
S.P.O.O.F Net: Syntactic Patterns for identification of Ominous Online
Factors

Vysakh S Mohan, Vinayakumar R, Soman K P1 and Prabaharan Poornachandran2

Abstract— With more emphasis on internet as a primary
mechanism for information access and communication, it is
highly important that the platform stays safe and secure for
anyone who uses it. Online scams and cybercrimes are becoming
a common threat to the technology and systems that help
mitigate these issues are in high demand. Businesses all over the
world invest heavily to stay secure in the cyberspace and rely on
security experts in defending their business from online threats.
The immense scale of the internet and the dynamicity of the
threat it holds forces the adoption of automated threat detection
systems. Several cybersecurity use cases exist, but the two use
cases discussed here are DGA detection and Malicious URL
detection. This paper addresses the drawbacks of previous rule-
based and machine learning based detection methods. Here, em-
bedding concepts from NLP is incorporated into cybersecurity
use cases to propose a new in house model christened S.P.O.O.F
Net, which is a combination of a Convolutional Neural Network
and Long Short Term Memory Network. The proposed model
is benchmarked with machine learning algorithm incorporating
bi-gram feature engineering techniques and also a conventional
CNN with character level embedding (same as the one used for
S.P.O.O.F Net). It was observed that S.P.O.O.F Net gave better
performance over the aforementioned methods with accuracy
scores of 98.3% for DGA detections and 99% for malicious URL
detection. This work also aims to demonstrate the possibilities
of incorporating NLP concepts to cybersecurity use cases and
provide future researches a new thinking curve to develop
systems in this domain.

I. INTRODUCTION

In current scenario there is no denying the fact that people

rely on internet as their primary means for communication

and data sharing. The internet era is booming and more and

more poeple migrate to the cyber world for its vast pool of

information. Social networking, E-commerce etc contribute

to the traffic experienced in the cyber network. With such

advanced technology comes its own issues. Every year major

tech companies fall victims to large scale cyber attacks,

which also puts their customers at risk of losing personal

information. Often times these attacks could deem the user

losing both his identity and money just because the system

was compromised. Such situations should be taken care

of seriously and a secure environment for data transaction

should be offered to any end user. Lack of awareness among

the users can also escalate the situation.

1Vysakh S Mohan, Vinaykumar R and Soman K P is with Centre for
Computational Engineering and Networking (CEN), Amrita School of
Engineering, Coimbatore.
vsmo92@gmail.com,vinayakumarr77@gmail.com,
kp soman@amrita.edu

2Prabaharan Poornachandran is with Center for Cyber Security Systems
and Networks, Amrita School of Engineering, Amritapuri, Amrita Vishwa
Vidyapeetham, India.

Cybercrimes are on the rise, with recent most globally

impacted one being the ransomeware attack. All these cy-

bercrimes, both big and small, costs businesses time, money

and resources. These attackers could have either a targeted

attack strategy or a more generic one. Usual attack strategies

involve luring of victims to malicious web-pages, introducing

vulnerabilities on victim’s device, identity theft, denial of

service attacks, complete infestation of the user’s system

etc. This puts the user at risk of losing data and often find

themselves tricked or betrayed by these illegal infringement

to privacy. This could raise concerns about the security of an

individual, which also could deem the technology unsafe for

secure transactions. Careful and accurate detection of threats

like a website being malignant or benign is one way to avoid

users falling victims to such attacks. As easy as it sounds, this

task has its own challenges and difficulties. Impersonation

or duplication of such attacks could make the detection

quite hard to perform, deeming the system inefficient. The

two cases of baleful activities discussed here are malicious

Uniform Resource Locators (URL) and Domain Generation

Algorithms.

A subset of Uniform Resource Identifier (URI), Uniform

Resource Locator (URL), helps the identification of location

and fetching of resources from the network of computers.

