
Exploring Adversarial Examples
in Malware Detection

Octavian Suciu
University of Maryland, College Park

osuciu@umiacs.umd.edu

Scott E. Coull
FireEye, Inc.

scott.coull@fireeye.com

Jeffrey Johns
FireEye, Inc.

jeffrey.johns@fireeye.com

Abstract—The convolutional neural network (CNN) architec-
ture is increasingly being applied to new domains, such as
malware detection, where it is able to learn malicious behavior
from raw bytes extracted from executables. These architectures
reach impressive performance with no feature engineering effort
involved, but their robustness against active attackers is yet
to be understood. Such malware detectors could face a new
attack vector in the form of adversarial interference with the
classification model. Existing evasion attacks intended to cause
misclassification on test-time instances, which have been exten-
sively studied for image classifiers, are not applicable because
of the input semantics that prevents arbitrary changes to the
binaries. This paper explores the area of adversarial examples
for malware detection. By training an existing model on a
production-scale dataset, we show that some previous attacks
are less effective than initially reported, while simultaneously
highlighting architectural weaknesses that facilitate new attack
strategies for malware classification. Finally, we explore how
generalizable different attack strategies are, the trade-offs when
aiming to increase their effectiveness, and the transferability of
single-step attacks.

I. INTRODUCTION

The popularity of convolutional neural network (CNN)

classifiers has lead to their adoption in fields which have been

historically adversarial, such as malware detection [1], [2].

Recent advances in adversarial machine learning have high-

lighted weaknesses of classifiers when faced with adversarial

samples. One such class of attacks is evasion [3], which acts

on test-time instances. The instances, also called adversarial

examples, are modified by the attacker such that they are

misclassified by the victim classifier even though they still

resemble their original representation. State-of-the-art attacks

focus mainly on image classifiers [4]–[7], where attacks add

small perturbations to input pixels that lead to a large shift in

the victim classifier feature space, potentially shifting it across

the classification decision boundary. The perturbations do not

change the semantics of the image as a human oracle easily

identifies the original label associated with the image.

In the context of malware detection, adversarial examples

could represent an additional attack vector for an attacker

determined to evade such a system. However, domain-specific

challenges limit the applicability of existing attacks designed

against image classifiers on this task. First, the strict semantics

of binary files disallows arbitrary perturbations in the input

space. This is because there is a structural interdependence

between adjacent bytes, and any change to a byte value

could potentially break the functionality of the executable.

Second, limited availability of representative datasets or ro-

bust public models limits the generality of existing studies.

Existing attacks [8], [9] use victim models trained on very

small datasets, and make various assumptions regarding their

strategies. Therefore, the generalization effectiveness across

production-scale models and the trade-offs between various

proposed strategies is yet to be evaluated.

This paper sheds light on the generalization property of ad-

versarial examples against CNN-based malware detectors. By

training on a production-scale dataset of 12.5 million binaries,

we are able to observe interesting properties of adversarial

attacks, showing that their effectiveness could be misestimated

when small datasets are used for training, and that single-step

attacks are more effective against robust models trained on

larger datasets.

Our contributions are as follows:

• We measure the generalization property of adversarial

attacks across datasets, highlighting common properties

and trade-offs between various strategies.

• We unearth an architectural weakness of a published

CNN architecture that facilitates existing attack strate-

gies [8], [9].

• We investigate the transferability of single-step adversar-

ial examples across models trained on different datasets.

II. BACKGROUND

The CNN architecture has proven to be very successful

across popular vision tasks, such as image classification [10].

This lead to an increased adoption in other fields and do-

mains, with one such example being text classification from

character-level features [11], which turns out to be extremely

similar to the malware classification problem discussed in

this paper. In this setting, a natural language document is

represented as a sequence of characters, and the CNN is

applied on that one-dimensional stream of characters. The

intuition behind this approach is that a CNN is capable of

automatically learning complex features, such as words or

word sequences, by observing compositions of raw signals

extracted from single characters. This approach also avoids the

requirement of defining language semantic rules, and is able

to tolerate anomalies in features, such as word misspellings.

The classification pipeline first encodes each character into

a fixed-size embedding vector. The sequence of embeddings

8

2019 IEEE Security and Privacy Workshops (SPW)

© 2019, Octavian Suciu. Under license to IEEE.
DOI 10.1109/SPW.2019.00015

Fig. 1: Architecture for the MalConv Model.

acts as input to a set of convolutional layers, intermixed

with pooling layers, then followed by fully connected layers.

