
A Mathematical Modeling of Exploitations and
Mitigation Techniques Using Set Theory

Rodrigo Branco∗
Intel Corporation

Hillsboro, Oregon, USA

rodrigo.branco@intel.com

Kekai Hu∗
Intel Corporation

Hillsboro, Oregon, USA

kekai.hu@intel.com

Henrique Kawakami∗
Intel Corporation

Hillsboro, Oregon, USA

henrique.kawakami@intel.com

Ke Sun∗
Intel Corporation

Hillsboro, Oregon, USA

ke.sun@intel.com

Abstract—One of the most challenging problems in computer
security is formalization of vulnerabilities, exploits, mitigations
and their relationship. In spite of various existing researches
and theories, a mathematical model that can be used to quanti-
tatively represent and analyze exploit complexity and mitigation
effectiveness is still in absence.

In this work, we introduce a novel way of modeling exploits
and mitigation techniques with mathematical concepts from set
theory and big O notation. The proposed model establishes
formulaic relationships between exploit primitives and exploit ob-
jectives, and enables the quantitative evaluation of vulnerabilities
and security features in a system. We demonstrate the application
of this model with two real world mitigation techniques. It
serves as the first step toward a comprehensive mathematical
understanding and modeling of exploitations and mitigations,
which will largely benefit and facilitate the practice of system
security assessment.

Keywords. Computer Security, Language-theoretic Security,

Exploit Modeling, Mitigation Effectiveness, Set Theory

I. INTRODUCTION

Just as the history of spears and shields, exploits and

mitigations have been evolving competitively and interactively

since the very beginning of computer security. The forms,

types and approaches of exploits have expanded extensively

from the simple classic stack overflow to more diverse and

advanced ones like return-oriented programing (ROP) and

call/jump-oriented programing (COP/JOP). While on the side

of defense, mitigation techniques have also been developed

and introduced with increasing quantity and sophistication:

from the early-age stack canary and data execution prevention

(DEP) to the more recent ones such as control flow guard

(CFG) [1] by Microsoft, reuse attack protector (RAP) [2]

by Grsecurity, and the control-flow enforcement technology

(CET) [3] by Intel.

With the blowing up of the diversity and complexity of

exploits and mitigations, it becomes more and more challeng-

ing to accurately describe the essence of a specific exploit

and comprehensively evaluate the effectiveness of a certain

mitigation with respect to the exploit. It remains unfinished

work in the security field to establish a generic modeling for

both exploits and mitigations to distill their essential aspects

in a standardized manner so that the assessment can be made

more straightforward, accurate, and consistent across different

∗Authors are listed in alphabetical order

cases. Although there are well documented and categorized

records such as common weakness enumeration (CWE) [4],

such classifications are generally more descriptive and lacking

of the necessary abstraction to extract the core essences from

the superficial properties of an exploit.

A widely known and accepted concept on exploits in the

security community is weird machine [5]. It clearly describes

how a exploit happens and successfully predicts the bypassing

of many existing exploitation countermeasures such as the

control flow integrity (CFI) technologies [2], [6], [7]. While

the definition of a weird machine pioneered the formalization

of exploitations, more works are left blank on mathemati-

cal modeling and quantitatively analyzing exploitabilities of

security vulnerabilities and the effectiveness of mitigation

technologies.

In this work, we propose a mathematical modeling on

formulating exploitations. The main contributions include:

1) Formal definitions of exploitation and mitigation. The

notation and logic of set theory is applied to construct

the representation of exploits and mitigations, with their

primitives and attributes defined as set members and

grouped as sub sets.

2) Apply the big O notation to mathematically describe

the complexity of exploitations and the effectiveness of

mitigation technologies.

3) Lay down the foundation of a general and practical

modeling approach to map exploits and mitigations

to an abstracted representation that accurately captures

their essential properties, which can standardize and

facilitate exploit-related narratives in security researches

and practices.

