
WACA: Wearable-Assisted Continuous Authentication

Abbas Acar∗, Hidayet Aksu∗, A. Selcuk Uluagac∗, and Kemal Akkaya†
∗Cyber-Physical Systems Security Lab (CSL)

†Advanced Wireless and Security Lab

Department of Electrical and Computer Engineering

Florida International University

{aacar001,haksu,suluagac,kakkaya}@fiu.edu

Abstract—One-time login process in conventional authentica-
tion systems does not guarantee that the identified user is the
actual user throughout the session. However, it is necessary
to re-verify the user identity periodically throughout a login
session, which is lacking in existing one-time login systems. In
this paper, we introduce a usable and reliable Wearable-Assisted
Continuous Authentication (WACA), which relies on the sensor-
based keystroke dynamics and the authentication data is acquired
through the built-in sensors of a wearable (e.g., smartwatch)
while the user is typing. The acquired data is periodically
and transparently compared with the registered profile of the
initially logged-in user with one-way classifiers. With this, WACA
continuously ensures that the current user is the user who logged-
in initially. We implemented the WACA framework and evaluated
its performance on real devices with real users. The empirical
evaluation of WACA reveals that WACA is feasible and its error
rate is as low as 1% with 30 seconds of processing time and
2 − 3% for 20 seconds. The computational overhead is minimal.
Furthermore, WACA is capable of identifying insider threats with
very high accuracy (99.2%).

Keywords—continuous authentication, wearables, biometrics,
keystroke dynamics, typing

I. INTRODUCTION

An authentication mechanism, which re-verifies the user
periodically without breaking the continuity of the session,
is vital [1]. For example, users may share their passwords
with family members, friends, colleagues [2], or an already-
authenticated user may walk away without locking his/her
computing platform (e.g., laptop) for a short time or may
intentionally hand it to a non-authenticated co-worker trusting
that s/he will not perpetrate anything nonsensical or malicious
or a malicious former employee or disgruntled worker may
want to use his/her former privileges. In all these cases, as
long as the original login session is actively used, there is no
mechanism to verify that the initial authenticated user is still
the user in control of the computing terminal.

Continuous Authentication (CA)1 is a good mechanism to
re-verify a user identity periodically throughout a login session.
However, none of the existing methods is deployed in real-life
applications since they are either not reliable or not usable. In
the literature, a number of works have been proposed for the
use of biometrics in continuous user authentication [3], [4], [5].
However, one of the desired features in the continuous authenti-
cation is non-intrusiveness [6]. Physiological characteristics like
iris pattern or fingerprint are not applicable in this manner since
they can not be extracted seamlessly. More plausible works for
CA would be behavioral characteristics [7], [8], [9] like typing
rhythm, gait as they can be collected without interrupting the
user. However, behavioral biometrics may suffer from high
error rates due to their variability.

1CA is also sometimes called Active or Implicit Authentication in the
literature.

Among all behavioral biometrics, the most promising results
are proposed using keystroke dynamics [10], [11]. However,
in a recent work [12], the reliability of classical keystroke
dynamics is analyzed and an interface was designed to help
an attacker so that the attacker can mimic the typing rhythm
of a legitimate user by using the feedback provided by the
interface. Indeed the usability and reliability of CA systems
can be increased by exploiting off-the-shelf wearable devices.
The sensors of these devices could play a key role to increase
the usability in such a security context as well [13].

In this work, we introduce a Wearable-Assisted Continuous
Authentication framework called WACA, where a wearable
device (e.g., smartwatch) is used to authenticate a computer
user continuously utilizing the motion sensors of the smartwatch.
WACA uses sensor-based keystroke dynamics, where the typing
rhythm of the user is captured by the motion sensors of the
smartwatch worn by the user. In essence, keystroke dynamics
is one of the behavioral biometrics that characterizes the users
according to their typing pattern. Most conventional keystroke-
based authentication schemes [14] have used dwell-time and
flight-time as unique features of the users. These features are
directly obtained by logging the timing between successive
keystrokes. However, in WACA, the feature set is richer and
more flexible since 6-axes motion sensor data can provide not
only timing information, but also the key-pressing pressure,
hand rotation, and hand displacement, etc. Also, instead of using
the magnitude of each sensor, we used each axis data to create
the different feature to increase its security against imitation
attacks. Our feature set consists of 14 different sensory features
from both time and frequency domains. These features are
applied to 6-axes motion sensor data, obtaining 84 features in
total. Finally, different distance measures are used to compare
the registered and the unknown profile of the user as it was
shown that they performed well in similar contexts [15], [16].
Also, in another work [17], users are classified according to the
sequence of interactions (e.g., typing, scrolling), where the user
wears a bracelet with motion sensors and radio. However, that
work [17] has been shown as insecure in another work [18].
As explained, our work differs from other works in several
ways to tackle those flaws and strengthen our design.

