
A binary analysis approach to retrofit security in

input parsing routines

Jayakrishna Menon1, Christophe Hauser1, Yan Shoshitaishvili2, and Stephen
Schwab1

1Information Sciences Institute, University of Southern California
2Arizona State University

Abstract

In spite of numerous attempts to mitigate memory corruption vulner-
abilities in low-level code over the years, those remain the most common
vector of software exploitation today. A common cause of such vulnera-
bilities is the presence of errors in string manipulation, which are often
found in input parsers, where the format of input data is verified and
eventually converted into an internal program representation. This pro-
cess, if done manually in an ad-hoc manner, is error prone and easily
leads to unsafe and potentially exploitable behavior. While principled
approaches to input validation exist, such as those based on parser gen-
erators (e.g., Lex [20] and Ragel [28]), these require a formalization of
the input grammar, which is not always a straightforward process and
tends to dissuade programmers. As a result, a large portion of input
parsing routines as found in commodity software is still implemented in
an ad-hoc way, causing numerous security issues. We propose to address
this problem from a post-development perspective, by targeting software
presenting security risks in opaque, closed-source environments where soft-
ware components have already been deployed and integrated, and where
re-implementation is not an option (e.g., as part of an embedded device’s
proprietary firmware). Our system is able to effectively detect vulner-
ability patterns in binary software and to retrofit security mechanisms
preventing exploitation. In a semi-automated setting, it was able to dis-
cover an unknown security bug.

1 Introduction

A large number of applications, and in particular, networking daemons and
browsers, are constantly exposed to remote and untrusted input data. A secure
parsing and handling of such input data, regardless of the complexity of its
semantics, is at the forefront of any network facing application, and in a way,
represents the first line of defense. Unfortunately, the process of implementing
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input parsing routines in unsafe languages such as C, which currently remains
one of the most used languages for systems and network implementations, is
error-prone and leads to a large number of security bugs. Worse yet, even in
the case of widely used shared libraries such as e.g., libXML (for which 54
Common Vulnerability Exposure (CVE) entries have been reported and added
to the MITRE database between 2003 and 20171), new bugs are found on a
regular basis despite the numerous tests and audits performed on such standard
software components.

A possible angle to address this problem is to rely on development-stage
abstractions providing secure constructs, such as parser generators and parser
combinators [7, 20, 28]. While effective, such solutions are only applicable to
software for which the source code is available. However, a large number of soft-
ware products involved in the context of many applications and environments,
such as the proprietary firmware of IoT devices, remains closed-source. Yet, such
software remains largely exposed to input parsing vulnerabilities. Solutions are
needed to retrofit security in these environments.

To this end, we propose to leverage recent advances in the domain of binary
program analysis, and in particular, static analysis and symbolic execution,
in order to retrofit security in the parsing code of closed-source applications.
More specifically, we present an approach capable of statically detecting and
mitigating anti-patterns corresponding to dangerous practices or common pro-
gramming errors, which lead to unsafe memory behavior (e.g., the unsafe use
of dangerous string operations). While this approach does not guarantee the
correctness of the resulting parsers, it detects common pitfalls of parser imple-
mentations, and provides mechanisms for patching vulnerable code constructs
when no alternative method is applicable. By approaching this problem from
a static perspective, we are able to provide mechanisms for retrofitting secu-
rity at scale with no additional runtime cost. We initially focus on a set of
anti-patterns suitable for statically detecting common vulnerabilities present in
input parsing code. While each anti-pattern combines program analysis tech-
niques with specialized heuristics, and therefore are intrinsically restricted to
a subset of all possible vulnerabilities, our analysis provides sufficient seman-
tic understanding to deploy realistic counter-measures in each situation, which
is suitable for enforcement relying on static reassembly mechanisms. As such,
this work corresponds to the first steps towards a broader spectrum of analyses
tailored for scalable vulnerability discovery and mitigation of parsing errors in
binary.

