses the static analysis of the code after
performing reverse engineering. We design and implement
the framework which contains reverse engineering and static
analysis components. Reverse engineering is performed at
three different levels. We apply reverse engineering based on
assembly instruction level, libraries used in PE file structure
level, and function calls used in the libraries. As shown in Fig-
ure 3, these libraries are specific to the functionality used by

181



the ransomware. Ransomware uses a distinct set of libraries,
unlike regular applications. This unique set of libraries can
be considered the signature of the crypto-ransomware.

A. Reverse Engineering

Reverse engineering [13] is defined as the process which
takes program binary file as input and produce the output in
higher-level which is easier to understand. We leverage the
existing disassembler objdump [24] to extract the assembly
instructions from the binary files. There are two types of
syntax normally used in assembly code: Intel and AT&T.
We used the Intel syntax to disassemble the binary file. The
output of the disassembler is the different codes used by the
ransomware and we used preprocessor module to generate the
frequency distribution. This frequency distribution is used to
generate the vector representation of each ransomware.

Fig. 2: Binary File Life Cycle

B. Portable Executable (PE) Format

Fig. 3: Portable Executable (PE) File Format.

In the windows operating system, there are different types
of binary files which follow PE format. These binary files are

executable files, dynamic link libraries, system files, activex
controls, control panels, and screen savers. All of these
files have common PE structure. The portable executable file
specification is described elsewhere [19]. PE file contains
following sections as shown in Figure 3. PE file contains
headers and sections. Header of the PE file contains: DOS
header, PE header, optional header, data directories, and
sections table. Sections contain: code, imports, and data.
We designed and developed a tool to extract code segments
which contain all DLLs required to execute the PE file.
We are interested to find all such the DLLs and categorize
them according to functionality based on crypto-ransomware
components as shown in Figure 1. We used objdump [22]
tool available in Linux which takes PE file as input and
returns the corresponding assembly instructions. We leveraged
the objdump program which is known as assemblydumper.
We performed the analysis of forty-three samples of crypto-
ransomware using assemblydumper which performs the pars-
ing of the output of the objdump program and builds the
frequency table of all the assembly instructions.

C. Static Analysis

Static analysis [26] is the code analysis without running
an application. We designed and implemented the CRSTATIC
(Crypt-Ransomware STATIC) tool as shown in Figure 4
which takes the binary program as input and generates the
libraries used. These libraries are DLLs from the operating
system. We used data-mining techniques to create the associ-
ation rules of these DLLs used by ransomware. We performed
the analysis of forty-three crypto-ransomware samples out of
four hundred fifty malwares using our CRSTATIC. The results
of this analysis is shown in Section VI.

Fig. 4: Static Analysis of Ransomware to extract hidden
features (CRSTATIC).

D. Association rule mining

Association rules are generally used to find the relations
between items. Two of the most commonly used algorithms
are Apriori and FP-Growth. The Apriori algorithm scans
databases in each iteration so its slow and takes a lot of time.
The FP-Growth algorithm scans [14] databases two times
only and develops a tree by using the divide and conquer
strategy,so it is fast and effective for the static analysis of
ransomware. A list of DLLs from advanced static reverse
engineering is provided as input to the FP-Growth algorithm.
It produces a list of association rules as output. These rules
are used as one of the signatures to detect ransomware.

Association rules consists of two parts in the form of
if(antecedent) and then(consequent) and is represented in the

182



form of expression such as X −→ Y which means that
whenever X is true Y also tends to be true. These Boolean
rules are used to find a pattern to detect the ransomware.
These association rules are used to build signatures to detect
ransomware.

E. Cosine Similarity

Cosine similarity measures the similarity between two
non-zero vectors. The cosine similarity score is used in
positive space, where the score is ranged between zero and
one. Each ransomware binary is represented in vector form.
The vector is represented using Equation 1.

v = f1x1 + f2x2 + ...+ fnxn (1)

Where f represents the normalized frequency of the x instruc-
tion. We measure the similarity between normal binary as
shown in Figure 6. Likewise, we also measure the similarity
between ransomware as shown in Figure 5.