Contributions: The main contributions of this work are
summarized as follows:

• We propose a sensor-based wearable-assisted continu-
ous authentication framework for computing platforms,
terminals (e.g., laptops, computers) with a smartwatch.
We believe that this work has practical and far-reaching
implications for the future of the usable authentication
field.

• We propose a new variant of keystroke dynamics, called
sensor-based keystroke dynamics. We show that sensor-
based keystroke dynamics can be uniquely utilized

264

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Abbas Acar. Under license to IEEE.
DOI 10.1109/SPW.2018.00042



to authenticate and identify the users with extensive
evaluation.

• We tested the performance and efficiency of WACA
with real users. We conducted an extensive evaluation
of the proposed method using a rich set of distance mea-
suring techniques and machine learning (ML). While
we used the distance measures for the authentication
experiments, ML is used for the insider identification
experiments.

Organization: The reminder of this paper is structured as
follows: We introduce our system model in Section II. Then,
the overall architecture of WACA is detailed in Section III.
Section IV presents the performance, efficiency, and robustness
evaluation of the WACA framework. Finally, in Section V, we
conclude the paper.

II. ASSUMPTIONS AND ADVERSARY MODEL

In this section, we explain our assumptions and the adversary
model.

Assumptions: For WACA, the following assumptions are
considered:

• We assume that the user wears a smartwatch, which is
equipped with motion sensors and either Bluetooth or
WiFi. We also assume that an app to collect the motion
data is already installed on the smartwatch and it is
paired with the computer that will be authenticated.
For our work, we built a custom Android Wear app to
collect and process the sensor data.

• We assume that by pairing devices, a secure com-
munication channel is already established between
the computer and smartwatch as well as between the
computer and the remote or local authentication server.
This secure communication channel should keep the
sensor data secure in both transition and at rest.

• It is assumed that the system has a first authentication
factor. The first factor could be one of the password-,
token-, or biometric-based systems.

Adversary Model: In this paper, the primarily considered
adversary model is an attacker who somehow bypassed the first
factor (e.g., password, token) of the authentication system and
it has a physical access to the computing terminal. The attacker
is likely to be an insider or co-worker, but it can also be an
outsider, just passing by the victim’s computer. Attacker’s goals
can include, but not limited to, trying to get some important
information from the victim’s computer, taking action on behalf
of the victim, or trying to get access to the assets that s/he does
not have permission (i.e., privilege abuse). More specifically, we
consider the following attack scenarios by considering WACA
is deployed in a real world system:

• Attack Scenario 1: The victim is one of the employers
and forgets to lock his computer and an outsider (e.g.,
a mail courier) who is just passing through the office
tries to get access to the victim’s computer. In this
scenario, if the attacker is not aware of WACA, s/he
will attempt to use the victim’s computer. If the attacker
is aware of WACA, s/he will first look for the victim’s
smartwatch and then try to keep the system logged in.

• Attack Scenario 2: We consider the attacker can also
be a malicious insider and thereby the attacker also
has a registered smartwatch, but its typing profile
is registered together with its own username. This

Verify

Enroll

Preprocessing
Feature 

Extraction

User Profiling

Authentication 
Server

Decision Module

Correct Match

Initial Login

No Match

Update

Typing 
Notification Notify

Query

 Reply

1

Mismatch

Initial Login & 
Insider Detection

2

3

4

5

6

7

8

9

11

10

Fig. 1: WACA framework architecture and key components

type of attacker tries to get access to the system’s
assets that s/he does not have permission (i.e., privilege
abuse). In this scenario, the attacker watches its victim
(e.g., supervisor) for a suitable timing that its victim
leaves the computer unlocked for some time to go to
lunch or to get coffee etc. (aka lunchtime attack [19]).
The attacker can either try to bypass the system via
providing data from his smartwatch or can try to use
the victim’s smartwatch somehow obtained (e.g., can
steal it or victim can leave it behind).