The convolutional layers act as receptors, picking particular

features from the input instance, while the pooling layers act as

filters to down-sample the feature space. The fully connected

layers act as a non-linear classifier on the internal feature

representation of instances.

A. CNNs for Malware Classification.

Similar to this approach, the security community explored

the applicability of CNNs to the task of malware detection.

Raff et al. [1] and Krčál et al. [2] use the CNNs on a raw

byte representation, whereas Davis and Wolff [12] use it on

disassembled functions. In this work we focus on the raw byte

representation. In an analogy to the text domain, an executable

file could be conceptualized as a sequence of bytes that are

arranged into higher-level features, such as instructions or

functions. By allowing the classifier to automatically learn

features indicative of maliciousness, this approach avoids the

labor-intensive feature engineering process typical of malware

classification tasks. Manual feature engineering proved to be

challenging in the past and led to an arms race between

antivirus developers and attackers aiming to evade them [13].

However, the robustness of these automatically learned fea-

tures in the face of evasion is yet to be understood.

In this paper, we explore evasion attacks by focusing

on a byte-based convolutional neural network for malware

detection, called MalConv [1], whose architecture is shown

in Figure 1. MalConv reads up to 2MB of raw byte values

from a Portable Executable (PE) file as input, appending

a distinguished padding token to files smaller than 2MB

and truncating extra bytes from larger files. The fixed-length

sequences are then transformed into an embedding repre-

sentation, where each byte is mapped to an 8-dimensional

embedding vector. These embeddings are then passed through

a gated convolutional layer, followed by a temporal max-

pooling layer, before being classified through a final fully

connected layer. Each convolutional layer uses a kernel size of

500 bytes with a stride of 500 (i.e., non-overlapping windows),

and each of the 128 filters is passed through a max-pooling

layer. This results in a unique architectural feature that we

will revisit in our results: each pooled filter is mapped back to

a specific 500-byte sequence and there are at most 128 such

sequences that contribute to the final classification across the

entire input. Their reported results on a testing set of 77,349

samples achieved a Balanced Accuracy of 0.909 and Area

Under the Curve (AUC) of 0.982.

B. Adversarial Binaries.

Unlike evasion attacks on images [4]–[7], attacks that alter

the raw bytes of PE files must maintain the syntactic and

semantic fidelity of the original file. The Portable Executable

(PE) standard [14] defines a fixed structure for these files. A

PE file contains a leading header enclosing file metadata and

pointers to the sections of the file, followed by the variable-

length sections which contain the actual program code and

data. Changing bytes arbitrarily could break the malicious

functionality of the binary or, even worse, prevent it from

loading at all. Therefore, an attacker constrained to static

analysis of the binaries has limited leverage on the features

they can modify.

Recent work [8], [9] suggests two strategies of address-

ing these limitations. The first one avoids this problem by

appending adversarial noise to the end of the binary. Since

the appended adversarial bytes are not within the defined

boundaries of the PE file, their existence does not impact the

binary’s functionality and there are no inherent restrictions on

the syntax of bytes (i.e., valid instructions and parameters).

The trade-off, however, is that the impact of the appended

bytes on the final classification is offset by the features present

in the original sample, which remain unchanged. As we will

see, these attacks take advantage of certain vulnerabilities in

position-independent feature detectors present in the MalConv

architecture. The second strategy [9] seeks to discover regions

in the executable that are not mapped to memory and that,

upon modification, would not affect the intended behavior.

However, the utility of this approach compared to append

strategies has not been studied before. In this paper, we

evaluate the comparative effectiveness of the two strategies

at scale and highlight their transferability across models, as

well as trade-offs that might affect their general applicability.

C. Datasets.

To evaluate the success of evasion attacks against the Mal-

Conv architecture we utilize three datasets. First, we collected

16.3M PE files from a variety of sources, including VirusTotal,

Reversing Labs, and proprietary FireEye data. The data was

used to create a production-quality dataset of 12.5M training

samples and 3.8M testing samples, which we refer to as the

Full dataset. The corpus contains 2.2M malware samples in

the training set, and 1.2M in testing. The dataset was created

from a larger pool of more than 33M samples using a stratified

sampling technique based on malware family. Use of stratified

sampling ensures uniform coverage over the canonical ‘types’

of binaries present in the dataset, while also limiting bias from

certain overrepresented types (e.g., popular malware families).