V. MALWARE SAMPLES AND EXPERIMENTS

We have implemented a prototype CRSTATIC, which
takes input as a PE binary file. The output of the CRSTATIC is
further processed by a pre-processor module before applying a
data-mining technique. CRSTATIC is implemented using C++
in a GCC compiler. We set up a test-bed for our experimental
evaluation, using the following system configuration: Intel(R)
Xenon(R) CPU X5550@2.67GHz, 6GB RAM, and 1.8 TB
disk space. Our prototype implementation CRSTATIC is eval-
uated using following configuration and the dataset mention
in below.

We collected four-hundred fifty malware samples from
different sources, such as Virus Total, virushare, and from
different research projects such as Shieldfs [12] and open
source malware repository theZoo [5].

We performed the initial scanning of the malware carried
out using RESTful API exposed by VirusTotal [27]. RESTful
API takes two parameters: apikey and resource. The apikey
is specific to the user account and resource is the hash value
of the malware. However, RESTful API allows four requests
to be made per minute. We used time module from Python
to limit the four requests per minute. The response from
VirusTotal [27] contains result after scanning the provided
resource by using various ant-virus engines. Based on these
results we have categorized crytpo-ransomware as shown in
Table II.

VI. ANALYSIS OF RESULTS

Table I shows different ransomware families based on
the following attributes: Propagation Strategy, Date Ap-
peared, Cryptographic Techniques, and Command and Con-
trol Server. These attributes are very crucial and useful to
in-place multi-layer defense strategies against ransomware
attacks. The propagation strategy is the initial phase of the
ransomware attack. It defines how it leverages a range of
possibilities including social engineering to specific vulnera-
bility present in unpatched software installed in the target host

to get access. For example, there are eight different propaga-
tion strategies as shown in the second column in Table I.
Compromised websites and email attachment are the more
frequently used propagation strategy. Propagation strategies
provide what types of measures should be implemented to
reduce the risk of the ransomware attacks which includes
security awareness training, secure coding practice, secure
software development life cycle, penetration testing etc. In
addition, incident response team must be vigilant for further
analysis of suspicious email attachments, compromised web
site visits, emails, unpatched applications etc. The third col-
umn, which is entitled date appeared, shows the year when
ransomware becomes wild. The fourth column shows the
cryptographic techniques used by the ransomware to encrypt
the target data. The cryptographic techniques used by the ran-
somware is a very crucial attribute to determine whether it is
possible to decrypt data without paying the ransom. At a very
high level, there are two approaches used by ransomware:
asymmetric and symmetric algorithms. RSA is the commonly
used asymmetric algorithm among most of the ransomware
families. Similarly, AES is the commonly used symmetric
algorithm are used in different families of ransomware which
plays a key role to determine whether data can be decrypted
without a key or not. For example, electronic code book
(ECB) mode is leaks information regarding messages [20].

TABLE II: Crypto-Ransomware Families

Crypto Ransomware
Family Name Sample Size
LOCKY 138
CRYPTOWALL 5
FILECRYPTOR 11
TELSACRYPT 47
CRYPT 2
CRYPTOLOCKER 2
CERBER 2
CTB LOCKER 1
PETYA 1
SATANA 1
WANNACRY 1

The following sections describe our approach in details.
These approaches are: Cosine Similarity Analysis of Assembly
Code, DLLs loaded in crypto-ransomware, and Function calls
specific to crypto-ransomware.

A. Cosine Similarity Analysis of Assembly Code

Our dataset contains PE files which are the binary file
formats used in the windows operating system. These PE
files contain different sections as mentioned in Section IV.
Our focus is in the code section of the PE file. We extracted
corresponding assembly code from the code sections and
calculated the frequency distribution of instructions. We have
leveraged a built-in program in Linux: objdump. There are
different types of assembly languages: Intel, ARM, and MIPS.
We are using Intel format for cosine-similarity analysis.
Figure 5 shows the similarity measure between ransomware
families. The x-axis shows the vector elements which are
assembly instructions and the y-axis shows the cosine value.