II. RELATED WORK

Prior to this work, there have been multiple related efforts

in security research trying to model and theorize exploits and

system states or behavior. The work by Sergey Bratus et al of

Langsec [5], [8] introduces the concept of weird machine and

considers exploits as constructive proofs of the presence of a

weird machine. It uses this abstracted computational model to

describe the famous examples in the history of exploits.

The work by Thomas Dullien [9], [10] considers a computer

program as a finite state machine and points out the essence

of exploitation is setting up, instantiating, and programming

323

2018 IEEE Symposium on Security and Privacy Workshops

© 2018, Rodrigo Branco. Under license to IEEE.
DOI 10.1109/SPW.2018.00050



the weird machine. It discusses the importance of program

implementation and provides a theoretical understanding to

distinguish unexploitable programs from exploitable ones.

In another work by Julien Vanegue on heap-related exploit

modeling [11], [12], more detailed formal definitions are

introduced to describe heap primitives and behaviors.

Despite the great value in these researches per se, they

have yet to provide a general and actionable approach to map

exploits and mitigations to a standard abstract representation,

which will be covered by the scope of this work and discussed

in detail in the following sections.

III. EXPLOIT MODELING

In this section, we illustrate our set theory based mathemat-

ical modeling of security vulnerability and exploit.

A. Definitions and Terminologies

When a system has a security vulnerability, which is a flaw

that can potentially undermine the system security [13], an

attacker may be able to take advantage of it to maliciously

manipulate the system. The process of an attacker manipulat-

ing a vulnerability is called exploit (verb). The word exploit

as a noun is also used to refer a piece of software or a chunk

of data or a sequence of commands that an attacker creates to

make use of a security vulnerability. [14]

Not all of the security vulnerabilities can be used by an

attacker to successfully launch an attack(i.e. they may not be

exploitable). As one of the most challenging problems in ex-

ploit research, evaluating whether a vulnerability is exploitable

depends on multiple conditions including but not limited to:

the goal of an attacker, the ability provided by the vulnerabil-

ity, the system status, and the mitigation implemented in the

system, etc. In order to formalize the abstract representation of

system properties, exploits and mitigations, a series of standard

terms are defined here.

Definition III.1. An exploit primitive (EP) is an attack abil-

ity that an attacker can potentially achieve from a security

vulnerability.

Each exploit primitive is composed of two elements: type
and property. As suggested by their names, the type
identifies the type of an exploit primitive which can be read,

write or execute, while the property further describes the

attack abilities associated with an exploit primitive type, such

as location, timing, repeatability, etc. We define five major

primitive properties in this model: arbitrary addresses, arbi-

trary content, arbitrary operation, arbitrary number of times

and at arbitrary time.

All the security vulnerabilities and exploit technologies can

be abstracted to exploit primitive representations. For example,

a classical stack-based buffer overflow in a system with no

protection can be represented with two exploit primitives: one

write primitive with multiple bits on the stack and one execute

primitive with arbitrary location on the stack.

Definition III.2. An exploit objective (EO) is the final goal

that an attacker wants to achieve in a vulnerable system.

In a vulnerable system, an exploit objective can vary sig-

nificantly based on different goals of different attacks. It can

be either as simple as information leakage of a few memory

bits or as complex as remote code execution.
With an exploit objective defined in a vulnerable system, the

next step is to distinguish the exploitable vulnerabilities from

the non-exploitable ones. Exploit condition is defined for this

purpose.

Definition III.3. An exploit condition (EC) is the minimal

required combination of exploit primitives in a vulnerable

system to make this system exploitable to an exploit objective.

Exploit condition has three fundamental attributes:

• An exploit condition is always associated with an ex-

ploit objective, i.e., an exploit condition should not be

considered as a fixed condition for all the systems in all

scenarios, instead, it should be carefully specified with

respect to an exploit objective. For example, with an

exploit objective of information leakage, a read primi-

tive with multiple bits at arbitrary location is definitely

considered as exploitable while the same read primitive in

the same system without other exploit primitives should

be considered non-exploitable for an exploit objective of

remote code execution.