III. WACA ARCHITECTURE

In this section, we present the details of the WACA. WACA
is a typing-based continuous authentication system using the
accelerometer and gyroscope sensors of a smartwatch. WACA
framework is complementary to the first factor authentication
mechanisms and it is flexible to work with any first factor,
including one of the password-, token-, or biometric-based
systems. Note that the first factor authentication is beyond the
scope of this work.

A. Overview
WACA consists of four main stages: Preprocessing, Feature

Extraction, User Profiling, and Decision Module. These stages,
which are shown in Figure 1, work as follows: First, the raw
sensor data is acquired from a smartwatch (1) through an app
installed on the watch. Then, the raw data is transmitted to the
computer through a secure wireless channel and the rest of the
stages are performed on the computer except that Authentication
Server (AS) is located in a trusted place. As the collected data
includes a certain level of noise, in the preprocessing stage, the
raw data is cleaned up by filtering (2) Then, incoming data is
used to extract a set of features (3). This set of features, namely
feature vector, represents the characteristics of the current user
profile. In the enrollment phase (9), the created feature vector
is stored in the AS. In the verification phase (4), the queried
user profile is dispatched from the AS to the decision module
(10, 11). The decision module computes a similarity score
between the returned profile and the provided profile for the
current user to make a binary authentication decision (match/no
match). If the decision is a no match (5), then the user’s access
to computing terminal will be suspended and the user will
be required to re-authenticate using the primary authentication
method (e.g., password). However, when the decision is a match
(6) then the user’s access will be maintained. The profile of the
current user in the AS will be updated after the correct match

265



of the user profile (7). In WACA, this update frequency is a
system parameter and can be set by the admin in the security
policy. In this way, the user profile will be kept up-to-date over
time. Whenever a typing activity is initiated on the keyboard of
the computer, the smartwatch will be notified (8) again by the
terminal to start over the authentication process continuously.
In the following subsections, we explain the details of WACA
and its key stages.

B. Data Collection
In WACA, data collection refers to capturing sensor readings

from the user’s smartwatch through a secure wireless communi-
cation channel (i.e., via WiFi or Bluetooth). An app is installed
on smartwatch to listen to the physical sensors. Then, the raw
sensor data is transmitted to the computer through a secure
communication channel.

Each row of the collected raw data of accelerometer is
represented in the format of �acc =< ta, xa, ya, za > and
gyroscope is represented as �gyro =< tg, xg, yg, zg >, where t
stands for timestamps and x, y, z represent the different axis
values of the accelerometer and gyroscope sensors. Each of
t, x, y, and z is stored as a different vector. The length of the
vectors directly depends on sampling rate of the sensors and the
time interval of the data collection. In WACA, the parameter
sample size refers to the length of these vectors and it is set as
a configurable parameter while the parameter sample rate is a
constant system parameter that is characterized by the wearable
device and app.

C. Preprocessing
In WACA, preprocessing stage refers to preparation of raw

sensor readings for the next stages. It consists of cleaning and
transformation of the raw data. In the cleaning part, the noise
is removed. In order to remove the effect of the noise from
data, we apply M-point Moving Average Filter (MAF), which
is actually a simple low-pass filter and it operates by taking the
average of M neighbour points and generates a single output.
M-point filtering in equation form can be expressed as follows:

y[i] = 1
M

∑M−1
j=0 x[i+ j], where x is the raw sensor data, y is

the new filtered data, and i indicates the current sample that
is averaged. The filtered data becomes smoother than the raw
data without altering the value at that point.

After filtering the noise, the data is transformed into
appropriate forms for the next stage. Particularly, different
types of sensor data are separated according to an assigned
ID number during the sensor registration and then x, y, and z
axes of the sensor values are recorded as different vectors e.g.,
�xa =< xa

1, ..., xa
n > and �xg =< xg

1, ..., xg
n > for a profile

of n samples.