183



Fig. 5: Cosine Similarity between Ransomware Families.

Figure 6 shows the similarity measured between normal
programs. The x-axis shows the vector elements which are
assembly instructions and the y-axis shows the cosine value.

Fig. 6: Cosine Similarity between Normal Programs.

As shown in Figure 6 and Figure 5, we observe that
the similarity score for mov instruction is less than 0.1 in
the ransomware sample but more than 0.2 in normal binary.
Similarly, for other instructions we observe the unique score
between normal binary and ransomware binary.

B. DLLs loaded in Crypto-Ransomware

Multiple libraries are required to be loaded before any ran-
somware can be executed in the victim’s Operating System.
These libraries are called dynamic link libraries (DLLs) [15].
Ransomware uses a number of DLLs to provide the function-
ality such as connecting to the command and control server,
generating the key, encrypting the files and destroying the key
etc. The operating system loader is responsible to execute the
ransomware binaries and maps the address of DLLs used in
the ransomware binary to memory.

In order to extract the DLLs used by the ransomware
binary, we leverage the pe-parse [3] which extracts the
DLLs from the section header of the ransomware binary (PE

file). Multiple DLLs specific to cryptography function calls
are extracted as shown in TableIII. These DLLs are used
to represent a ransomware binary in vector representation.
Association rules based on FP-growth are applied to generate
the list of rules as shown in Table IV.

TABLE III: Function calls in DLLs used in Ransomware

Name of DLL Functions

ADVAPI32

CryptReleaseContext
CryptAcquireContextA

CryptGenRandom
CryptEncrypt

CryptGetKeyParam
CryptAcquireContextW

CryptDestroyKey
CryptCreateHash
CryptHashData

CryptDestroyHash
CryptGetHashParam
CryptReleaseContext
CryptSetKeyParam

CryptImportKey

CRYPT32
CryptQueryObject

CertFreeCertificateContext
CertFindCertificateInStore

CryptMsgGetParam
CryptDecodeObjectEx

CryptImportPublicKeyInfo
CryptBinaryToStringA
CryptStringToBinaryA
CertGetNameStringW

CertCloseStore
CertFreeCertificateContext

CRYPTNET CryptGetObjectUrl

CRYPTUI CryptUIDlgSelectCertificateFromStore

Table III shows the list of DLLs used by the crypto-
ransomware and the list of function calls used by the
corresponding DLLs. For example, DLL library ADVAPI32
has fourteen function calls which perform the encryption
operation. Similarly, CRYPT32 DLL library is used by the
ransomware to carried out the encryption function as well.

TABLE IV: Association Rule on DLLs with score=1.0

Association Rules

[ COMCTL32.DLL, SHELL32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[ SHLWAPI.DLL, OLE32.DLL, ADVAPI32.DLL, SHELL32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[ COMCTL32.DLL, ADVAPI32.DLL, SHELL32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[ SHLWAPI.DLL, OLE32.DLL, ADVAPI32.DLL, SHELL32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[ SHLWAPI.DLL, OLE32.DLL, ADVAPI32.DLL, SHELL32.DLL]⇒ [ KERNEL32.DLL]

[ GDI32.DLL, ADVAPI32.DLL, SHELL32.DLL]⇒ [ KERNEL32.DLL]

[ COMDLG32.DLL, ADVAPI32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[ COMCTL32.DLL, ADVAPI32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[MPR.DLL, ADVAPI32.DLL, SHELL32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[ VERSION.DLL, SHELL32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[ SHLWAPI.DLL, SHELL32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[ COMDLG32.DLL, SHELL32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[ OLE32.DLL, ADVAPI32.DLL, SHELL32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[ COMDLG32.DLL, ADVAPI32.DLL, SHELL32.DLL, USER32.DLL]⇒ [ KERNEL32.DLL]