In the remainder of this paper, we present three common classes of program-
ming mistakes leading to memory corruption vulnerabilities, which we abstract
in three anti-patterns in Section 2, along with binary program analysis models
for detecting those “in the wild”, and real-life examples based on existing CVE
entries which we used as ground truth for validating our approach. Then, in
Section 2.6, we discuss possible techniques for retrofitting security in vulnera-
ble closed-source software. Finally, in Section 3.2, we discuss future work and

1https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=libxml
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possible alternative approaches.

2 Detecting anti-patterns in binary code

One of the most common errors encountered in C and C++ programs2 is the
lack of sanity checks with respect to buffer sizes when performing operations on
arrays in memory, leading to out-of-bound memory access. Because strings are
represented in memory as arrays of one byte characters in C, manipulations such
as copying strings across memory locations or comparing strings together boil
down to memory operations using pointers. Manually dealing with these oper-
ations tends to confuse programmers, and it has been the source of numerous
memory corruption vulnerabilities for over 30 years.

In this work, we focus on three classes of memory corruption vulnerabilities
caused by string manipulation errors, which are commonly found in parsing
code. Our approach aims to detect such vulnerabilities in real-world proprietary
code for which no source code is available, and in particular, in the firmware of
IoT devices as well as embedded devices such as Programmable Logic Controllers
(PLC). In order to be realistically deployed on a large scale, our approach relies
on a combination of lightweight static analysis and heuristics, along with guided
symbolic execution focusing on narrowed-down code paths involving potentially
unsafe programmatic constructs. We rely exclusively on architecture agnostic
abstractions, as we aim to analyze software and firmware of various embedded
devices.

Our initial anti-pattern detection articulates around the following three com-
monly encountered programming errors in string manipulations:

1. Unconstrained input buffer size: the program performs string manipula-
tions on the (user-provided) input buffer without checking its size.

2. Attacker-controlled size: the program may check the size of the input
buffer prior to manipulation, but the attacker has control over it (i.e., the
program blindly “trusts” user-provided size information).

3. Unchecked termination condition: the program performs string operations
on possibly incorrectly terminated stings.

While non-exhaustive, this initial set of anti-patterns provides a basis for the
detection of typical pitfalls in parsing code. In the remainder of this section, we
describe each pattern in more detail.

2.1 Detection approach

Our detection approach is comprised of two phases: it starts with lightweight
static analysis in order to first identify the presence of possibly dangerous string

2Among other low-level programming languages exposing unsafe constructs to the pro-
grammer.
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operations, and then symbolically executes the paths of interest involving these
dangerous operations in order to confirm the presence of a vulnerability.

We initially compute a Control Flow Graph (CFG) of the program under
analysis, and automatically pinpoint known string functions from the standard
C library. This initial step assumes that we are dealing with a dynamically
linked binary program, which may be stripped (i.e., symbol information such
as function names are not available), but for which dynamic linking information
is present3. In the case of statically linked binaries and binary blobs, function
recognition techniques may be used for this purpose, as discussed in Section 3.

From there, we first isolate a subset of the identified string functions which
copy data between two (string) buffers. We consider these functions as potential
sinks, and track data dependence backwards across function calls for the source
buffer and (if present) the size parameters of these functions. This analysis is
based on the construction of a data dependence graph which recovers def-use
chains [4] over statements of the disassembled code. We then use this analysis
to compute a backward slice through the program, from each of the identified
function parameters towards the first encountered user input function (or until
no caller function is found, in the case of library functions, in which case we
consider the parameters of the topmost function as user input).

Finally, we attempt to detect the size of the output buffer. If the destination
parameter points to a stack location, we employ a heuristic-based approach to
identify its size. We assume that the program has been compiled with stack
protection mechanisms which allocate stack buffers before any other local vari-
ables4. Since multiple buffers may be allocated in the same stack frame, we
leverage variable recovery techniques from the angr [1] framework, based on ac-
cess pattern recognition and forced execution, in order to identify any additional
buffer in between our destination pointer and the beginning of the stack. Based
on this information, we are able to identify the end of the destination buffer,
and consequently, its size.