D. Feature Extraction & User Profiling
In WACA, Feature Extraction (FE) refers to the transforma-

tion of the time series raw data into a number of features. In
order to create the feature vector, each feature is computed
using the data vectors. As an example, the first feature is
calculated from a function f , i.e., f1 = f(xa, ya, za, xg, yg, zg)
and the second feature is calculated from another function g, i.e.,
f2 = g(xa, ya, za, xg, yg, zg) etc. Then, the final feature vector
�f =< f1, f2, ..., fn > is generated using all the calculated
features.

As each element of the feature vector has different ranges,
some of the features can be dominant in the distance mea-
surement. To prevent this and create a scale-invariant feature
vector, we apply a normalization to the feature vector to

TABLE I: Feature set extracted from sensor data in WACA.

Domain Feature Length

Time

Mean, Median, Variance, Average Abso-
lute Difference of Peaks, Range, Mode,
Covariance, Mean Absolute Deviation
(MAD), Inter-quartile Range (IQR), cor-
relation between axes (xy, yz, xz), Skew-
ness, Kurtosis

12*6=72

Frequency Entropy, Spectral energy 2*6=12

Total #
of Fea-
tures

84

map the interval [xmin, xmax] into the unit scale [0,1]. We
formulate this linear normalization process in WACA as follows:
xnew = x−xmin

xmax−xmin
, xmin and xmax are the minimum and

maximum value of the features of the user’s enrolled templates.

After generating the final feature vector �f , in the user
profiling stage, a user profile �p is generated by adding the
user ID and start and end timestamps of the data sample, i.e.,

�p =< userID, tstart, tend, �f >. If the user is in the enrollment
phase, this profile is transmitted to the AS to be stored in a
database. Finally, if the user is unknown and a typing activity
notification comes from the computer, the profile is passed to
the Decision Module.

The feature set used in our framework is presented in Table I.
These features were chosen as they performed well in similar
contexts [15], [16].

E. Decision Module
The next stage in WACA is the decision module. The task of

this stage is classifying the user as authorized or unauthorized
for given credentials entered during the initial login. For the
purpose of authentication, we use distance measures. The
distance measure methods simply calculate the distance between
two vectors or data points in a coordinate plane. It is directly
related to the similarity of compared time-series data sets. The
most widely used distance measure is Euclidean Distance. It
is actually just the distance between two points in vector space
and is the particular case of Minkowski Distance, which is

expressed as follows: distance(�x, �y) = (
∑n

i=1(xi − yi)
p)

1
p ,,

where �x = (x1, x2, ..., xn) and �y = (y1, y2, ..., yn) are the
set of sensor observations to be compared. If p = 2, it
is Euclidean distance and has been extensively used in the
keystroke-based authentication methods. WACA calculates
the distance and returns the result by comparing it with a
configurable predetermined threshold value (i.e., genuine if
distance < threshold, impostor if distance ≥ threshold).

In addition to Euclidean and Minkowski Distances, there
are several distance measurement methods utilized in bio-
metric authentication systems which may perform differently
depending on the context. Therefore, we also tested different
distance metrics in our experiments to see which performs
the best for WACA. Other distance metrics that we tested in
our experiments are Cosine Distance, Correlation Distance,
Manhattan (Cityblock) Distance and Minkowski with p=5. The
performance of each one is given in Section IV-A.

IV. PERFORMANCE EVALUATION

We tested the performance and efficiency of WACA with
twenty real users and data collected from them. We specifically
evaluated WACA in terms of three metrics: (i) How accurately
can it differentiate between genuine and impostor users? (ii)
How fast can it detect an impostor? (iii) How accurately can

266



Participants
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
E
R

0

0.1

0.2

0.3

0.4

Fig. 2: EER for each participant with a sample size of 1000 using
Manhattan (Cityblock) distance metric during Typing Task-1. Average
EER is 0.0513.