An unsuspecting user could end up in a malicious website

that he/she was introduced through an email or a message

because they may not be aware of the nature of the URL

presented to them. An attacker generally uses compromised

uniform resource locator (URL) to stray the users to mali-

cious websites[1]. These URLs are dispensed through social

media platforms or via emails. Authors of [2] claim that

one third of all websites are malignant, which makes use of

malicious URLs to plot cyber crimes. One means of doing

this is by making use of rogue websites. The attacker through

these website displays unsought information or content in the

form of spam, phishing, malware etc to commit fraudulent

financial thefts and identity theft of the unknowing user who

happens to fall victim to the attack. Diversity of content on

the internet is one aspect the attacker uses in his favour to

hide these malignant URLs and present it to the unsuspecting

user. All these could be avoided, if there is a strategy to

detect, identify and isolate these types of malicious URLs

and save the user from significant damages.

Existing commercial systems are usually based on ei-

ther blacklisting, regular expression or signature matching

algorithms[3]. These systems may not quickly detect existing

malicious URLs and may not scale to entirely new ones,

unless subjected to rigorous update schedules. Slow detection

258

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Vysakh S Mohan. Under license to IEEE.
DOI 10.1109/SPW.2018.00041



times could deem the system redundant as this helps the

attacker to loot the user of valuable data by the time

the system flags any potential threats. Both aforementioned

systems require constant monitoring and updation from a

domain expert.

The Domain Name System (or Server or Service) (DNS) is

a major element in the operation of internet. Its known for its

many key characteristics like its distributed nature, scalabil-

ity, reliability, it is dynamic and its a database that is globally

available and helps in mapping domain name to IP address

and vice-versa. It is ironic that these characteristics turn out

to be the ’Achilles heel’ of this technology. Cybercriminals

exploit the vulnerabilities in these characteristics to host ma-

licious content or aid in managing phishing websites for theft

of user data[4]. Recent times have seen crucial changes in the

way these attacks are served. Botnet[5] deployment is one

way this is carried out. Distributed denial of service (DDoS)

attacks, large-scale spam campaign, identity theft, sniffing

traffic, key logging, malware distributions etc are served

via these botnets. Most widely used defence mechanism

by enterprises or businesses are blacklisting and sinkholing,

which shuts the communication link between the coomand

and control server (C2C) and bot master[6],[7]. Here too,

the requirement to constantly update and maintain the sys-

tems manually makes it daunting and cumbersome. Constant

improvements to botnets and persistent advancements in

evasion strategies means any poorly maintained defenses

could be deemed redundant quite quickly. A common attack

strategy employed by an attacker to evade blacklisting is

DNS agility or fluxing methods, which in most cases may be

an IP flux or domain flux service[8]. The case discussed here

is the domain flux service. Domain generation algorithms

are used by domain flux services to generate domain names

on a massive scale and communicate to their CC server

in a trial and error fashion. Blacklisting or sinkholing all

domain names prior to their deployment is a way to tackle

such attacks. Sinkholing involves reverse engineering the

malware to detect the seed. The seed may then be used

to hack the botnets by registering incoming domain names

as a spoof C2C server. Any malicious author needs to re-

establish the botnets with an updated seed to reinstate the

systems functionality. As the dynamicity of the generated

domains increases, it also escalates the difficulty to deploy

the aforementioned rule based methods, as it simply fails to

identify newer malicious domain names. These methods are

only good when there is sound knowledge of the algorithm

and the seed used by botnet attack.

Both URL and DGA detection fails when such rule-based

mechanisms are employed. This is solved to an extent by

employing machine learning based classifiers to classify

the incoming URL or domain names as being malignant

or benign. One common machine learning approach is the

deployment of a DGA/URL classifier that resides within

the network to alert the administrator upon detection of

a DGA generated domain name or a malicious URL. In

a highly dynamic environment these methods simply fails.

This could be attributed to the way these machine learning

classifiers work. Explicit feature engineering is a primary

requirement for these classifiers. Common feature extraction

techniques include entropy, string length, alpha numeric

characters, vowel to consonant ratio etc. Explicit knowledge

of features and constant maintenance and update of these

systems are required. Feature generation and representation

engineering is often tedious, also finding the best accuracy of

the model using chosen representation is quite cumbersome.

Requirement for a large labeled training URL corpus and the

need for continual analysis of the system to cater to dynamic

changes in patterns of URLs, works against the performance

and reliability of these classifiers.