At this point, our analysis considers a string operation to be potentially
dangerous based on the following conditions:

� C1: The source parameter is dependent on the user input.

� C2: The pinpointed function is an unsafe variant of string manipulation
functions from the standard C library such as strcpy or sprintf, which
keep appending characters to the destination without any size check.

� C3: The pinpointed function is a safe variant of string manipulation func-
tions from the standard C library, such as strncpy or snprintf but the
size parameter depends on user input and is not sanitized.

� C4: A possibly unsafe sequence of string functions is called (as detailed in
�2.4).

3This information is required by the loader for dynamic binding, and is therefore present
in all dynamically linked binary even after stripping.

4This is a common practice in modern compilers which consists in allocating buffers early
in order to prevent overriding other variables on the stack in case of overflow.
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An operation is considered potentially dangerous if C1 ∧ (C2 ∨ C3 ∨ C4)
applies. In this case, we proceed with the second phase of analysis.

In the remainder of this section, we describe each variant of dangerous string
manipulations modeled in our approach.

2.2 Unconstrained input buffer size

1 #define OPT_ERRMAXSTRLEN 1024 /* Fixed buffer len*/

2 #define opt_warn_2(fmt,var1,var2) do { \

3 char gstr[OPT_ERRMAXSTRLEN]; sprintf(gstr,fmt,var1,var2); \

4 opt_warning(gstr); } while(0)

5

6 long opt_atoi(char *s)

7 {

8 int valid;

9 long x;

10 x = (long)atof(s);

11 valid = opt_isvalidnumber(s);

12 if (!valid || (valid & OPT_NUM_FLOAT)) {

13 opt_warn_2("String [%s] is not a valid integer, will use

[%ld]",s,x);↪→
14 }

15 return x;

16 }

Figure 1: Simplified version of vulnerable code in the opt input parsing library.

A straightforward, yet not uncommon case of a “classic” buffer overflow
occurs when a string is copied into another, but no verification is made to
ensure that the destination string is large enough to contain the source string.
Or, put another way, no verification is made to ensure that the input string is
not larger than the destination string. The first phase of our analysis detects
this case as satisfying C1∧C2, and yields an input statement s1 from which user
input originates, and a call statement s2 taking the user input as a parameter to
called string manipulation function. It also yields the destination buffer length
ld, as described earlier in Section 2.1.

Upon detection of the above condition, our analysis then executes the result-
ing program slice forward, from s1 to s2. The initial program state is created
with an input buffer length li that is larger then ld. If the program correctly
checks the length of the input buffer, then the path constraints at s2 will in-
clude the constraint that li ≤ ld. By definition, since we have initialized li
to be larger than ld, this state is unsatisfiable in any program which correctly
verifies this condition. Conversely, the presence of a satisfiable state at s2 indi-
cates improper checking of the input buffer length, and thus the presence of an
exploitable buffer overflow.

A real-life example of such a vulnerability is illustrated in Figure 1, which
shows a simplified version of vulnerable code present in older versions of the
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opt open-source input parsing library, upon which many software projects de-
pend in order to parse command line arguments. Unfortunately, all versions of
this library prior to, and including, 3.18, were vulnerable to a buffer overflow
caused by unsanitized user input. The opt atoi library function takes the user-
provided string s as input, and the call to the opt warn2 macro at line 13 uses
that string directly, resulting in an unsafe call to sprintf at line 3. If the input
string is longer than OPT ERRMAXSTRLEN, a buffer overflow occurs. This bug was
reported as CVE-2003-03905.