Participants
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
E
R

0

0.1

0.2

0.3

0.4

Fig. 3: EER for each participant with a sample size=1000 using
Manhattan (Cityblock) distance metric during Typing Task-2. Average
EER is 0.0647.

it identify an impostor? In for these purposes, we first conduct
authentication experiments. In these, we measure how WACA
performs when users type a different or the same text. We
also analyze how the sample size and the detection technique
impact WACA’s performance. The effect of the sample size
allowed to evaluate the quickness of WACA. Finally, we also
conducted an experiment to show how successful WACA is in
identifying the insider threats.
Data and Collection Methodology. In our experiments, we
collected data from 20 human subjects. 2 During the collection
of data, an Android Wear smartwatch with an installed data
collection app was distributed to the participants and the
participants were asked to type a text while the program in the
smartwatch was recording its sensory data. The participants
were free to choose the hand (left/right) on which they wore
the smartwatch. Moreover, they were also given the freedom
to adjust the sitting position and the keyboard and screen
position according to their comfort levels. Throughout these
experiments, we utilized a standalone qwerty keyboard to have
generic results. Before typing each text, the participants were
also given enough time to read the texts to make them familiar
with the text as typing a familiar text is a more common activity.

The participants were involved in two typing tasks conducted
in two different sessions. They were asked to type with
their normal typing style without noticing that their data was
recorded. The two data sets were compiled as follows:

• Typing Task-1: The participants were asked to type a
story from a set of short and simple stories from the
American Literature3 for four minutes. The story was
chosen randomly by the participants. On average, four
minutes of data corresponds to 25000 samples for each
participant (Total: 850000 samples).

• Typing Task-2: For this data set, all the participants
were asked to type the same text4 for four minutes.
For each participant, almost the same amount of data
is collected as Typing Task-1. This dataset is important
to be able to measure the quality of the features.

Note that in all the experiments, the datasets obtained from
all these tasks were always used by cross-validation techniques
(i.e., partitioning the data set into iteratively chosen two sets
for training and testing). Therefore, even if the same text was
typed by all the participants in Typing Task-2, the compared
samples always corresponded to different texts for a participant.

In our experiments, we split the collected data sets into equal

2Our research study with the human subjects was conducted with the
appropriate Institutional Review Board (IRB) approvals.

3https://americanliterature.com/100-great-short-stories
4https://en.wikipedia.org/wiki/The Adventures of Tom Sawyer

size chunks, called sample size. It is the number of samples
(i.e., row) in a chunk. Each chunk consists of 8 columns of data,
two of which are timestamps and the others are 6 dimensional
sensor data. Sample size is the main system design parameter in
our experiments as it has a direct impact on the time required to
collect data. Particularly, the time t required to collect data with
the sample size can be represented as t = sample size/100 in
seconds as the sampling rate in our experiments was 100Hz.

Performance Metrics. In the authentication experiments, we
used Equal Error Rate (EER) as it is a commonly accepted
metric to assess the accuracy of WACA. EER is calculated
using two metrics: False Acceptance Rate (FAR) and False
Reject Rate (FRR). FAR is the rate of incorrectly accepted
unauthorized users among all the illegal attempts: The increase
in FAR is a direct threat to system’s security level. For more
valuable assets, increasing the threshold will decrease FAR. On
the other hand, FRR is the rate of incorrectly rejected authorized
users among all the legitimate authentication attempts. Contrary
to FAR, FRR can be decreased by decreasing the value of
threshold. Finally, EER is the point that gives the closest
FAR and FRR point for a given threshold (ideal EER is the
intersection point of FAR and FRR) and the lower the EER
the better is an authentication system.

A. Results
In this section, we present and discuss the evaluation results.

Impact of the text dependency. In this experiment, our goal
is to analyze how EER changes among the participants. We
try to answer the question: How does WACA perform with
the typed text? This is also a more advanced analysis of the
framework and the fundamental idea than that of in Section 2.

Specifically, for this experiment, we used Typing Tasks 1
(any text) and Typing Task 2 (the same text) datasets. For each
sample of a particular user, we computed the differences from
other users’ samples. For this purpose, we computed the NxN
dissimilarity matrix, where N is the total number of samples
for all the participants. The dissimilarity matrix was calculated
by measuring the similarity of each sample to all the other
samples using leave-one-out cross-validation method [20].