Deep learning is a subdivision of machine learning and

is a widely used method to reduce the expense of training

procedure, while handling raw inputs instead of manually

generated feature representations. The deep learning strate-

gies discussed here are extended from [9] and [10]. In this

paper we suggest S.P.O.O.F-Net, which uses a combination

of Long Short-term Memory (LSTM) and a Convolutional

Neural Network (CNN) for the classifier pipeline. The ad-

vantage of using deep learning algorithm is that it requires no

feature engineering to be done prior to training, as it takes in

raw domain names or URLs as input and the non-linearity in

the hidden layer helps it to learn highly complex and abstract

features.

The structure of the paper is discussed as follows. Section

II discusses about the background knowledge for character

level encoding of domain names, LSTM and CNN, Section

III details the proposed methods, the dataset description is

given in Section IV, Section V details the experiments and

results and finally Section VI forms the conclusion.

II. BACKGROUND

This section explains about the various deep learning

algorithms used and gives an abstract level explanation about

the math that goes behind it. Also discussed here is the way

in which the URLs are transformed into sequential inputs.

A. Character level encoding

URL/Domain name encoding involves character level

representation of URLs/domain names via preprocessing

and tokenization. Preprocessing converts the characters in

a URL/domain name, to lowercase and provides a default

key allocation of 0 for unknown characters. URLs and

domain names are tokenized using character level tokenize,

where they are sliced into character tokens. Non-sequential

and sequential representations are commonly used for URL

and domain names. Here, we consider both representations

for a comparative analysis of the results they offer. For

non-sequential representation, we use bi-gram representation

and for sequential we use dictionary based representation.

Non-sequential representations do not preserve the spatial

correlation among the characters, whereas in sequential rep-

resentation, the dictionary creation is done through assigning

unique key for each character in the URL or domain name

corpus. Now based on the frequency of occurrence, the

characters are placed in ascending order in a dictionary. Each

259



character in the domain name and URL is assigned an index

of the dictionary. These character vectors are made to be of

same length by padding zeroes to shorter ones and discarding

vectors that exceeds some fixed length.

B. Logistic Regression

It is considered as one of the most widely used machine

learning algorithm for both classification and prediction. A

more generic description of logistic regression is that its

a statistical tool to analyze data when there are one or

more independent variables determining the output. Logistic

regression is a special case of linear regression, where in,

the logistic regression predicts the probability of outcome

by fitting the data to a logistic function given as,

σ (z) =
1

1 + e−z
(1)

C. Convolutional Neural Network (CNN)

CNNs are widely used neural net for computer vision

tasks. It has been used with character level embeddings for

text classification tasks[11]. CNN is efficient and faster for

training and predictive analysis on sequential data[12]. Perks

of using this method is that they do not require syntactic

knowledge of the language. CNN architectures typically

comprise an input layer, a couple of convolutional layers,

maxpooling layers and fully connected layers with some

non-linear activation function. In text based applications 1-

D convolutions, 1-D maxpoolings and fully connected layers

are used.

Consider a URL or domain name D = {c1, c2, ...cl},
where c depicts the characters and l is the length of URL

or domain name. An embedding matrix V D ∈ Rdx1 is used

for character level representation of a URL or domain name,

where d is the dimensionality of the character embedding.

A 1-D convolution layer includes a filter operation H ∈
Rdx1, which is operated on a domain name or URL character

to form a feature map fm. Mathematical formulation of this

for a window of characters V [∗, j : j+c] is as shown below,

fD
m [j] = f(Σ(V [∗, j : j + c]�)) (2)

where b ∈ R is the bias term, f is the activation function,

usually a ReLU or tanh, � is the element-wise multiplication

between two matrices. Also the windows of characters in the

domain name or URL D = {c1, c2, ...cl}, is subjected to a

convolutional filter operation.

The resultant feature map is subjected to 1-D pooling

operation to obtain more significant features. Pooling is

simply a down-sampling operation to reduce the dimension

of the feature map. Finally we have a fully-connected layer

and a classifier layer which has its activation function as a

sigmoid.