Second, we utilize the EMBER dataset [15], which is a publicly

available dataset comprised of 1.1M PE files, out of which

900K are used for training. On this dataset, we use the pre-

trained MalConv model released with the dataset. In addition,

we also created a smaller dataset whose size and distribution

is more in line with Kolosnjaji et al.’s evaluation [8], which

we refer to as the Mini dataset. The Mini dataset was created

by sampling 4,000 goodware and 4,598 malware samples from

9

the Full dataset. Note that both datasets follow a strict temporal

split where test data was observed strictly later than training

data. We use the Mini dataset in order to explore whether

the attack results demonstrated by Kolosnjaji et al. would

generalize to a production-quality model, or whether they are

artifacts of the dataset properties.

III. BASELINE PERFORMANCE

To validate our implementation of the MalConv architec-

ture [1], we train the classifier on both the Mini and the Full

datasets, leaving out the DeCov regularization addition sug-

gested by the authors. Our implementation uses a momentum-

based optimizer with decay and a batch size of 80 instances.

We train on the Mini dataset for 10 full epochs. We also

trained the Full dataset for 10 epochs, but stopped the process

early due to a small validation loss1. To assess and compare

the performance of the two models, we test them on the

entire Full testing set. The model trained on the Full dataset

achieves an accuracy of 0.89 and an AUC of 0.97, which is

similar to the results published in the original MalConv paper.

Unsurprisingly, the Mini model is much less robust, achieving

an accuracy of 0.73 and an AUC of 0.82. The MalConv model

trained on EMBER was reported to achieve 0.99 AUC on the

corresponding test set.

IV. ATTACK STRATEGIES

We now present the attack strategies used throughout our

study and discuss their trade-offs.

A. Append Attacks

Append-based strategies address the semantic integrity con-

straints of PE files by appending adversarial noise to the orig-

inal file. We start by presenting two attacks first introduced by

Kolosnjaji et al. [8] and evaluated against MalConv, followed

by our two strategies intended to evaluate the robustness of

the classifier.

a) Random Append: This attack works by appending

byte values sampled from a uniform distribution. This baseline

attack measures how easily an append attack could offset

features derived from the file length, and helps compare the

actual adversarial gains from more complex append strategies

over random appended noise.

b) Gradient Append: The Gradient Append strategy uses

the input gradient value to guide the changes in the appended

byte values. The algorithm appends numBytes to the candi-

date sample and updates their values over numIter iterations

or until the victim classifier is evaded. The gradient of the

output with respect to the input layer indicates the direction,

in the input space, of the change required to minimize the

output, therefore pushing its value towards the benign class.

The representation of all appended bytes is iteratively updated,

starting from random values. However, as the input bytes are

mapped to a discrete embedding representation in MalConv,

the end-to-end architecture becomes non-differentiable and its

input gradient cannot be computed analytically. Therefore,

1This was also reported in the original MalConv study.

this attack uses a heuristic to instead update the embedding

vector and discretize it back in the byte space to the closest

byte value along the direction of the embedding gradient. We

refer interested readers to the original paper for details of this

discretization process [8]. The attack requires numBytes ∗
numIter gradient computations and updates to the appended

bytes in the worst case, which could be prohibitively expensive

for large networks.
c) Benign Append: This strategy allows us to observe

the susceptibility of the MalConv architecture, specifically its

temporal max-pooling layer, to attacks that reuse benign byte

sequences at the end of a file. The attack takes bytes from

the beginning of benign instances and appends them to the

end of a malicious instance. The intuition behind this attack

is that leading bytes of a file, and especially the PE headers,

are the most influential towards the classification decision [1].

Therefore, it signals whether the maliciousness of the target

could be offset by appending highly influential benign bytes.