• An exploit condition is the minimal requirement of an

exploit. Thus, if any primitive in an exploit condition

is removed, this exploit condition is not exploitable any

more.

• One exploit objective can have many different exploit

conditions. If and only if any of these exploit conditions is

met, the exploit objective is exploitable. Take information

leak as an example, both an exploit condition with an

arbitrary read primitive and an exploit condition with a

write and an execute primitives in the memory location

that has read access to the target information would give

the attacker the capability to steal the secret. Any one of

these two exploit conditions makes the exploit objective

information leak exploitable.

Definition III.4. An exploit complexity or exploit difficulty

(ED) applies big O notation to quantitatively describe the

upper bound of the time and cost for the attackers to exploit

an exploit condition.

In a vulnerable system with no protection and no mitigation

implementation, any exploit primitive is considered as O(1)

complexity. By adding mitigation to the system, different

levels of exploit complexities are introduced to corresponding

exploit primitives. We will further elaborate this in Section IV.

B. Set Representation of Exploits
As defined in Definition III.1, an exploit primitive has two

elements: type and property. We use a set T to denote

all the exploit primitive types and a set P to denote all the

exploit primitive properties as follow:

T = {All EP types} = {Read,Write, Execute} (1)

324



P = {All EP properties}
= {arbitrary addresses, arbitrary content,

arbitrary operation, arbitrary number of times,

at arbitrary time}

(2)

Thus, an exploit primitive can be represented as a combi-

nation of a type t ∈ T and a property p ∈ P .

ep = {t, p} (3)

With exploit primitive defined, an exploit condition is a set

of exploit primitives.

ec = {ep1, ep2, . . . , epn}
= {{t1, p1}, {t2, p2}, . . . , {tn, pn}}

(4)

Depending on the number of security vulnerabilities and

their capabilities in a system, the exploitability E of a defined

exploit objective in this system can be represented as a set of

all the possible exploit conditions.

Eeo = {ec1, ec2, . . . , ecn} (5)

Now, let us define the two major set operations in this

model: set union and set subtraction.

When a new vulnerability is found for a certain exploit

objective, new exploit primitives will be available for the

attackers, thus new exploit conditions may be added to the

system. We use set union to represent the increment of the

overall exploitability E as follows.

E′eo = Eeo ∪ ecn+1 = {ec1, ec2, . . . , ecn, ecn+1} (6)

On the other hand, when one or more exploit conditions are

removed or prevented in a system, the overall exploitability

E will decrease. Set subtraction is used in this case to

demonstrate the decline of the attacker’s capability.

E′eo = Eeo − ecn = {ec1, ec2, . . . , ecn−1} (7)

With all the exploit primitives that an attacker have in the

system, for a certain exploit objective, if any of the exploit

conditions is met, i.e., Eeo �= ∅, this exploit objective is

exploitable. To protect an exploit objective to be exploited,

a mitigation need to block all the possible exploit conditions

in the system. Otherwise, the mitigation doesn’t fully protect

the system and can be bypassed. If and only if Eeo = ∅, an

exploit objective is not exploitable.

IV. MITIGATION MODELING

In this section, we introduce the set theory and big O

notation based modeling to abstract mitigations. This way,

the mathematical mitigation modeling is standardized with the

exploits, and quantitatively analysis of mitigation effectiveness

is feasible.