D. Long-Short Term Memory

LSTMs are special type of Reccurent Neural Networks

(RNN), which introduced the concept of a memory cell. The

function of these memory blocks are to remember previous

information about the entity its learning. Blocks can decide

how much information it needs to retain on the basis of gates

within them. These memory blocks contain a memory cell

and a couple of gates. A memory cell is like a container

and has a constant error carousel (CEC) component. While

the cell do not receive any input, the CEC has a fixed value

1. An LSTM contains an input gate (ig), forget gate (fg),

output gate (og), memory cell m and a hidden state vector

(hi) at each time step t. The output of the aforementioned

gates are between 0 and 1. The transition function for each

LSTM unit is written below,

igt = σ(wigxt + Pighit−1 +Qigmt−1 + big) (3)

fgt = σ(wfgxt + Pfghit−1 +Qfgmt−1 + bfg) (4)

ogt = σ(wogxt + Poghit−1 +Qogmt−1 + bog) (5)

m1t = tanh(wmxt + Pmhit−1 + bm) (6)

mt = fgit �mt−1 + igt �m1 (7)

hit = ogt � tanh(mt) (8)

where xt is the input at time step t, σ is the sigmoid non-

linear activation function and � denotes the element wise

multiplication.

III. PROPOSED METHOD

This work proposes S.P.O.O.F Net, which stands for Syn-

tactic Patterns for identification of Ominous Online Factors.

It’s a combination of a CNN and an LSTM net. Also the

proposed architecture is pitched against a normal 1-D CNN

and logistic regression to analyze its performance and advan-

tages. Basic layout can be broadly broken down into three:

a character embedding (both for URL and domain name),

feature extraction phase and a binary classifier. Following

sections details the structure of the suggested pipeline and

Fig. 1 shows its overall layout.

Fig. 1. Proposed architecture of S.P.O.O.F Net

260



A. Embedding

The train and test corpus for both URL and DGA are

subject to some pre-processing steps. Uppercase characters

in the URLs and domain names are converted to lowercase

value as it is computationally costly to make neural net learn

features to make itself case sensitive. Vector representations

of the corpora are obtained using a dictionary. Followed by

this the vectors are transformed to be of same length. This

returns the train and test data that can be subjected to em-

bedding. The Keras deep learning library provides powerful

embedding functionality, which help obtain character level

embedding to serve as input to the convolutional layer of

S.P.O.O.F Net. One advantage of using Keras embedding is

that it adjusts the embedding style it follows as the training

progresses, which ensures optimal embedding approach for

given data. The 128 dimensional vectors obtained from

these embeddings is visualised in a 2-D linear projection

through PCA with t-SNE and this is displayed in the Fig.

2. It is evident from the figure that characters that share

similar features are clustered together, which means that the

model has captured the contexual and semantic similarity of

characters that have mutually dependent characteristics.

B. Feature Learning

Feature learning in neural nets refer to the process of the

net learning optimal weight parameters to make sense of

the data or in other words its the technique through which

the net automatically discovers representations needed for

understanding the raw input data. Here, the feature learning

is handled by a 1-D convolutional neural network and an

LSTM. The various elements in the feature learning pipeline

is discussed below.

1) Convolutional Neural Network and Long Short Term
Memory Network: CNNs are well known for their ability

to learn spatial attribute of the given input data. Here, this

quality of CNN is exploited to learn spatial co-relation

among characters in the input data. A 1-D CNN is used,

which incorporates within it multiple 1-D convolutional

layers. Several filter numbers were tried out, like 8, 16, 32,

64, 128 and 256 out of which 128 and 256 filters gave the

best result and were almost comparable, so 128 was chosen

to reduce computational complexity. Each filter is made to

Fig. 2. Embedded character vectors learned by CNN-LSTM binary
classifier for URL (left) and DGA (right) is represented using 2-dimensional
linear projection (PCA) with t-SNE.

slide over the character embedding vector sequence to output

a continuous value at each step. This gives representation of,

the extent to which the pattern has matched in the character

embedding sub-sequence. A pool length of 2 is used here and

output is normalized. Regularization of the output is done by

using dropout of 0.01. These steps ensure the model over-

fitting is less likely and makes the training process a whole

lot faster. Output of the former operations is supplied as input

to the LSTM. LSTM in the proposed architecture uses 50

memory blocks. Resulting output of the LSTM is passed to

the classifier layers.

C. Classification
A binary classifier is intended where it classifies any

incoming domain name or URL as malignant or benign.

Various layers of the classification phase is detailed below.
1) Fully-connected layer: Features obtained from the

previous layers are made to pass to the fully-connected layer.