Algorithm 1 The FGM Append attack

1: function FGMAPPEND(x0, numBytes, ε)
2: x0 ← PADRANDOM(x0, numBytes)
3: e← GETEMBEDDINGS(x0)
4: eu ← GRADIENTATTACK(e, ε)
5: for i in |x0|...|x0|+ numBytes− 1 do
6: e[i]← eu[i]
7: end for
8: x∗ ← EMBEDDINGMAPPING(e)
9: return x∗

10: end function
11: function GRADIENTATTACK(e, ε)
12: eu ← e− ε ∗ sign(∇l(e))
13: return eu
14: end function
15: function EMBEDDINGMAPPING(ex)
16: e← ARRAY(256)
17: for byte in 0...255 do
18: e[byte]← GETEMBEDDINGS(byte)
19: end for
20: for i in 0...|ex| do
21: x∗[i]← argminb∈0...255(||ex[i]− e[b]||2)
22: end for
23: return x∗

24: end function

d) FGM Append: Based on the observation that the

convergence time of the Gradient Append attack grows linearly

with the number of appended bytes, we propose the “one-

shot” FGM Append attack, an adaptation of the Fast Gradient

Method (FGM) originally described in [5]. The adaptation of

the FGM attack to the malware domain was first proposed

by Kreuk et al. [9] in an iterative algorithm intended to

generate a small-sized adversarial payload. In contrast, our

attack strategy aims to highlight vulnerabilities of the model

as a function of the increasing adversarial leverage. The

pseudocode is described in Algorithm 1. Our attack starts by

appending numBytes random bytes to the original sample

x0 and updating them using a policy dictated by FGM. The

attack uses the classification loss l of the output with respect

to the target label. FGM updates each embedding value by a

user specified amount ε in a direction that minimizes l on the

input, as dictated by the sign of the gradient ∇l. While this

attack framework is independent of the distance metric used

to quantify perturbations, our experiments use L∞. In order to

10

Fig. 2: CDF of file sizes and activation locations determined

by MalConvs max pooling layer.

avoid the non-differentiability issue, our attack performs the

gradient-based updates of the appended bytes in the embed-

ding space, while mapping the updated value to the closest

byte value representation in EMBEDDINGMAPPING using the

L2 distance metric. A more sophisticated mapping could be

used to ensure that the update remains beneficial towards

minimizing the loss. However, we empirically observed that

the metric choice does not significantly affect the results for

our single-step attack.

B. Limitations of Append Strategies

Besides the inability to append bytes to files that already

exceed the model’s maximum size (e.g., 2MB for MalConv),

append-based attacks can suffer from an additional limitation.

In the MalConv architecture, a PE file is broken into non-

overlapping byte sequences of length 500. With a maximum

file size of 2MB, that corresponds to at most 4,195 such

sequences. The model uses 128 features, meaning only 128 of

the 4,195 sequences can ever be selected. In Figure 2, we select

a random set of 200 candidate malware samples and examine

the file size distribution and which of the 4,195 sequences are

being selected, on average, by the model. This shows that, for

example, while the first 1,000 sequences (0.5 MB) in binaries

correspond to 79% of the actual features for the classifier,

only 55% of the files are smaller than that. Additionally, 13%

of the instances cannot be attacked at all because they are

larger than the maximum file size for the classifier. The result

shows not only that appended bytes need to offset a large

fraction of the original discriminative features, but also that

attacking the byte sequences of these discriminative features

directly will likely amplify the attack effectiveness due to their

importance. Driven by this intuition, we proceed to describe an

attack strategy that would exploit the existing bytes of binaries

with no side effects on the functionality of the program.

C. Slack Attacks

a) Slack FGM: Our strategy defines a set of slack

bytes where an attack algorithm is allowed to freely modify

bytes in the existing binary without breaking the PE. Once

identified, the slack bytes are then modified using a gradient-

based approach. The SLACKATTACK function in Algorithm 2

highlights the architecture of our attack. The algorithm is

independent of the SLACKINDEXES method employed for

extracting slack bytes or the gradient-based method in GRA-

DIENTATTACK used to update the bytes.

Algorithm 2 The Slack FGM attack

1: function SLACKATTACK(x0)
2: m← SLACKINDEXES(x0)
3: e← GETEMBEDDINGS(x0)
4: eu ← GRADIENTATTACK(e)
5: xu ← EMBEDDINGMAPPING(eu)
6: x∗ ← x0

7: for idx in m do
8: x∗[idx]← xu[idx]
9: end for

10: return x∗

11: end function
12: function SLACKINDEXES(x)
13: s← GETPESECTIONS(x)
14: m← ARRAY(0)
15: for i in 0...|s| do
16: if s[i].RawSize > s[i].V irtualSize then
17: rs ← s[i].RawAddress + s[i].V irtualSize
18: re ← s[i].RawSize
19: for idx in rs...re do
20: m← APPEND(m, idx)
21: end for
22: end if
23: end for
24: return m
25: end function

