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Abstract—We describe a method for approximating any
bounded activation function given encrypted input data. The
utility of our method is exemplified by simulating it within two
typical machine learning tasks: namely, a Variational Autoen-
coder that learns a latent representation of MNIST data, and an
MNIST image classifier.

Index Terms—machine learning, homomorphic encryption,
privacy, security, activation function, non-polynomial function

I. INTRODUCTION

Efficiently calculating non-linear activation functions is

essential for deep learning algorithms. These are the com-

binations and distortions of a neural unit’s inputs, using

functions such as hyperbolic tangents and sigmoids, that give

neural networks their real applicability. Various techniques

have previously claimed to compute these functions securely

over encrypted data, but use either Secure Two-Party Compu-

tation (2PC) [23], [28], distantly approximated functions [21],

or special-purpose activation functions [18] as approaches.

Unfortunately, the proposed approaches are not realistic in

many real-world use cases.

First, in the case of 2PC-based solutions, a client must

remain online to communicate with the remote server over

multiple rounds and might incur substantial computational

costs on small devices. More specifically, in [28], [29],

methods are described for running Gaussian mixture models

and hidden Markov models on encrypted data that employ

an ingenious way of calculating logarithms using oblivious

transfer, randomization, and homomorphic encryption. Making

use of 2PC as well, [23] use garbled circuits to compute non-

polynomial functions. The main limitations of these protocols

are communication costs and network availability; a user’s net-

work capacity might be overwhelmed by too many calculation

requests, or their device might require computations to be

performed when they are offline. This could be particularly

arduous for users with lower computational capacity or low

Internet bandwidth.

Second, in the case for distant approximations of non-

polynomial functions, Chebyshev polynomials have been used

to approximate the sigmoid function within the encrypted

domain [21], [22]. A drawback to these approximations is

that their outputs are not bound between [0, 1], meaning that

machine learning models relying on the sigmoid function for

predicting probabilities would fail.

Finally, a special purpose activation function that has been

proposed in f(x) = x2, which is not guaranteed to converge.

Homomorphic encryption has also featured in machine

learning protocols for fully homomorphic random forests, fully

homomorphic naı̈ve Bayes, and fully homomorphic logistic

regression [5]. Secure random forests have been used to create

language models [33]. [19] design low-degree polynomial

algorithms that classify encrypted data. There has also been

work on applying differential privacy [13] to neural networks

in order to preserve input privacy [1], [26], [27], and on using

GANs to train neural networks so that sensitive information

cannot be inferred from the model’s weights [11].

Contributions. (1) We show how to represent the value

of any function over a defined and bounded interval, given

encrypted input data, without needing to decrypt any inter-

mediate values before obtaining the function’s output. The

encrypted representation itself is accurate to within any spec-

ified precision tolerance. Functions to which this method

is applicable include sigmoid functions, Rectified Linear

Units (ReLU), tanh, logarithms, sines, cosines, tangents, and

encrypted lookup tables. We propose a method with also

log(N) + 2 multiplications over encrypted integers (where N
is the size of the lookup table), which is a natural fit for ap-

plications within the NLP and ML domains. This differs from

[32], in which a function requiring log(N) multiplications is

proposed, that works for values encoded as binary strings. It

also differs from the naive approach of performing lookups

via polynomial interpolation. For instance, one can construct a

polynomial of degree N to perform 1 of N lookups. However,

multiplication in (F)HE is very “expensive” (as it introduces a

lot of noise and affects the underlying parameters for FHE

ciphertext size). Minimizing the degree of the polynomial

and the total number of multiplications is therefore necessary

for efficiency. (2) We compare our method on calculating

ReLUs with the alternative activation function suggested in

[18], within a Variational Autoencoder task that learns latent

representations of MNIST images, as well as within an MNIST

image classifier itself. For both of these tasks, we compute

the losses and accuracies that result from varying the floating

point precision of the inputs to the non-polynomial activation
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functions within both of these networks. Finally, we analyse

the results of these numerical precision experiments.

II. BACKGROUND

A. Homomorphic Encryption

Homomorphic encryption schemes allow for computations

to be performed on encrypted data without needing to decrypt

the data.

For this work, we use Brakerski-Fan-Vercauteren (BFV)

encryption, a fully homomorphic scheme based upon ring-

learning with errors (RLWE) [7], [14], with the encryption

and homomorphic multiplication improvements of [20]1.

B. Notation and Scheme Overview

To describe the BFV scheme, we will use the same notation

as [14], but, because we provide here only a brief overview

of the homomorphic encryption scheme, the specific optimiza-

tions introduced in [14], [20] will not be discussed.

Let R = Z[x]/(g(x)) be an integer ring, where g(x) ∈ Z[x]
is a monic irreducible polynomial of degree d. Bold lowercase

letters denote elements of R and their coefficients will be

denoted by indices (e.g., a =
∑d−1

i=0 ai · xi). Zq denotes the

set of integers (−q/2, q/2], where q > 1 is a power of 2. The

secret key is called sk = (1, s), where s ← R2. The public

key is called pk = ([−(a ·s+e)]q,a), where a← Rq , e← χ.