2.3 Attacker controlled size

1 int phar_parse_zipfile(php_stream *fp, char *fname, int fname_len, char

*alias, int alias_len, phar_archive_data** pphar, char **error)↪→
2 {

3 phar_zip_dir_end locator;

4 char buf[sizeof(locator) + 65536];

5 zend_off_t size;

6 uint16_t i;

7 phar_archive_data *mydata = NULL;

8 phar_entry_info entry = {0};

9

10 mydata = pecalloc(1, sizeof(phar_archive_data), PHAR_G(persist));

11 mydata->fname = pestrndup(fname, fname_len,

mydata->is_persistent);↪→
12 mydata->fname_len = fname_len;

13 entry.phar = mydata;

14 phar_set_inode(&entry);

15 }

16

17 static inline void phar_set_inode(phar_entry_info *entry TSRMLS_DC)

18 {

19 char tmp[MAXPATHLEN];

20 int tmp_len;

21

22 tmp_len = entry->filename_len + entry->phar->fname_len;

23 memcpy(tmp, entry->phar->fname, entry->phar->fname_len);

24 memcpy(tmp + entry->phar->fname_len, entry->filename,

entry->filename_len);↪→
25 entry->inode = (unsigned short)zend_get_hash_value(tmp, tmp_len);

26 }

Figure 2: Simplified version of vulnerable code in PHP.

Another common case of a “classic” buffer overflow, which corresponds to
a situation which is similar to the one described in � 2.2, is when an attacker
directly controls the size of the input buffer. In this case, the program performs
a check on the input buffer size, but it trusts a user-provided value to do so,
which may lead to a buffer overflow. The first phase of our analysis detects
this case as satisfying C1 ∧C3, and, similarly to the situation described in �2.2,

5https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0390
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yields an input statement s1, and a call statement s2, as well as the length ld of
the destination buffer. If the condition C1∧C3 is satisfied, our analysis executes
the resulting program slice from s1 to s2, and evaluates the constraints on the
size parameter of the called function. If a constraint exist, such that size ≤ ld,
then the program performs the appropriate checks. If not, a buffer overflow
may be triggered by an attacker. The following is a real-life example of such
vulnerability.

Figure 2 shows a simplified version of the code of a vulnerable function in
the PHP interpreter. The stack buffer tmp of fixed size MAXPATHLEN declared at
line 19 can be overflown by the subsequent unsafe call to memcpy at line 23. The
problem here is that the attacker has control over entry->phar->fname len,
as this value is directly copied from the user controlled fname len parameter
to phar parse zipfile without sanitization. This bug was reported as CVE-
2015-33296.

2.4 Unchecked termination condition

1 static ssize_t clusterip_proc_write(struct file *file, const char __user

*input,↪→
2 size_t size, loff_t *ofs)

3 {

4 #define PROC_WRITELEN 10

5 char buffer[PROC_WRITELEN+1];

6

7 if (copy_from_user(buffer, input, PROC_WRITELEN))

8 return -EFAULT;

9

10 if (*buffer == '+')

11 nodenum = simple_strtoul(buffer+1, NULL, 10);

12 }

Figure 3: Simplified version of vulnerable code in the Linux kernel.

The lack of correct string termination is also a very common source of errors
in C and C++. It is dangerous, because it is commonly assumed that strings
terminate with a NULL byte: for instance, standard functions such as strlen
and strcpy rely on this assumption, and lead to unexpected behavior when
this condition is not met. Simultaneously, a number of standard functions such
as memcpy or strncpy do not guarantee correct string termination. A direct
result of this is that programmers need to be careful when invoking these func-
tions sequentially. The static phase of our approach models such situations as
satisfying C1 ∧ C4. In this case, it would return a statement s1 representing a
call to a function which does not guarantee correct string termination; and a
statement s2 representing a call to a function which assumes the use of a string
termination symbol. When the above condition is satisfied, our analysis may

6https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3329
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have detected unsafe sequence of string operations over a string originating from
user input. It then symbolically executes a program slice starting from s1 and
ending in s2, and evaluates the constraints accumulated on the strings passed
as parameters to the second function in s2. A safe program will ensure that
the last byte of such strings is equal to NULL. The lack of such constraints when
reaching s2 reveals a vulnerability.