This layer is a cheap way of learning the deep features

learned by the deep layers. A distinguishing characteristics

of fully-connected layers are the connections it has to all the

neurons in its preceding layer. The fully-connected layer is

followed by the classifier.
2) Sigmoid classifier: The problem in hand demands for

a binary classifier and this leads to the choice of sigmoid as

the activation function for the final output layer. It gives a

confidence score of 1 for malignant and 0 for benign input.

Binary crossentropy is the loss function used for optimizing

the classifier output and it is shown below,

loss(p, e) = − 1

N

N∑

i=1

[eilog(pi) + (1− ei)log(1− pi)] (9)

where p is the vector of predicted labels and e is the truth

or expected label vector.

IV. DATASET DESCRIPTION

The dataset used for this work is proprietorially devel-

oped by crawling several websites, the details of which are

discussed below.

A. Domain Generation Algorithm (DGA) Dataset
Domain generation algorithms (DGA) is a prominent

method for malwares to build efficient attack strategies.

This is achieved through DGAs ability to pseudo-randomly

generate millions of domain names to connect to C2C

servers on a periodic basis for information access and mal-

ware infiltration. For this work, a legitimate list of benign

domain names were assembled by using Alexa[13] and

OpenDNS[13] and malicious domain names are generated

using publically accessible algorithm[14] and OSNIT DGA

feeds[15]. Split of DGA data is shown in Table I.

B. Universal Resource Locator (URL) Dataset
Crawling for legitimate URLs were done from sources

such as Alexa.com and DMOZ directory and malicious

URLs were sourced from malwareurl.com, Phishtank.com,

OpenPhish.org, malwaredomainlist.com and malwaredo-

mains.com. Splits for URL data is shown in Table I.

261



TABLE I

STATISTICS OF DGA AND URL DATASET

Use case Training Testing
DGA 232511 125012

URL 160101 90101

V. EXPERIMENTS AND RESULTS

The work proposes a hybrid neural net architecture which

is a combination of a CNN and an LSTM, christened

S.P.O.O.F Net. TensorFlow[16] deep learning library was

considered as the software framework acting as the backend

for the Keras API. To speed up the gradient computations, the

model was trained on a single NVIDIA GK110BGL Tesla

k40 GPU. This section explains the various details regarding

the model parameters and experimental methods followed.

A. S.P.O.O.F Net Architecture

An overview of the proposed model is discussed below,

where we detail the embedding strategy, the feature extrac-

tion mechanism and finally the classification.

1) Character Embedding: The Keras API provides propri-

etory character level embedding provisions built-in to itself.

The advantage of using this method is that it tunes the

embedding layer while training to obtain the best possible

character embedding for the domain name and URL corpora.

Train matrix for the DGA dataset has a size of 232511x37,

while the test matrix is of size 125012x37, where the

column size is the length of the domain name in the corpus.

Similarly the URL dataset is split into a train matrix of

size of 160101x1235 and test matrix of size 90101x1235,

where column size is the length of the URL. These matrices

are fed to the embedding layer of size 128, which maps

every individual character to a 128 length vector. Embedding

size is a hyperparameter and this embedding layer works

in tandem with other deep layers of the S.P.O.O.F Net

attempting to group similar characters into separate clusters.

This embedding style preserves the semantic and contextual

similarity in the structure of characters in URL or domain

names.

2) CNN-LSTM Layers: CNN-LSTM configuration in the

proposed pipeline handles the feature extraction part. The

advantage of such a configuration is its capability to learn

abstract features from dynamic input data to provide highly

rich feature representations. Also, this ensures that the feature

engineering strategy remains secure against any malicious

adversaries, thus making the system defenses reliable com-

pared to its competitions. For DGA detection architecture,

it starts with a 1-D convolution layer of size 1x35 with a

depth of 128, a batch normalization layer followed by a

maxpooling that returns vectors of size 1x8 with a depth

of 128 which is succeeded by a layer applying a dropout of

0.01. The output vector of this CNN is fed to an LSTM with

50 memory blocks , which is followed by a fully-connected

layer and then the final classifier. The URL detection archi-

tecture differs from the aforementioned configuration only

in the CNN architecture. Here the 1-D convolution layer

has a size of 1x1233 with 128 depth layers followed by

batch normalization and a maxpooling that returns 1x308

dimensional vectors which is succeeded by the application

of a dropout of 0.01. Rest of the configuration is similar to

the DGA detection pipeline. The LSTM output is fed to a

binary classifier that classifies the domain name or URL as

malignant or benign. The proposed architecture gave really

good performance compared to its competitors. It managed

98.3% accuracy for DGA detection and 99% for malicious

URL detection. S.P.O.O.F Net also outperformed its peers in

the benchmarks performed, where it was pitched against a

logistic regression using bi-gram feature engineering and a

conventional 1-D CNN.