The plaintext space is taken as Rp for some integer modulus

p > 1. Let Δ = �q/p� and denote q mod p by rp(q) then we

clearly have q = Δ · p+ rp(q).

• Encrypt(pk,m): message m ∈ Rp, p0 = pk[0], p1 =
pk[1], u← R2, e1, e2 ← χ:

ct =
(
[p0 · u+ e1 +Δ ·m]q, [p1 · u+ e2]q

)

• Decrypt(sk, ct): s = sk, c0 = ct[0], c1 = ct[1].
[⌊p · [c0 + c1 · s]q

q

⌉]
p

• Add(ct1,ct2): ([ct1[0] +ct2[0]]q, [ct1[1] +ct2[1]]q)
• Mul(ct1,ct2): For this paper, we use component-

wise multiplication, a simplified description of which is:

([ct1[0]·ct2[0]]q, [ct1[1]·ct2[1]]q). We omit the details

for obtaining this result [14].

Using homomorphic encryption, we are able to perform linear

and, depending on the encryption scheme, polynomial opera-

tions on encrypted data (i.e., multiplication, addition, or both).

We can neither divide a ciphertext, nor exponentiate using an

encrypted exponent. However, we can separately keep track

of a numerator and a corresponding denominator. For clarity,

we shall refer to the encrypted version of a value ∗ as E(∗).
C. Dealing with Error

We can preset our required multiplicative depth at the

parameters-generation step of a protocol. The error resulting

from ciphertext multiplication is reduced using the scale-

invariant method [7], [14].

1This scheme is implemented in the PALISADE Lattice Cryptography
Library https://git.njit.edu/palisade/PALISADE.

D. Optimization: Single Instruction Multiple Data (SIMD)

Single Instruction Multiple Data (SIMD) is explained in

[17], [32]. Using the Chinese Remainder Theorem, an op-

eration between two SIMD-encoded lists of encrypted num-

bers can be performed by the same operations between two

regularly-encoded encrypted numbers2. We denote a SIMD-

encoded encrypted vector by E(a) = E(〈a1, ..., aN 〉).
III. OUR SETTING AND SECURITY MODEL

We describe our setting as a few phases between a client

and a remote (potentially untrusted) server.

• Setup phase. In our model, a client runs an FHE setup

algorithm and generates a pair of public and secret keys

(pk,sk). It sends the public key to the server and keeps

the secret key private.

A server performs a preprocessing step where it is given

a collection of functions {f : D → R} with small

bounded-size domains D and it pre-computes all of the

outputs. That is, for all functions f and all inputs to

the function v ∈ D, the server pre-computes fv . It then

stores a key-value mapping set Lf := {(v, fv)}. (It may,

optionally, encrypt the mapping using the client’s public

key to protect against future server compromises).

• Online phase. In the online phase, a client has an input

v and it wants the server to compute E(fv) without

learning anything about v. It encrypts v with pk, and

sends the resulting ciphertext E(v) to the server. The

server performs Eval(pk, E(v), Lf ) to obtain E(fv).
The server may either send the result to the client or

continue to run various functions on the result to learn

a model. Eventually, the server sends a ciphertext to the

client who decrypts it to learn the results in the clear.

The online phase may be repeated multiple times. Alterna-

tively, a client may batch and send a vector of inputs to the

server for computation.

Correctness. For any input v and its associated encryption

transmitted by the client, the server learns a valid encryption

E(fv). We prove this in Section IV-A.

Security. First, we distinguish between malicious and semi-
honest servers. A malicious server may arbitrarily deviate from

the scheme to learn something about the inputs, while a semi-

honest server follows the scheme but tries to learn something

about the inputs from the execution trace alone.

We protect against a malicious server (or an adversary that

compromises the server) that tries to learn information about

inputs v, intermediary values of computation or the output

results. Note that under the standard security of FHE, the

server learns nothing about x (introduced in Section IV-A),

no matter which functions it chooses to execute over the

ciphertext E(v).
Integrity. FHE does not ensure integrity of the results of

the computations: that is, the server may deviate from the

2This technique is integrated into PALISADE’s implementation of the BFV
scheme.
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computation of f (desired by the client) and compute other

functions over the ciphertext. Hence, we must assume that the

server runs the functions desired by the client honestly in order

to satisfy integrity.

To summarize, our assumptions are as follows:

1) No information about the inputs provided by the client

is revealed to even a malicious server.

2) Assuming the server is semi-honest, no information

about the inputs is revealed, and the client learns the

correct results of its desired computations.

IV. DESCRIPTION OF THE METHOD

A. Algorithm

First, let us look at our proposed table lookup algorithm if

it were only to accept plaintext inputs.

Let f = (f(x1), . . . , f(x2n+1)) be a pre-computed vector

over predetermined values, where n is the base-2 logarithm of

N (i.e., n = log(N)). Let v ∈ [1, 2n] be an index in the vector

f at which a client wishes to look up the output value of the

function f(·), i.e., we want fv . We describe an Algorithm 1

for obtaining this.