Figure 3 shows the simplified version of a vulnerable kernel function within
the NETFILTER subsystem, which does not ensure the presence of a NULL char-
acter terminating the string obtained from the call to copy from user at line 7.
The consequence of this is the undefined behavior of the call to simple strtoul

at line 11, which assumes correct string termination. This bug was reported as
CVE-2011-25347.

2.5 Evaluation

Our proof of concept implementation leverages the angr [1] framework, on top
of which we build our exploration approach and analysis templates. Our initial
prototype models two of the three presented anti-patterns: “unconstrained input
buffer size”, presented in 2.2 and “attacker controlled size”, presented in 2.3.

We have evaluated our approach on binary images corresponding to the
aforementioned vulnerable versions of libopt and the PHP interpreter. For each
binary, a first phase of static analysis pinpoints dangerous functions as a first
step, and reasons about data dependence as a second step. These steps are
referred to as SA1 and SA2 in the remainder of this section. In cases where the
result of (SA1 + SA2) is positive, our approach leverages symbolic execution
in order to confirm (or refute) the presence of a vulnerability. In other words,
the analyzed code is considered vulnerable if and only if SA1, SA2 and SE all
return positive.

Table 1 represents a summary of our analysis results. Each reported function
corresponds to a positive match with respect to the first step (SA1) of static
analysis. The column GT indicates the ground truth, i.e., whether the code is
actually vulnerable. We obtained the ground truth by manually verifying the
analysis results8. Columns indicating “negative(*)” represent false negatives
caused by the data-dependence analysis. In these situations, where SA2 does
not align with the observed ground truth, we also executed the vulnerable code
paths symbolically.

In addition to this, when analyzing the results of our evaluation where SA2
failed to detect data dependence from user input, we manually pinpointed its
location and ran the symbolic step over the resulting code paths. When doing
so, our system was able to find a new security bug in the PHP interpreter
caused by improper checks on the size of an input buffer (corresponding to
the case described in �2.3). We have reported it to the PHP security team
and are waiting for an official response before disclosing further details. A

7https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-2534
8These results, however, only report a reduced subset of the functions in the PHP inter-

preter, due to time constraints, and to the large and complex nature of this library.
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Function name SA1 SA2 SE GT
(libopt)
opt atoi positive positive positive positive
opt atof positive positive positive positive
opt atou positive positive positive positive
optrega(1) positive positive negative negative
optrega(2) positive negative - negative
opt action positive negative - negative
opstrval positive negative - negative

opt parse delim positive negative - negative
opt from fname positive negative - negative

opt parse longdelim positive negative(*) positive positive
optrega array positive negative - negative

(PHP)
phar detect phar fname ext positive negative(*) positive positive

phar parse zipfile positive negative(*) positive positive
phar parse tarfile positive negative(*) positive positive
phar parse tarfile positive negative(*) state explosion positive

Undisclosed vulnerability positive negative(*) positive positive

Table 1: Analysis results

simplified, anonymized version of the vulnerability is represented in Figure 4.
The prototype of memcpy expects an unsigned value (of type size t) but in
this vulnerable function, the size parameter is signed, and therefore the check
at line 5 can be bypassed (negative values) which leads to an integer overflow.
The patch we submitted adds an extra constraints ensuring that size > 0.
Despite the presence of this dangerous operation, the actual exploitability of
this vulnerability has not yet been confirmed.

Overall, these analysis results demonstrates the practicality of our approach,
both in a fully automated and in a semi-automated setup.

1 int vulnerable(const char *input, int size)

2 {

3 char output[MAXSIZE];

4

5 if (size >= MAXSIZE-1) {

6 exit();

7 }

8 memcpy(output, input, size);

9 ...

10 }

Figure 4: Simplified version of a vulnerability in the PHP interpreter

We observe that SA1 results in false positives in 43.8% of all cases. SA2
is able to filter most false positives (except for 6.6% of those), but introduces
false negatives 40% of the time. Finally, symbolic execution is accurate in all
cases, except for one function where it reached state explosion. Static analysis
execution time (SA1 + SA2) ranged from under 1 second up to 260 seconds.
Symbolic execution time ranged from under one second up to 400 seconds (and
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over 900 seconds in the case of state explosion).
The accuracy and execution time of our system is summarized in Table 2.