Then, for a given threshold and participant, the ratio of
the rejected and accepted samples were computed to obtain
FRR and FAR, respectively. This process was repeated by
incrementing the threshold by 0.01 in each step for all the
samples of all the participants. This gave us a set of EER for
each participant. Note that in a real system, FAR/FRR rate
can be tuned according to the system preferences, but here
our purpose is to find an acceptable performance metric for
WACA. The results are plotted in Figure 2 for Typing Task-1
and Figure 3 for Typing Task-2. Average EER for the Typing

267



��������	
�
� ��� ���� ���� ���� ���� ����

�

����

���

����

���

����

���� ���� ����
�����
����

�����
����

�����

����	��������� ���	�� ��������	�� �	������� �	������	������

Fig. 4: Average EER according to different sample sizes using
different distance metrics while users are performing Typing Task-1.

��������	
�
� ��� ���� ���� ���� ���� ����

�

����

���

����

���

����

���

����	��������� ���	�� ��������	�� �	������� �	������	������

���� ���� ����
����

����

����

����

Fig. 5: Average EER according to different sample sizes using
different distance metrics while users are performing Typing Task-2.

Task-1 experiment was 0.0513. Figure 3 compares the EER of
participants for the Typing Task-2 experiment. Average EER
for this experiment was 0.0647. Another observation from the
plots is that some participants have more distinctive typing
characteristics than others using both the datasets.

If we compare the ERR of each participant in both the
experiments, we see that they are also close to each other, where
a few of the participants perform very distinctive behaviours
(e.g., participant 15). However, the overall distribution of EER
over the participants is similar in both the experiments. Recall
that in Typing Task-1, all the participants typed different texts,
while they typed the same text in Typing Task-2.

Overall, in this analysis we report the average EERs of both
the experiments are close (around %1), which supports the
usability of WACA regardless of the typed text for the continuous
authentication session.
Impact of the sample size and the distance measuring
technique. In these experiments, our goal was to assess how
different sample sizes and the distance measuring techniques
used in WACA impact the performance. For this, we varied
the sample size from 300 to 3000 and utilized five different
distance measuring techniques, Euclidean (p=2), Cosine, Cor-
relation, Cityblock, and Minkowski (p=5). Again, two types
of participant datasets, Typing Task-1 (any text) and Typing
Task-2 (the same text), were used. Figure 4 (Typing Task-1)
and Figure 5 (Typing Task-2) present the main results when
the sample size increases.

As can be seen in Figure 4 when the participants typed
different texts, the EERs are generally decreasing with the
increase of sample sizes as expected. The EERs go under 0.05
after the sample size of 1500 for all the distance metrics utilized
except for Minkowski (p=5). Then, the EER is converging to
the value of 0.01-0.02 through the sample size of 3000. In
the best case, EER 0.007 is achieved with the the sample size
of 2750 for the Manhattan (cityblock) distance measurement
technique.

Figure 5 presents the results of the same-text experiment
(Typing Task-2). As in Figure 4, the general behavior is that
the EERs are decreasing with the increase of the samples. The
lowest EER of 0.01 is achieved using the Cityblock distance
measuring technique at 3000. We also see the convergence of
EER in Figure 5 as Figure 4. Plots are starting to converge
around sample sizes 1500-2000 and converging to 0.01 for
Cityblock and Correlation distance measuring techniques. We
also see that at 3000, 0.02 EER is obtained for Cosine and
Correlation techniques. However, if shorter data collection

time is of interest, a sample size of 2000, which needs 20
seconds for data collection, gives 0.03-0.04 EER. However, if
we increase the sample size, both the accuracy and the data
collection time are increasing. This means the time needed to
catch an adversary or more generally the re-verification period
would also increase. Therefore, an optimal sample size should
be adjusted according to the preferences in a real application
based on the usage needs or the security policies.

To conclude, the features in WACA can successfully differen-
tiate the users from their typing rhythm with a very small error
rate (1%) independent of the typed text. There is a natural
trade-off between the EER and data collection time, which
should be configured according to the security needs of an
organization.
The accuracy of insider threat identification. As noted
earlier, the insider threat detection is important in continuous
authentication systems as a potential attacker is likely to
be an insider. In order to effectively locate such an insider
attacker within an organization where WACA is employed, an
identification mechanism is needed. Hence, WACA includes
Multilayer Perceptron algorithm (MLP) to defend against and
identify insider threats. MLP is a feedforward neural network
model which maps a set of input data into a set of outputs
through the interconnected processing elements (neurones). We
used MLP for the task of identification. Identification is a
one-to-many classification task and requires a training set. We
assume that the insider’s data is also stored in the authentication
server’s database (training set) as a legitimate user. We used
MLP since it gave the best results in our experiments.