[MPR.DLL, VERSION.DLL]⇒ [ ADVAPI32.DLL]

[ COMCTL32.DLL, SHELL32.DLL, KERNEL32.DLL]⇒ [ADVAPI32.DLL]

[ VERSION.DLL, KERNEL32.DLL]⇒ [ SHELL32.DLL]

[ OLE32.DLL, KERNEL32.DLL]⇒[ USER32.DLL]

[MPR.DLL, VERSION.DLL, KERNEL32.DLL]⇒ [ ADVAPI32.DLL]

[ SHLWAPI.DLL, OLE32.DLL, ADVAPI32.DLL, KERNEL32.DLL, USER32.DLL]⇒ [ SHELL32.DLL]

[MPR.DLL, ADVAPI32.DLL]⇒ [ VERSION.DLL]

[ GDI32.DLL, ADVAPI32.DLL, KERNEL32.DLL, USER32.DLL]⇒ [ OLE32.DLL]

[ OLE32.DLL, SHELL32.DLL, KERNEL32.DLL, USER32.DLL]⇒ [ ADVAPI32.DLL]

184



Table IV shows a small portion of the association rules
set we produced by applying our CRSTATIC tool. These
rule sets are used as a signature to detect the ransomware
family. In particular, the first row shows that if COM-
CTL32.DLL, SHELL32.DLL, USER32.DLL implies KER-
NEL32.DLL. Similarly, ninth row shows MPR.DLL, AD-
VAPI32.DLL, SHELL32.DLL, USER32.DLL implies again
KERNEL32.DLL which also has DLL specific to crypto-
ransomware as shown in Table III. The last row shows
OLE32.DLL, SHELL32.DLL, KERNEL32.DLL, USER32.DLL
implies ADVAPI32.DLL. If any unknown binary file matches
60 percent of these rule sets it is categorized as a ransomware
with an accuracy of 70 percent.

C. Function calls specific to Crypto-Ransomware

As shown in Table III, these are the functions used by
crypto-ransomware samples. As shown in Figure 1, crypto-
ransomware components include: encryption key generation,
encrypt files, destroy key. The CRSTATIC tool builds the
signature database using these function calls.

VII. CONCLUSION

The traditional method of generating signatures based on
the hash function of a malware is not effective for ransomware
since it can be easily bypassed. In this work, we proposed
CRSTATIC, a ransomware static analyzer which focused on
building signatures using reverse engineering, similarity score
and data mining approach based on the FP-Growth algorithm.
The signature is generated statically without executing the
malware sample. Experimental evaluation and results show
that CRSTATIC is able to detect ransomware attacks with-
out major performance overhead. Our contributions can be
summarized as follows:

• We designed CRSTATIC, an automatic static analysis
tool that leveraged the assembly instructions, PE file
format, and function calls to enhance signature for
anti-virus engine.

• CRSTATIC can detect the crypto-ransomware with
semantically similar function blocks.

• We built the signature database specific to crypto-
ransomware using the result of CRSTATIC.

REFERENCES

[1] Indicators associated with wannacry ransomware. https://www.us-cert.
gov/ncas/alerts/TA17-132A. (2017).

[2] Internet security threat report. https://www.symantec.com/content/
dam/symantec/docs/reports/istr-21-2016-en.pdf. (2016).

[3] pe-parse. https://github.com/trailofbits/pe-parse.

[4] Samsam - the evolution continues netting over $325,000
in 4 weeks. https://blog.talosintelligence.com/2018/01/
samsam-evolution-continues-netting-over.html.

[5] thezoo - project created to make the possibility of malware analysis
open. https://github.com/ytisf/theZoo.