Static phase (S1 + S2) Symbolic phase Overall
FP 6.6% 0% 0%
FN 40% * 40%
Time 1-260s 1-400s 2-660s

Table 2: Overall accuracy and execution time

The relatively high level of false negatives (i.e., undetected instances of vul-
nerabilities) in our static analysis approach is currently the bottleneck in terms
of accuracy. It is due to several challenges of binary program analysis which
hinder data dependence tracking: data structure recovery and pointer aliasing.
In all 5 cases where SA2 is inaccurate, complex data structures are used, in-
volving complex access patterns, such as heap structures with multiple levels
of dereference, which causes incomplete def-use chains recovery. As a result,
our analysis is unable to infer data dependence from user input in these situa-
tions. However, it was able to accurately reason about each code path during
the symbolic execution phase, when we manually provided the location of the
user input, with the exception of one instance of state explosion (which would
otherwise be provided by the second step of static analysis). Nonetheless, mech-
anisms to accurately reason about complex access patterns are required in order
to improve the accuracy of the static phase of our approach.

2.6 Mitigation

Our approach, in each detected vulnerable case, employs a constraints-based
model in order to reason about the presence of a vulnerability. By relying
on symbolic execution of the program under analysis, our model is able to
gather accurate constraints over the state of the program. As a result of this
accuracy, precise modifications of the program (i.e., patches) can be inferred.
It should be emphasized that the lack of accuracy in the static analysis phase
does not affect the validity of our overall approach, since, in the presence of
a potential vulnerability, symbolic execution is always leveraged in order to
precisely reason about the involved program paths (however, our detection phase
may miss instances of vulnerabilities, as discussed in �2.5).

Each of the anti-patterns that we described reveal the presence of a vulner-
ability which can be mitigated by enforcing additional constraints in program
paths originating from user input. For instance, in the case described in �2.2, a
conceptually simple fix is to add a guard condition regarding the size of the data
to copy. This can be achieved, for instance, by replacing the call to sprintf

with a call to snprintf, thus ensuring that the copy will never append data
past the boundaries of the destination buffer.

However, despite the conceptual simplicity of such changes, the process of
statically modifying programs at the binary level involves a number of chal-

10
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Size (bytes) 0-5 5-10 10-15
Avg occurrences 20.8 24.4 31.5

Table 3: Function padding in coreutils

lenges: most of these changes require the insertion of a minimum of three addi-
tional instructions preceding each vulnerable call instruction. On the one hand,
inserting multiple additional instructions within several basic blocks in the code
segment of the program will inevitably involve a displacement of instructions,
which requires a fine-grained analysis in order to ensure that all subsequent code
references are correctly relocated. Failure to do so will break the program. On
the other hand, applying such modifications without any side effects beyond a
local scope of one to several basic blocks would require the analysis to reorga-
nize and optimize instructions in such a way that additional instructions may
be inserted in place. A general approach to solving this problem may leverage
recent advances in static reassembly techniques [30, 29]. We plan to investigate
this research direction in future work.

In the context of this work, we present a simple alternative which, despite
some limitations, is able to effectively mitigate vulnerabilities where minimal
modifications are required. We observe that, in most binaries, padding bytes
are inserted between functions, for performance reasons (i.e., as produced by
GCC’s falign-* options). Consequently, alignment slots of up to 15 bytes are
typically present in binaries. The results of an analysis of all 104 binaries present
in the coreutils package on Ubuntu 16.04 is presented in Table 3.

Our approach leverages this unused padding space in order to insert and
chain trampoline code gadgets specifically crafted to mitigate known vulnera-
bility patterns. Inserting code in the binary image in this way guarantees that
no references to the initial code segment will be broken. While such changes
involve a performance penalty caused by cache misalignment, we expect it to
be negligible in practice, since most changes are light with few occurrences.