B. Evaluation of Results

The performance of trained model is evaluated on the test

split (for both DGA and URL dataset) described in Table

II. Various other hybrid configurations were tested during

the course of this work. Following are some of the model

architectures that were tried out,

• Stacked convolutional 1-D layer followed by

RNN/GRU/IRNN/CWRNN layer in hybrid.

• Stacked convolutional 1-D layer to capture non-linear

convolutional activations architecture.

• Stacked RNN/LSTM/GRU/IRNN/CWRNN layers.

Out of this the CNN-LSTM hybrid performed best. Compar-

ison of two operating characteristics of the model like the

true positive and false positive rate across varying threshold

in the range [0.0 - 1.0] is demonstrated in the form of an

ROC curve, which can be found in Fig. 3. This metric is not

associated with the amount of malicious and benign samples

in the corpus. Details of performance scores obtained for

logistic regression, CNN and S.P.O.O.F Net are shown in Ta-

ble II. Deep learning models have outperformed the bi-gram

based machine learning algorithms, which means that the

embedding with deep layers can be used to obtain robust and

relevant features which makes it a good feature extraction

strategy. The runtime for S.P.O.O.F Net was promising for

both DGA and URL detection. It managed 41.6 seconds for

DGA and 35.57 seconds for URL detection on the test split.

Good performance was delivered by this hybrid framework,

giving accuracy of 98.3% for DGA detection and 99% for

malicious URL detection. The S.P.O.O.F Net is designed to

Fig. 3. ROC Curves for DGA (left) and URL detection (right).

262



TABLE II

PERFORMANCE SCORES FOR VARIOUS MODELS

Algorithm Accuracy Precision Recall F-score
DGA

CNN 0.956 0.965 0.985 0.975
CNN-LSTM 0.983 0.985 0.995 0.990

bigram-logistic regression 0.915 0.923 0.985 0.953
URL

CNN 0.982 0.991 0.974 0.982
CNN-LSTM 0.990 0.985 0.995 0.990

bigram-logistic regression 0.976 0.982 0.969 0.976

deliver a scalable platform to serve near real-time situational

awareness to the user by safeguarding him/her from online

phishing attacks, malwares etc. It is capable of providing

early warning signals well before a large scale attack or

malware propogation happens. The proposed framework can

analyze and correlate DNS information at multiple Tier-1

Internet Service Provider scale as well as, it can be deployed

on a consumer grade server to provide analysis on more than

2 million events per second at near near real-time. With more

powerful resources, the performance of the model can be

enhanced exponentially. It is this scalability and real-time

performance that sets the model apart from its peers.

VI. CONCLUSION

This paper proposes S.P.O.O.F Net (Syntactic Patterns for
identification of Ominous Online Factors), a CNN-LSTM

hybrid to detect and classify malicious domain names as well

as malignant URLs. The proposed architecture was found to

outperform existing threat detection strategies like blacklist-

ing, sinkholing and machine learning based classifiers for

two cybersecurity use cases, namely DGA detections and

malicious URL detection. S.P.O.O.F Net overcomes draw-

backs of the aforementioned methods, like the requirement

of a domain level expert for constant maintenance of the

database the classifier is trained on, because the threats are

ever changing. Also the knowledge of the feature engineering

strategy employed by the classifier lets the attacker bypass

the system’s defenses. Dynamic generation of domain names

makes these classifiers redundant in real life. Deep learning

algorithms are well known for their abstract feature learning

capabilities and can adapt well to the dynamic nature of

the inputs. They can obtain optimal feature representations

themselves and they are often considered as a black-box
when it comes to their feature engineering strategies, which