In order to analyze the efficacy of WACA against insider
threats, we analyzed the impact of the sample size and the
size of the training data on accuracy. For this, we focused on
two test scenarios that could be relevant in real investigations:
Scenario 1: In the first scenario, we built our test model using
the same text and tested again using the same text with the
5-fold cross validation technique. For this scenario, we utilized
Typing Task-2 Dataset for both the training and testing. This
type of scenario can be useful as all the users are asked to
type a provided text and during the investigation, all users are
asked again to type the same text. The results are presented in
Table II. Scenario 2: In the second scenario, the test model was
trained with the same text dataset, which is the same for all the
participants and tested using random-text experiments, where
each user typed a randomly chosen text. For this scenario, we
utilized Typing Task-2, Typing Task-1 Datasets for training and
testing, respectively. This scenario is suitable for cases where

268



Scenario 1: Accuracy (%)
Training Set

Sample size 1 2 3 4 5

1500 77.8 93.7 97.2 98.4 99.2
1000 62.8 87.6 93.8 95.3 97.1
500 37.5 63.7 75.9 83.1 89.6

250 28.5 43 53.1 61.8 62.1

Scenario 2: Accuracy (%)
Training Set

Sample size 1 2 3 4 5

1500 55.8 80.1 88.7 89.8 91.8
1000 51.7 82.7 83.2 86.1 86.8

500 29.9 51.3 66.7 73.8 76.5

250 22.1 33.6 41.9 49.8 54.1

TABLE II: The accuracy results insider threat identification experi-
ments for different sample sizes in Scenario 1 and 2.

all the users are enrolled using the same text, but a user is
verified while typing a random text. The results for this test
scenario are presented in Table II.

As can be seen in Table II, in the best case, 99.2%
identification rate of an insider threat can be achieved with the
sample size of 1500 while the model is trained with 5 samples.
Even with 2 samples of the insider, 93.7% accuracy rate can
be achieved with the sample size of 1500.

Scenario 2 aims to answer the question of ”Can an insider
be identified while typing a random text even if s/he is enrolled
while typing a given text ?” Table II presents the result of
this question for Scenario 2. As can be seen from Table II,
similar to Scenario 1, the accuracy rates increase as the sample
sizes and training set increase, and the time to build model and
time required to catch the attacker is also increasing. 3 training
samples and the sample size is 1500 or 4 training samples with
the sample size of 1000 may be the two most optimal choices
for real cases.

Overall, WACA can achieve 0.01 error rate with almost 30
seconds of the data collection (see Figure 4 and 5) in the best
case. If a shorter time is of interest, 0.02 error rate is achieved
with 20 seconds of the data collection. Moreover, if 5 training
samples with 1500 sample sizes are obtained from a potential
insider threat, WACA could identify the insider with 99.2%
accuracy rate while typing the provided text (see Table II) or
with 91.8% accuracy rate while typing a random text (see
Table II).

V. CONCLUSION

Wearables such as smartwatches and fitness trackers carried
by individuals have grown exponentially in a short period
of time. Particularly, WACA decreases the vulnerable time
window of a continuous authentication system to as low as
20 seconds, prevents the privilege abuse and insider attacks
and also allows the insider threat identification. Moreover,
we evaluated the efficacy and robustness of WACA with real
data from real experiments. The results showed that WACA
could achieve 1% EER for 30 seconds or 2− 3% EER for 20
seconds of data collection time and error rates are as low as 1%
with almost a perfect (99.2%) insider threat identification rate.
Furthermore, achieved a minimal overhead on the utilization
of the system’s resources. As a future work, we will study
privacy-aware WACA, where we will deploy privacy-preserving
algorithms [21] protect user’s sensitive sensor data.

VI. ACKNOWLEDGMENT

This work is partially supported by US National Science
Foundation (NSF) under the grant numbers NSF-CNS-1718116
and NSF-CAREER-CNS-1453647. The statements made herein
are solely the responsibility of the authors.