1 0x4012b0 push rbp

2 0x4012b1 push rbx

3 0x4012b2 xor esi,esi

4 0x4012b4 mov rbp,rdi ;<-- Input

5 0x4012b7 sub rsp,0x418

6 0x4012eb mov rdi,rsp

7 0x4012ee mov r9,rbx

8 0x4012f1 mov r8,rbp

9 0x4012f4 mov ecx,0x405cb0

10 0x4012f9 mov edx,0x400

11 0x4012fe mov esi,0x1

12 0x401303 xor eax,eax

13 0x401305 call 0x400f30 <sprintf>

Figure 5: Assembly code of opt atoi from libopt
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Figure 5 shows the vulnerable assembly code of the opt atoi function from
the libopt option parsing library. Figure 6 shows the patched version of this
code. On line 13, a the call to sprintf is replaced with a trampoline to code
inserted within padding space. The patch introduces four blocks of 11 bytes,
14 bytes, 5 bytes and 8 bytes respectively. The first inserted block starting
at 0x402991 saves registers on the stack. The second block starting 0x4029d1
checks the size of the input string and either jumps to the block at 0x402a44
to terminate the program if it is larger than the destination buffer, or jumps to
the block at 0x402a11 to restores the registers and calls sprintf.

1 0x4012b0 push rbp

2 0x4012b1 push rbx

3 0x4012b2 xor esi,esi

4 0x4012b4 mov rbp,rdi ;<-- Input

5 0x4012b7 sub rsp,0x418

6 0x4012eb mov rdi,rsp

7 0x4012ee mov r9,rbx

8 0x4012f1 mov r8,rbp ; <-- Input

9 0x4012f4 mov ecx,0x405cb0

10 0x4012f9 mov edx,0x400

11 0x4012fe mov esi,0x1

12 0x401303 xor eax,eax

13 0x401305 call 0x402991 <-- Trampoline

14 -------

15 0x402991 push rdi

16 0x402992 push rsi

17 0x402993 push rdx

18 0x402994 push rcx

19 0x402995 push r8

20 0x402997 pop rdi

21 0x402998 push r8

22 0x40299a push r9

23 0x40299c jmp 0x4029d1

24 -------

25 0x4029d1 call 0x400d90 <strlen>

26 0x4029d6 cmp rax,0x400

27 0x4029dc jbe 0x402a11

28 0x4029de jmp 0x402a44

29 -------

30 0x402a44 call 0x400ef0 <exit>

31 -------

32 0x402a11 pop r9

33 0x402a13 pop r8

34 0x402a15 pop rcx

35 0x402a16 pop rdx

36 0x402a17 pop rsi

37 0x402a18 pop rdi

38 0x402a19 call 0x400f30 <sprintf>

Figure 6: Patched assembly code of opt atoi from libopt
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In essence, this mitigation is equivalent to the verification and protection
routines inserted by recent compilers, such as sprintf chk, which terminate
the program when a buffer overflow is detected. This technique makes it possible
to retrofit a similar mechanisms within legacy binaries or code compiled without
such protections.

3 Discussion

We demonstrate that leveraging binary program analysis techniques combined
with vulnerability models can be effective in a static setting, i.e., our system
does not require concrete execution (i.e., dynamic analysis), and only relies
on selective symbolic execution of restricted code paths flagged by lightweight
static analysis. An advantage of this approach is its lightweight aspect, and
therefore its ability to scale. In future work, we plan to leverage it in the
context of large corpora of binary program images, and, in particular, firmware
images obtained from IoT devices, for which automated reasoning is currently
limited to high-level vulnerabilities [10] such as those present in remote web
configuration interfaces [6, 11] or specific classes of logic bugs [24].