A. Probabilistic and Deterministic Mitigations
In order to eliminate as much as possible the exploitability

of unknown security vulnerabilities in real world systems,

innumerous exploit mitigation techniques are designed and

implemented in a variety of computing environments. After

adopting one or more mitigations in a system, the system

designer intends to protect one or more exploit objectives to

be exploited by removing the attacker’s abilities in the system,

i.e., exploit primitives. If one or more exploit primitives are

removed from an exploit condition by a mitigation, this exploit

condition will not be met. For a specific exploit objective, if

all of its exploit conditions have at least one exploit primitive

removed from them, i.e., for all the eci ∈ E, i = 1, 2, . . . , n,

there is an epj = 0, where epj ∈ eci, this exploit objective

will be non-exploitable with Eeo = ∅.
We propose a new taxonomy to classify these exploit

mitigation techniques into two types: probabilistic mitigations

and deterministic mitigations. The classification is based on

their probabilities of preventing the exploitability of their

target security vulnerabilities, as explained below.

Definition IV.1. A deterministic mitigation (DM) technique

eliminates the exploitability of its target exploit primitives

completely or reduces the chance of exploitation to a neg-

ligibly low probability that is not practical to exploit, under

the assumption that the mitigation is implemented properly

and the exploit is within its mitigation scope.

For instance, the NX bit, which is a technology used in

CPUs to mark certain memory areas not executable, is an

example of a deterministic mitigation. It completely blocks

the exploit primitives of execute type in the marked memory

ranges and malicious software can not break it since it is

enforced at the CPU level.
In our mathematical model, we define that a deterministic

mitigation adds O(∞) exploit complexity to a certain exploit

primitive thus completely blocks it.

Definition IV.2. A probabilistic mitigation (PM) is a miti-

gation that increases the exploit complexity and reduces the

successful rate of its target exploit primitives, but does not

completely eliminate the exploit primitives.

A typical example of a probabilistic mitigation is address

space layout randomization (ASLR). Although it can still be

bypassed in many specific cases and does not fully remove the

exploitability of memory corruption vulnerabilities, it reduces

the possibility of exploiting it.
In our mathematical model, rather than defining a constant

exploit complexity for all the probabilistic mitigations, we

consider different exploit complexities to their target exploit

primitives for different probabilistic mitigations. Take AES-

128 as an example, assume that it takes 2128 tries for the

worst case and 2127 tries for the average case to brute force

the encryption key, we can use the average case exploit com-

plexity O(2127) to represent the exploit difficulty of AES-128.

While in another example, address space layout randomization

(ASLR) does not add too much protection in a system because

325



it only takes O(216) exploit complexity to brute force attack

a 16 bit ASLR.

B. Set Representation of Mitigation

From the security perspective, a computer system includes

a set of valid mitigation technologies, each of which is either

a deterministic mitigation or a probabilistic mitigation. An

empty set of mitigations means the system has no protection.

When a mitigation is applied to a system, it removes or reduces

some of the attacker’s abilities (exploit primitives), but other

exploit primitives might not be affected at all. To generalize

these exploit difficulty effects, we consider that a mitigation

always adds exploit difficulties to all the exploit primitives in

our model. For the target exploit primitives of the mitigation,

it adds either O(∞) exploit complexity if it is a deterministic

mitigation to this exploit primitive, or O(n) exploit complexity

if it is a probabilistic mitigation, where n represents the worst

case exploit complexity to break this mitigation. For the exploit

primitives that it does not add any complexity, and O(1) is

used to represent that there is no complexity change. We use

the new notation ep′ = ep(ed) to represent an exploit primitive

with its exploit difficulty. In a system that has no protection,

no exploit complexity is added to any of the exploit primitives,

hence, ep′ = ep(1).
This way, a mitigation can be represented in a set of its

exploit primitives with the added exploit difficulties.

m = {ep′1(ed1), ep′2(ed2), . . . , ep′n(edn)}
where edi ∈ {O(1), O(n), O(∞)} (8)

Now, let us define a mitigation operation M when a

mitigation is applied to a system. Instead of simply removing

one or more exploit primitives from an exploit condition, the

exploit difficulties of all the exploit primitives in the system

change, thus the exploit difficulty of a certain exploit condition

will also change accordingly:

ec′ = ec M m

= {ep′1(ed1), ep′2(ed2), . . . , ep′n(edn)}
M {ep′1(ed′1), ep′2(ed′2), . . . , ep′n(ed′n)}
= {ep′1(ed′′1), ep′2(ed′′2), . . . , ep′n(ed′′n)

(9)

In this operation, ed1, ed2, . . . , edn represent the exploit

difficulties before the mitigation, ed′1, ed
′
2, . . . , ed

′
n represent

the exploit difficulties that are added by the mitigation, and

ed′′1 , ed
′′
2 , . . . , ed

′′
n represent the exploit difficulties after the

mitigation.