In our experiments we use a simple technique that empiri-

cally proves to be effective in finding sufficiently large slack

regions. This strategy extracts the gaps between neighboring

PE sections of an executable by parsing the executable section

header. The gaps are inserted by the compiler and exist

due to misalignments between the virtual addresses and the

multipliers over the block sizes on disk. We compute the

size of the gap between consecutive sections in a binary as

RawSize − V irtualSize, and define its byte start index in

the binary by the section’s RawAddress+ V irtualSize. By

combining all the slack regions, SLACKINDEXES returns a

set of indexes over the existing bytes of a file, indicating

that they can be modified. This technique was first mentioned

in [9]. However, to our knowledge, a systematic evaluation

of its effectiveness and the comparison between the slack and

append strategies have not been performed before.

Although more complex byte update strategies are possible,

potentially accounting for the limited leverage imposed by the

slack regions, we use the technique introduced for the FGM

Append attack in Algorithm 1, which proved to be effective.

Like in the case of FGM Append, updates are performed on

the embeddings of the allowed byte indexes and the updated

values are mapped back to the byte values using the L2

distance metric.

11

Append Bytes Random Append Benign Append FGM Append
Mini EMBER Full Mini EMBER Full Mini EMBER Full

500 0% 0% 0% 4% 0% 0% 1% 13% 13%

2,000 0% 0% 0% 5% 1% 0% 2% 18% 30%

5,000 0% 0% 0% 6% 2% 1% 2% 26% 52%

10,000 0% 0% 0% 9% 2% 1% 1% 33% 71%

TABLE I: Success Rate of the Append attacks for increased leverage on the Mini, EMBER and Full datasets.

V. RESULTS

Here, we evaluate the attacks described in the previous

section in the same adversarial settings using models trained

on the Mini, EMBER and Full datasets. Our evaluation seeks

to answer the following questions:

• How do existing attacks generalize to classifiers trained

on larger datasets?

• How vulnerable is a robust MalConv architecture to

adversarial samples?

• Are slack-based attacks more effective than append at-

tacks?

• Are single-step adversarial samples transferable across

models?

In an attempt to reproduce prior work, we select candidate

instances from the test set set if they have a file size smaller

than 990,000 bytes and are correctly classified as malware by

the victim. We randomly pick 400 candidates and measure

the effectiveness of the attacks using the Success Rate (SR):

the percentage of adversarial samples that successfully evaded

detection.

A. Append Attacks.

We evaluate the append-based attacks on the Mini, EMBER

and the Full datasets by varying the number of appended bytes,

and summarize the results in Table I. The Random Append

attack fails on all three models, regardless of the number of

appended bytes. This result is in line with our expectations,

demonstrating that the MalConv model is immune to random

noise and that the input size is not among the learned features.

However, our results do not reinforce previously reported

success rates of up to 15% by Kolosnjaji et al. [8].

The SR of the Benign Append attack seems to progressively

increase with the number of added bytes on the Mini dataset,

but fails to show the same behavior on the EMBER and Full

datasets. Conversely, in the FGM Append attack we observe

that the attack fails on the Mini dataset, while reaching up

to 33% SR on EMBER and 71% SR on the Full datasets.

This paradoxical behavior highlights the importance of large,

robust datasets in evaluating adversarial attacks. One reason

for the discrepancy in attack behaviors is that the MalConv

model trained using the Mini dataset (modeled after the dataset

used by Kolosnjaji et al.) has a severe overfitting problem.

In particular, the success of appending specific benign byte

sequences from the Mini dataset could be indicative of poor

generalizability and this is further supported by the disconnect

between the model’s capacity and the number of samples in the

Mini dataset. When we consider the single-step FGM Attack’s

success on the EMBER and Full datasets, and its failure on the

Mini dataset, we believe these results can also be explained

by poor generalizability in the Mini model; the single gradi-

ent evaluation does not provide enough information for the

sequence of byte changes made in the attack. Recomputing

the gradient after each individual byte change is expected

to result in a higher attack success rate. Finally, we also

observe a large discrepancy between the SR on the EMBER

and Full models, which counterintuitively highlights the model

trained on a larger dataset as being more vulnerable. The

results reveal an interesting property of single-step gradient-

based atttacks: with more training data, the model encodes

more sequential information and a single gradient evaluation

becomes more beneficial for the attack. Conversely, updating

the bytes independently of one another on the less robust

model is less likely to succeed.