[6] M. M. Ahmadian, H. R. Shahriari, and S. M. Ghaffarian. Connection-
monitor & connection-breaker: A novel approach for prevention and
detection of high survivable ransomwares. In Information Security
and Cryptology (ISCISC), 2015 12th International Iranian Society of
Cryptology Conference on, pages 79–84. IEEE, 2015.

[7] D. Bilar et al. Statistical structures: Fingerprinting malware for
classification and analysis. Proceedings of Black Hat Federal 2006,
2006.

[8] K. Cabaj, M. Gregorczyk, and W. Mazurczyk. Software-defined
networking-based crypto ransomware detection using http traffic char-
acteristics. arXiv preprint arXiv:1611.08294, 2016.

[9] K. Cabaj and W. Mazurczyk. Using software-defined networking
for ransomware mitigation: the case of cryptowall. IEEE Network,
30(6):14–20, 2016.

[10] R. Chong. Locky ransomware distributed via docm attachments in
latest email campaigns. FireEye (17 Aug 2016) Accessed Sep, 2016.

[11] L. Constantin. Cryptowall ransomware held over 600k computers
hostage, encrypted 5 billion files. IDG News Service, 29, 2014.

[12] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi,
S. Zanero, and F. Maggi. Shieldfs: a self-healing, ransomware-
aware filesystem. In Proceedings of the 32nd Annual Conference on
Computer Security Applications, pages 336–347. ACM, 2016.

[13] E. Eilam. Reversing: secrets of reverse engineering. John Wiley &
Sons, 2011.

[14] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. SIGMOD Rec., 29(2):1–12, May 2000.

[15] F. L. Janis, J. D. Aman, and D. R. Cox. Dynamic link libraries system
and method, Sept. 21 1993. US Patent 5,247,681.

[16] K. Jarvis. Cryptolocker ransomware, 2013. URL http://www.
secureworks. com/cyber-threat-intelligence/threats/cryptolocker-
ransomware/. R etrieved on April, 21:30–31, 2014.

[17] F. Mercaldo, V. Nardone, and A. Santone. Ransomware inside out. In
Availability, Reliability and Security (ARES), 2016 11th International
Conference on, pages 628–637. IEEE, 2016.

[18] C. Moore. Detecting ransomware with honeypot techniques. In
Cybersecurity and Cyberforensics Conference (CCC), 2016, pages 77–
81. IEEE, 2016.

[19] M. Pietrek. Inside windows-an in-depth look into the win32 portable
executable file format. MSDN magazine, 17(2), 2002.

[20] W. Roche. The advanced encryption standard, the process, its strengths
and weaknesses. University of Colorado, Denver, Spring, 2006.

[21] M. H. U. Salvi and M. R. V. Kerkar. Ransomware: A cyber extortion.
Asian Journal of Convergence in Technology, 2016.

[22] M. Santosa. Understanding elf using readelf and objdump. Linux
Forms article, pages 1–6, 2006.

[23] N. Scaife, H. Carter, P. Traynor, and K. R. Butler. Cryptolock (and
drop it): stopping ransomware attacks on user data. In Distributed
Computing Systems (ICDCS), 2016 IEEE 36th International Confer-
ence on, pages 303–312. IEEE, 2016.

[24] M. Stevanovic. Linux toolbox. In Advanced C and C++ Compiling,
pages 243–276. Springer, 2014.

[25] K. P. Subedi, D. R. Budhathoki, B. Chen, and D. Dasgupta. Rds3:
Ransomware defense strategy by using stealthily spare space. In
Computational Intelligence (SSCI), 2017 IEEE Symposium Series on,
pages 1–8. IEEE, 2017.

[26] M. Sutton, A. Greene, and P. Amini. Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007.

[27] V. Total. Virustotal-free online virus, malware and url scanner. Online:
https://www. virustotal. com/en, 2012.

[28] J. H. Yang and Y. Ryu. Design and development of a command-
line tool for portable executable file analysis and malware detection
in iot devices. International Journal of Security and Its Applications,
9(8):127–136, 2015.

185