REFERENCES

[1] Google, “Google eyes behavioural solution for continuous authentication,”
http://www.planetbiometrics.com/article-details/i/4512/, May 2016.

[2] Kaspersky, “Consumer security risks survey 2016,”
https://cdn.press.kaspersky.com/files/2016/10/B2C survey 2016 report.pdf.

[3] C. M. Carrillo, “Continuous biometric authentication for authorized
aircraft personnel: A proposed design,” Tech. Rep., 2003.

[4] K. Niinuma and A. K. Jain, “Continuous user authentication using tempo-
ral information,” in SPIE Defense, Security, and Sensing. International
Society for Optics and Photonics, 2010, pp. 76 670L–76 670L.

[5] G. Kwang, R. H. Yap, T. Sim, and R. Ramnath, “An usability study of
continuous biometrics authentication,” in International Conference on
Biometrics. Springer, 2009, pp. 828–837.

[6] D. Dasgupta, A. Roy, and A. Nag, Advances in User Authentication.
Springer, 2017.

[7] I. C. Stylios et al., “A review of continuous authentication using
behavioral biometrics,” in Proceedings of the SouthEast European Design
Automation, Computer Engineering, Computer Networks and Social
Media Conference. ACM, 2016, pp. 72–79.

[8] S. Eberz, K. B. Rasmussen, V. Lenders, and I. Martinovic, “Evaluating
behavioral biometrics for continuous authentication: Challenges and
metrics,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security. ACM, 2017, pp. 386–399.

[9] G. Wu, J. Wang, Y. Zhang, and S. Jiang, “A continuous identity authen-
tication scheme based on physiological and behavioral characteristics,”
Sensors, vol. 18, no. 1, p. 179, 2018.

[10] S. P. Banerjee and D. L. Woodard, “Biometric authentication and
identification using keystroke dynamics: A survey,” Journal of Pattern
Recognition Research, vol. 7, no. 1, pp. 116–139, 2012.

[11] M. Rybnik, P. Panasiuk, and K. Saeed, “User authentication with
keystroke dynamics using fixed text,” in Biometrics and Kansei En-
gineering. ICBAKE 2009. IEEE, pp. 70–75.

[12] C. M. Tey, P. Gupta, and D. Gao, “I can be you: Questioning the use
of keystroke dynamics as biometrics,” Annual Network and Distributed
System Security Symposium 20th NDSS 2013, 24-27 February, 2013.

[13] A. K. Sikder, H. Aksu, and A. S. Uluagac, “6thsense: A context-aware
sensor-based attack detector for smart devices,” in 26th USENIX Security
Symposium (USENIX Security 17), 2017.

[14] P. S. Teh, A. B. J. Teoh, and S. Yue, “A survey of keystroke dynamics
biometrics,” The Scientific World Journal, vol. 2013, 2013.

[15] K. S. Killourhy and R. A. Maxion, “Comparing anomaly-detection
algorithms for keystroke dynamics,” in Dependable Systems & Networks,
2009. IEEE, pp. 125–134.

[16] A. Serwadda, V. V. Phoha, and Z. Wang, “Which verifiers work?: A
benchmark evaluation of touch-based authentication algorithms,” in
Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE Sixth
International Conference on. IEEE, 2013, pp. 1–8.

[17] S. Mare, A. M. Markham, C. Cornelius, R. Peterson, and D. Kotz,
“Zebra: zero-effort bilateral recurring authentication,” in Security and
Privacy (SP), 2014 IEEE Symposium on. IEEE, 2014, pp. 705–720.

[18] O. Huhta, P. Shrestha, S. Udar, M. Juuti, N. Saxena, and N. Asokan,
“Pitfalls in designing zero-effort deauthentication: Opportunistic human
observation attacks,” arXiv preprint arXiv:1505.05779, 2015.

[19] S. Eberz, K. B. Rasmussen, V. Lenders, and I. Martinovic, “Preventing
lunchtime attacks: Fighting insider threats with eye movement biomet-
rics.” in NDSS, 2015.

[20] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer series in statistics Springer, Berlin, 2001, vol. 1.

[21] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” CoRR,
vol. abs/1704.03578, 2017. [Online]. Available: http://arxiv.org/abs/1704.
03578

269