Aside from the methodological issues surrounding dataset

size and composition, our results also show that even a robustly

trained MalConv classifier is vulnerable to append attacks

when given a sufficiently large degree of freedom. Indeed,

the architecture uses 500 byte convolutional kernels with a

stride size of 500 and a single max pool layer for the entire

file, which means that not only is it looking at a limited set

of relatively coarse features, but it also selects the best 128

activations locations irrespective of location. That is, once

a sufficiently large number of appended bytes are added in

the FGM attack, they quickly replace legitimate features from

the original binary in the max pool operation. Therefore, the

architecture does not encode positional information, which is a

significant vulnerability that we demonstrate can be exploited.

Additionally, we implemented the Gradient Append attack

proposed by Kolosnjaji et al., but failed to reproduce the

reported results. We aimed to follow the original descrip-

tion, with one difference: our implementation, in line with

the original MalConv architecture, uses a special token for

padding, while Kolosnjaji et al. use the byte value 0 instead.

We evaluated our implementation under the same settings as

the other attacks, but none of the generated adversarial samples

were successful. One limitation of the Gradient Append attack

that we identified is the necessity to update the value of

each appended byte at each iteration. However, different byte

indexes might converge to their optimal value after a varying

number of iterations. Therefore, successive and unnecessary

updates may even lead to divergence of some of the byte val-

ues. Indeed, empirically investigating individual byte updates

across iterations revealed an interesting oscillating pattern,

where some bytes receive the same sequence of byte values

cyclically in later iterations.

12

(a) Slack FGM attack SR for increasing ε (b) SR for EMBER Model (c) SR for Full Model

Fig. 3: Evaluation of the Slack FGM attack on the EMBER and Full models.

B. Slack Attacks.

We evaluate the Slack FGM attack over the EMBER and

Full datasets for the same experimental settings as above.

In order to control the amount of adversarial noise added

in the slack bytes, we use the ε parameter to define an L2

ball around the original byte value in the embedding space.

Only those values provided by the FGM attack that fall within

the ε ball are considered for the slack attack, otherwise the

original byte value will remain. As illustrated in Figure 3a,

by varying ε we control the percentage of available slack

bytes that are modified. The upper bound for the SR is 15%

on EMBER for an attack where 14% (291/2103) slack bytes

were modified on average, while on Full we achieve 28% SR

for 58% (1117/1930). While the attack is more successful

against Full than EMBER, it also succeeds in modifying a

proportionally larger number of bytes. We observe that the

EMBER model returns very small gradient values for the slack

bytes, indicating that their importance for classifying the target

is low. The results also reinforce our hypothesis about the

single gradient evaluation on the FGM Append attack.

In order to compare Slack FGM with the append attacks, in

Figures 3b and 3c we plot the SR as a function of the number

of modified bytes. The results show that, while the FGM

Append attack could achieve a higher SR, it also requires a

much larger number of byte modifications. On EMBER, Slack

FGM modifies 291 bytes on average, corresponding to a SR

for which FGM Append requires approximately 500 bytes. On

Full, the attack achieves a SR of 27% for an average of 1005

modified bytes, while the SR of the FGM Append lies around

20% for the same setting. The results confirm our initial

intuition that the coarse nature of MalConv’s features requires

consideration of the surrounding contextual bytes within the

convolutional window. In the slack attack, we make use of

existing contextual bytes to amplify the power of our FGM

attack without having to generate a full 500-byte convolutional

window using appended bytes.

C. Attack Transferability.

We further analyze the transferability of attack samples

generated for one (source) model against another (target).

We run two experiments with EMBER and Full alternately

acting as source and target, and evaluate FGM Append and

Slack FGM attacks on samples that successfully evade the

source model and for which the original (pre-attack) sample is

correctly classified by the target model. At most 2/400 samples

evade the target model for each set of experiments, indicating

that these single-step samples are not transferable between
models. The findings are not in line with prior observations

on adversarial examples for image classification, where single-

step samples were found to successfully transfer across mod-

els [16]. Nevertheless, we leave a systematic transferability

analysis of other embedding mappings and stronger iterative

attacks for future work.