After applying a mitigation in a system, the new exploit

condition ec′ has three possible cases:

1) The new exploit condition ec′ is not a valid exploit

condition any more because at least one of its exploit

primitives are removed from the exploit condition, i.e.,

for any of the ep′i ∈ ec′ where i = 1, 2, . . . , n,

ep′i(ed
′′
i ) = ep′i(∞).

2) The new exploit condition ec′ is still exploitable but with

higher exploit difficulty, i.e., for all of the ep′i ∈ ec′

where i = 1, 2, . . . , n, ep′i(ed
′′
i ) �= ep′i(∞) but some of

the ep′i(ed
′′
i ) > ep′i(edi).

3) The new exploit condition ec′ is still exploitable with the

same exploit difficulty as before the mitigation, i.e., for

all of the ep′i ∈ ec′ where i = 1, 2, . . . , n, ep′i(ed
′′
i ) =

ep′i(edi).
Among these three cases, in contrast to the case 1 and 3

which are the straightforward yes or no cases, case 2 is the

more complicated one depending on the number of exploit

primitives that have O(n) exploit difficulty. Take an exploit

condition that has three exploit primitives as an example:

assume that in a system that has no mitigation, all three exploit

primitives have O(1) exploit difficulty:

ec = {ep′1(1), ep′2(1), ep′3(1)} (10)

After implementing the mitigation, exploit difficulties for

both ep1 and ep3 increase to O(n):

ec = {ep′1(n1), ep
′
2(1), ep

′
3(n3)} (11)

For an attacker to achieve his exploit objective, he needs

to bypass the protection on both ep1 and ep3 at the same

time. In another word, his exploit complexity increases to

O(n1) + O(n3) eventually. With this example, we can see

that the exploit difficulty of ec′ in case 2 is the sum of

O(ni) where i is the number of exploit primitives that has

ep′i(edi) = ep′i(ni).
Now, let us look at the exploitations and mitigations at

the system level to see how this model can be applied

to system security evaluation. Consider a vulnerable system

where an attacker can have five different exploit primitives that

eventually meet three exploit conditions for a certain exploit

objective. Assuming that there is no mitigation implemented in

the initial state of the system, the exploitability of this exploit

objective in the system can be represented as:

Eeo = {ec1(1), ec2(1), ec3(1)} (12)

Each exploit condition is a combination of exploit primi-

tives, in this example, let us say ec1 includes ep1, ep2, ec2
includes ep2, ep3, ep4, and ec3 includes ep1, ep4, ep5 as the

following equation shows:

ec1(1) = {ep′1(1), ep′2(1)}
ec2(1) = {ep′2(1), ep′3(1), ep′4(1)}
ec3(1) = {ep′1(1), ep′4(1), ep′5(1)}

(13)

When a mitigation that can probabilistically mitigate ep2,

ep4 and deterministically mitigate ep5 is implemented in the

system, it introduces extra exploit difficulties to the exploit

primitives:

m = {ep′1(1), ep′2(n2), ep
′
3(1), ep

′
4(n4), ep

′
5(∞)} (14)

Thus, the exploit difficulties of the exploit conditions

change:

326



ec′1(n2) = {ep′1(1), ep′2(n2)}
ec′2(n2 + n4) = {ep′2(n2), ep

′
3(1), ep

′
4(n4)}

ec′3(∞) = {ep′1(1), ep′4(n4), ep
′
5(∞)}

(15)

The overall exploitability E also changes:

Eeo = {ec′1(n2), ec
′
2(n2 + n4), ec

′
3(∞)} (16)

In the new system, we can see that although the mitigation

completely mitigates ec3 and increases the exploit difficulty of

ec2 to O(n2+n4), the exploit complexity of a certain exploit

objective is always depending on the exploit condition that

has minimum exploit difficulty, in this case ec1 with exploit

difficulty O(n2). Thus, the introduced mitigation is only a

probabilistic mitigation to this exploit objective with O(n2)
efficiency.