makes them secure against malicious adversaries who in-

tend to circumvent their detection mechanism. The research

also benchmarked the proposed architecture against classic

machine learning algorithm (logistic regression with bi-

gram feature engineering) and a conventional deep learn-

ing method employing a 1-D CNN with Keras character

level embedding strategy. S.P.O.O.F Net outperformed its

competitors in the benchmarking, where it returned detec-

tion accuracies of 98.3% for DGA detections and 99% for

malicious URL detection. The proposed hybrid architecture

proved a better performer than conventional deep learning

algorithms and machine learning classifiers for both use

cases considered. Logistic regression with bi-gram feature

engineering managed a score of 91.5% for DGA detection

and 97.6% in URL detection whereas the CNN managed

a score of 95.6% and 98.2% for DGA detection and URL

detection respectively. The computational bottleneck with the

available hardware restricted this work to smaller strings and

less complex architectures, but with more powerful hardware,

more complex architectures can be tried out for other use

cases like, spam detection, log analysis etc. This work tries

to demonstrate the relevance of incorporating concepts of

natural language processing towards cybersecurity use cases

and provide researches with a new direction for clubbing

concepts from multiple domains toward deep learning based

applications in cybersecurity.

REFERENCES

[1] J. Hong, “The state of phishing attacks,” Communications of the ACM,
vol. 55, no. 1, pp. 74–81, 2012.

[2] B. Liang, J. Huang, F. Liu, D. Wang, D. Dong, and Z. Liang,
“Malicious web pages detection based on abnormal visibility recogni-
tion,” in E-Business and Information System Security, 2009. EBISS’09.
International Conference on. IEEE, 2009, pp. 1–5.

[3] D. Sahoo, C. Liu, and S. C. Hoi, “Malicious url detection using
machine learning: A survey,” arXiv preprint arXiv:1701.07179, 2017.

[4] Y. He, Z. Zhong, S. Krasser, and Y. Tang, “Mining dns for malicious
domain registrations,” in Collaborative Computing: Networking, Ap-
plications and Worksharing (CollaborateCom), 2010 6th International
Conference on. IEEE, 2010, pp. 1–6.

[5] M. Feily, A. Shahrestani, and S. Ramadass, “A survey of botnet
and botnet detection,” in Emerging Security Information, Systems and
Technologies, 2009. SECURWARE’09. Third International Conference
on. IEEE, 2009, pp. 268–273.

[6] M. Kührer, C. Rossow, and T. Holz, “Paint it black: Evaluating the
effectiveness of malware blacklists,” in International Workshop on
Recent Advances in Intrusion Detection. Springer, 2014, pp. 1–21.

[7] B. Stone-Gross, M. Cova, B. Gilbert, R. Kemmerer, C. Kruegel, and
G. Vigna, “Analysis of a botnet takeover,” IEEE Security & Privacy,
vol. 9, no. 1, pp. 64–72, 2011.

[8] G. Ollmann, “Botnet communication topologies,” Retrieved Septem-
ber, vol. 30, p. 2009, 2009.

[9] R. Vinayakumar, P. Poornachandran, and Soman.K.P, Scalable Frame-
work for Cyber Threat Situational Awareness based on Domain Name
Systems Data Analysis. Springer (In Press), 2017.

[10] R. Vinayakumar, Soman.K.P, and P. Poornachandran, “Evaluating deep
learning approaches to characterize, signalize and classify malicious
urls,” in Journal of Intelligent Fuzzy Systems (In Press), 2017.

[11] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[12] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. v. d. Oord, A. Graves,
and K. Kavukcuoglu, “Neural machine translation in linear time,”
arXiv preprint arXiv:1610.10099, 2016.

[13] “Does alexa have a list of its top-ranked websites,” available
at https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-
have-a-list-of-its-top-ranked-websites, Accessed: 2017-10-02.

[14] “Github repo of publically accesible algorithms,” available at
https://github.com/baderj/domain generation algorithms Accessed:
2017-10-28.

[15] “Bambenek consulting - master feeds,” available at
http://osint.bambenekconsulting.com/feeds, Accessed: 2017-10-06.

[16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

VII. ACKNOWLEDGMENT

This research was supported in part by Paramount Com-

puter Systems. We are also grateful to NVIDIA India, for

the GPU hardware support and to Computational Engineer-

ing and Networking (CEN) department for encouraging the

research.

263