VI. RELATED WORK

The work by Barreno et al. [17] was among the first to sys-

tematize attack vectors against machine learning, where they

distinguished evasion as a type of test-time attack. Since then,

several evasion attacks have been proposed against malware

detectors. Many of these attacks focus on additive techniques

for evasion, where new capabilities or features are added to

cause misclassification. For instance, Biggio et al. [3] use a

gradient-based approach to evade detection by adding new

features to PDFs, while Grosse et al. [18] and Hu et al. [19]

add new API calls to evade detection. Al-Dujaili et al. [20] pro-

pose an adversarial training framework against these additive

attacks. More recently, Anderson et al. [21] used reinforcement

learning to evade detectors by selecting from a pre-defined

list of semantics-preserving transformations. Similarly, Xu et

al. [22] propose a genetic algorithm for manipulating PDFs

while maintaining necessary syntax. Closest to our work are

the gradient-based attacks by Kolosnjaji et al. [8] and Kreuk

et al. [9] against the MalConv architecture. By contrast,

our attacks are intended to highlight trade-offs between the

append and slack strategies, and to test the robustness of

13

the MalConv architecture when trained on production-scale

datasets. Additionally, to our knowledge, the transferability

of single-step adversarial attacks on malware has not been

previously studied despite prior work that suggests it is best

suited for mounting black-box attacks [16].

VII. CONCLUSION

In this paper, we explored the space of adversarial examples

against deep learning-based malware detectors. Our experi-

ments indicate that the effectiveness of adversarial attacks on

models trained using small datasets does not always gener-

alize to robust models. We also observe that the MalConv

architecture does not encode positional information about the

input features and is therefore vulnerable to append-based

attacks. Finally, our attacks highlight the threat of adversarial

examples as an alternative to evasion techniques such as

runtime packing.

ACKNOWLEDGMENTS

We thank Jon Erickson for helpful discussions with regard

to slack attack methods and the anonymous reviewers for their

constructive feedback.

REFERENCES

[1] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware detection by eating a whole exe,” arXiv preprint
arXiv:1710.09435, 2017.

[2] M. Krčál, O. Švec, M. Bálek, and O. Jašek, “Deep convolutional
malware classifiers can learn from raw executables and labels only,” In-
ternational Conference on Learning Representations (Workshop), 2018.
[Online]. Available: https://openreview.net/forum?id=HkHrmM1PM

[3] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning
at test time,” in Joint European conference on machine learning and
knowledge discovery in databases. Springer, 2013, pp. 387–402.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[5] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[6] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 2017, pp. 506–519.

[7] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 39–57.

[8] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto,
C. Eckert, and F. Roli, “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” 26th European Signal
Processing Conference (EUSIPCO ’18), 2018.

[9] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and
J. Keshet, “Deceiving end-to-end deep learning malware detectors using
adversarial examples,” 2018.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[11] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in neural information
processing systems, 2015, pp. 649–657.

[12] A. Davis and M. Wolff, “Deep learning on disassembly data,” Black
Hat, USA, 2015.

[13] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “Sok:
Deep packer inspection: A longitudinal study of the complexity of run-
time packers,” in 2015 IEEE Symposium on Security and Privacy (SP).
IEEE, 2015, pp. 659–673.

[14] Microsoft, “Pe format,” https://docs.microsoft.com/en-us/windows/
desktop/debug/pe-format, 2018. [Online]. Available: https://docs.
microsoft.com/en-us/windows/desktop/debug/pe-format

[15] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training
Static PE Malware Machine Learning Models,” ArXiv e-prints, Apr.
2018.

[16] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” arXiv preprint arXiv:1611.01236, 2016.

[17] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security
of machine learning,” Machine Learning, vol. 81, no. 2, pp. 121–148,
2010.

[18] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial examples for malware detection,” in European Symposium
on Research in Computer Security. Springer, 2017, pp. 62–79.

[19] W. Hu and Y. Tan, “Black-box attacks against RNN based malware
detection algorithms,” in The Workshops of the The Thirty-Second AAAI
Conference on Artificial Intelligence, New Orleans, Louisiana, USA,
February 2-7, 2018., 2018.

[20] A. Huang, A. Al-Dujaili, E. Hemberg, and U.-M. O’Reilly, “Adversarial
deep learning for robust detection of binary encoded malware,” arXiv
preprint arXiv:1801.02950, 2018.

[21] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, “Learning
to evade static pe machine learning malware models via reinforcement
learning,” arXiv preprint arXiv:1801.08917, 2018.

[22] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in
Proceedings of the 2016 Network and Distributed Systems Symposium,
2016.

14