V. FROM THEORY TO APPLICATION

With the set theory modeling and big O notation defined

in previous sections, real-world mitigation techniques can be

abstracted into mathematical forms and evaluated quantita-

tively for its impact on system security robustness, with regard

to specific exploit objectives, exploit conditions and exploit

primitives. In this section, two classic mitigation technologies

are used as examples, Control Flow Guard (CFG) by Microsoft

and Control-flow Enforcement Technology (CET) by Intel,

to demonstrate the application of the proposed model in

evaluating effectiveness of mitigation techniques.

Control Flow Guard (CFG) is a mitigation technology to

prevent control flow being redirected to unintended locations.

It checks and validates if the target address of an indirect

branch is a valid entry point before the branch can take place

in the execution flow. In a system with CFG enabled, the

number of legal target locations of an indirect branch is much

smaller than an unprotected system. Thus, it is a probabilistic

mitigation of call-oriented programming (COP) and jump-

oriented programming (JOP) in the sense that, despite of not

completely preventing such exploits, it largely reduces the

availability of gadgets that can be used by COP and JOP.[15]

In the form of set representation, for the exploit ob-

jective of arbitrary code execution, COP and JOP need

two basic exploit primitives to meet an exploit condition:

overwrite the branch target address and execute at the tar-

get address, ep1 = Write, arbitrary content and ep2 =
Exec, arbitrary addresses.

ec(1) = {ep1(1), ep2(1)} (17)

With CFG implemented, the arbitrary address in ep2 is

greatly reduced since only a small number of addresses are

considered legal entries for control flow branch. Although

CFG does not completely block ep2, it makes it much harder

and changes its exploit difficulty from O(1) to O(nCFG),
where O(nCFG) is the added complexity to carry out the

COP and JOP type of control flow attack with legal gadgets

only. Therefore, the exploit difficulty of this exploit condition

also changes from O(1) to O(nCFG), and CFG introduces

O(nCFG) extra exploit complexity comparing to unmitigated

case:

ec(nCFG) = {ep1(1), ep2(nCFG)} (18)

Besides CFG, another control flow integrity mitigation is

Control-flow Enforcement Technology (CET) which contains

two parts: indirect branch tracking (IBT) and shadow stack.

The IBT part bears large similarity to CFG in terms of its

purpose. It is a hardware-supported feature that inserts special

labels to mark indirect branch targets as legal entry points

and validates the label every time there is a indirect branch.

Therefore IBT of CET is also a probabilistic mitigation of

COP/JOP and has the effectiveness O(nCET ) similar to CFG.

Both of them greatly reduce the possible gadgets rather than

completely blocking the exploits.

The second part of CET is the shadow stack (SS), which

pushes and pops the return address into a hardware-controlled

stack independently from the active stack used by the process.

It mitigates return-oriented programming (ROP) by checking

the return address on the process stack with the shadow stack

every time when a return instruction needs to be executed.