The approach described in this work addresses the problem of detecting and
mitigating input parsing errors in unknown binary code. It has the advantage
of being agnostic to the actual parser’s semantics (with respect to i.e., the
protocol or file format that it operates on), but it does not guarantee soundness.
However, our system generates and applies patches in a conservative way. The
patches generated from symbolic input constraints are accurate. Additionally,
if our system is unable to reason about a program path, it will stop and proceed
with the remaining program paths to analyze. While this approach does not
provide the same level of semantic reasoning as source-code level approaches, it
is effective as a last resort defense in environments where no or little information
is available to the analyst.

3.1 Limitations

Our approach does not currently support the recovery of complex structures,
nor object field sensitivity. A consequence of this is that the resulting data-flow
analysis is not accurate, which leads to the presence of an important rate of false
negatives (40%) in our static analysis. During the second phase, i.e., the process
of symbolically executing the identified program slices yields accurate results and
expressions, and effectively filters false positives down to 0%. As a consequence,
our overall approach is subject to false negatives during vulnerability discovery,
on top of which we apply a conservative mitigation strategy. Our initial focus
is on the detection of stack-based buffer overflows, where the destination buffer
is allocated on the stack. The buffer recognition technique defined earlier in
�2.1 is limited to analyzing memory access patterns within a given stack frame,
based on a static memory model. We do not currently address the problem
of detecting the size of heap-allocated buffers, which requires a more accurate
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static memory model, and which we leave for future work.

3.2 Future work

In future work, we project to extend the scope of our system to a larger set
of vulnerability models, for deployment on large scale analysis of embedded
firmware images. For a more fine-grained static reasoning, an improved data-
flow model is required in order to track def-use chains on long program paths.
Of particular interest in this space are techniques for heuristic-based data struc-
ture recovery, in combination with more accurate memory models, such as the
abstract model provided by Value Set Analysis, among other possibilities.

In a number of situations, some components may actually be recognized, or
may be known in advance by the analyst. In such cases, a possible approach
to guarantee the correctness of a parser’s implementation within a proprietary
software component is to replace it with a known-correct one. This may not
always be possible, since the semantics of the parser itself might not be known
in advance. However, it is common for proprietary code to embed open-source
libraries or components. Unfortunately, such components or libraries are not
always updated within the remaining lifetime of the project, thus exposing the
final software product to vulnerabilities which are likely to be readily discovered
and exploited through the analysis of software repository change logs. When
such a situation occurs, solutions based on static reassembly may be leveraged
for replacing the library with a newer, safer version, or to replace a component’s
parser with a proven correct one.

4 Related Work

Efforts to detect and mitigate memory corruption bugs in low-level programming
languages are not new [27, 13, 3, 2]. For over 35 years, attackers have been able
to hijack the control flow of programs written in languages such as C and C++,
which remain two of the most used programming languages today, especially in
embedded environments where performance is critical. Past and recent research
efforts to address this problem include fuzzing-based techniques [26, 22, 16, 9,
17], program transformation and compiler-based techniques [15, 8, 14] and static
techniques [31, 19, 12, 18, 5], among others.

This preliminary work builds on existing techniques from the domain of
binary program analysis [25, 24], combined with heuristics tailored for the de-
tection of multiple facets of input parsing errors leading to unsafe string manipu-
lations in C and C++ programs. Our approach does not require the source code
of the analyzed application, does not require full system emulation or specific
hardware, and has the potential to apply at scale to the software and firmware
of multiple architectures.

Piston [23], takes a different approach to (uncooperative) patching relying
on binary diffing in order to identify and replace known functions in the tar-
get binary. Our work is orthogonal to this approach, and applies to unknown
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functions as well.
In recent years, mitigation techniques against memory corruption vulnerabil-

ities were added to most of the major operating systems and compilers. Those
include stack canaries [13], address space layout randomization (ASLR) [3],
write or execute (also known as W ⊕ X) [2], XOM [21] among others. While
these techniques are efficient at mitigating attacks by raising the bar for at-
tackers to successfully exploit vulnerabilities, they do not fix the root cause of
such vulnerabilities: the fact that a vast amount of programs are still written in
unsafe languages such as C and C++, and that memory corruption bugs remain
prominent in commodity software.
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