Within its security premises, shadow stack can be considered

as a deterministic mitigation for ROP (there could be exception

cases such as implementation flaws that compromise partially

or fully the mitigation, but in this work the mitigations are only

considered by its designed figure of merits). In the proposed

model, ROP must have an exploit primitive of overwrite the

return address, ep1 = Write, arbitrary content. With the

mitigation of shadow stack, the exploit difficulty of this exploit

primitive changes from O(1) to O(∞), thus ROP attacks will

be deterministically blocked:

ec(∞) = {ep1(∞), ep2(1), . . . , epn(1)} (19)

VI. CONCLUSION

In this paper, a set theory and big O notation based math-

ematical modeling of exploitations and mitigation techniques

are introduced and assessed. The proposed model is designed

to assist the evaluation of vulnerabilities and security features

in a product, so that system designers can choose the optimal

set of mitigations for a given set of exploits. On the other

hand, the model can be also used by security analysts to find

the optimal set of exploit primitives to achieve a given exploit

goal. The current version of the model defines the theoretical

framework and lay down the foundation for further elaboration

and enrichment to make it more practical to be adopted in

formal security analysis.

In summary, the use of this model can provide the following

benefits: (1) Assist the evaluation of security features in a

product, so that system designers can choose the optimal set

of mitigations for a given set of exploits. (2) Find the optimal

set of exploit primitives that are necessary to achieve a given

exploit goal. (3) Provide a straightforward way of quantifying

the impacts of a security-related bugs.

327



REFERENCES

[1] Microsoft, “Control flow guard,” 2015. [On-
line]. Available: https://msdn.microsoft.com/en-
us/library/windows/desktop/mt637065(v=vs.85).aspx

[2] P. Team, “Rap: Rip rop,” 2015, hackers to Hackers Conference.
[Online]. Available: https://pax.grsecurity.net/docs/PaXTeam-H2HC15-
RAP-RIP-ROP.pdf

[3] Intel, “Control flow enforcement technology,” 2016. [Online]. Available:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf

[4] MITRE, “Common weakness enumeration.” [Online]. Available:
https://cwe.mitre.org

[5] S. Bratus, M. Locasto, M. Patterson, L. Sassaman, and A. Shubina,
“Exploit Programming: from Buffer Overflows to Weird Machines
and Theory of Computation,” USENIX ;login:, Dec. 2011. [Online].
Available: http://langsec.org/papers/Bratus.pdf

[6] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in Proceedings of the 12th ACM Conference on
Computer and Communications Security, ser. CCS ’05. New
York, NY, USA: ACM, 2005, pp. 340–353. [Online]. Available:
http://doi.acm.org/10.1145/1102120.1102165

[7] K. Hu, H. Chandrikakutty, R. Tessier, and T. Wolf, “Scalable hardware
monitors to protect network processors from data plane attacks,” in 2013
IEEE Conference on Communications and Network Security (CNS), Oct
2013, pp. 314–322.

[8] J. Bangert, S. Bratus, R. Shapiro, and S. W. Smith, “The
page-fault weird machine: Lessons in instruction-less computation,”
in Presented as part of the 7th USENIX Workshop on
Offensive Technologies. Washington, D.C.: USENIX, 2013. [On-
line]. Available: https://www.usenix.org/conference/woot13/workshop-
program/presentation/Bangert

[9] T. F. Dullien, “Weird machines, exploitability, and provable unex-
ploitability,” IEEE Transactions on Emerging Topics in Computing,
vol. PP, no. 99, pp. 1–1, 2017.

[10] ——, “Exploitation and state machines,” 2011, infil-
trate Offensive Security Conference. [Online]. Available:
http://www.slideshare.net/scovetta/fundamentals-of-exploitationrevisited

[11] J. Vanegue, “The weird machines in proof-carrying code,” in 2014 IEEE
Security and Privacy Workshops, May 2014, pp. 209–213.

[12] ——, “Heap model for exploit systems,” 2015, iEEE Security and
Privacy LangSec Workshop.

[13] I. Arce, “On the quality of exploit code: An evaluation of publicly
available exploit code,” 2005, rSA Security Conference.

[14] C. Sarraute, “Automated attack planning,” CoRR, vol. abs/1307.7808,
2013. [Online]. Available: http://arxiv.org/abs/1307.7808

[15] M. Miller, “Modeling the exploitation and mitigation of memory safety
vulnerabilities,” 2012, breakpoint Conference.

328