Let x = (v, v, . . . , v) − (0, 1, . . . , 2n) be the result of

subtracting an index vector of size 2n + 1 from a vector of

repeated v’s (which we call v). Let s denote the number of

times we have called LOOKUP, starting at 0, · be the dot

product operation, × be component-wise multiplication of two

vectors, and r2s be a function that rotates a vector to the right

by 2s elements.

Algorithm 1 Table Lookup

1: procedure LOOKUP(v, x, s, f )

2: if s = log(|x| − 1) then return f ·x
xv

3: else return LOOKUP(v, x× r2s(x), s+ 1, f )

4: end if
5: end procedure

Intuition. Note that if v = 1, then x = v− [0, 1, 2, ...., 2n−
2, 2n− 1, 2n] = [1, 0,−1, ..., 3− 2n, 2− 2n, 1− 2n]; if v = 2,

then x = [2, 1, 0,−1,−2, ..., 4− 2n, 3− 2n, 2− 2n], etc.

Clearly, there will always be a 0 at the (v+1)th index of x
and a 1 at the (v)th index of x. Now, iterating the algorithm

effectively zeroes out all coefficients in x in log(|x|) steps,

except for the position at the index which the client wishes to

look up. That position will have some integer value. This is

why the base case of Algorithm 1 returns f ·x divided by xv .

f · x is essentially fv × xv , where xv can be a value different

from 1.

Consider Algorithm 2, a slight modification of Algorithm 1.

Proof of Correctness. We prove by induction on s that for

all n, at step s of Algorithm 2 we have 2s many 0’s within

x from index (v + 1) to index ((v + 1) + 2s) mod (2n +
1), given v ∈ [1, 2n], |f | = |x| = 2n + 1, and x = v −
[0, 1, 2, 3, 4, ...., 2n − 2, 2n − 1, 2n].

Algorithm 2
1: procedure RM(v, x, s)

2: if s = log(|x| − 1) then return x
3: else return RM(v, x× r2s(x), s+ 1)

4: end if
5: end procedure

Clearly, for s = 0, x has a single 0 at index v. Let us

assume that Algorithm 2 has an x with 2s consecutive zeros

at steps s = 0, 1, 2, ..., n− 1. We prove that its x contains 2s

consecutive zeros at step s = n, with a single non-zero entry

at index v.

At s = n − 1, there are 2n−1 consecutive 0 entries in x
and 2n−1 consecutive zeros in r2n−1(x), since it is simply

a rotation of x. Given that the very first 0 in x is at index

v + 1, its last 0 is at index ((v + 1) + 2n−1) mod (2n + 1).
This means that the very first 0 within r2n−1(x) is at index

((v + 1) + 2n−1) mod (2n + 1), given the rotation by 2n−1

elements to the right. Thus, the very last 0 within r2n−1(x) is

at index ((v+1)+2n−1+2n−1) mod (2n+1) = ((v+1)+
2 × 2n−1) mod (2n + 1). By multiplying x with r2n−1(x),
we get a vector with consecutive zeros from index (v + 1)
all the way through ((v + 1) + 2 × 2n−1) mod (2n + 1).
How many consecutive zeros? Exactly ((v + 1) + 2 × 2n−1)
mod (2n+1)−(v+1) mod (2n+1) = 2n. Because the first

of the consecutive zeros is at index v + 1, the only non-zero

value of x× r2n−1(x) must be at index v.

s = n is therefore the final step since, by definition,

log(|x| − 1) = n. At this point, x contains 2n consecutive

zeros, with a non-zero value at index v.

We have shown that, by using the core functionality of

Algorithm 1 found in Algorithm 2, we end up with a vector

x containing zeros in all indices but one. Specifically, its only

non-zero value is at index v. It is thus trivial to see that by

computing the dot product of f and x and dividing the result

by xv , we obtain fv exactly.

FHE Method. As per our threat model, v and x must be

encrypted inputs into Algorithm 3.

Algorithm 3 Encrypted Table Lookup

1: procedure ELOOKUP(E(v), E(x), s, f )

2: if s = log(|E(x)| − 1) then return f ·E(x)∑
j E(xj)

3: else return ELOOKUP(E(v), E(x)×E(r2s(x)), s+1,

f )

4: end if
5: end procedure

In the encrypted domain, we must separately keep track of

the numerator, f ·E(x), and the denominator,
∑

j E(xj). While

Decrypt(sk, f ·E(x))/Decrypt(sk,
∑

j E(xj)) might be

exactly equal to fv for smaller values of n, larger n might take

us over the plaintext modulus p, making the result nonsensical.

But since we can predict every possible xv at every step s and

we know each value of f , we can solve the equation f ·(E(x)×
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r) = fv (mod p) for r, which gives us n plaintext values ri.
In practice, p can be chosen based on max(l, o), where l is the

largest index and o is the upper bound on the function output

value.

B. Example
Input: an encrypted number E(v), a function vector f , and a

range of values (e.g., 0 to 8) with a difference of 1 between

each value.

Output: E(fv)
Step 1: create a vector (I) of indices using base-one num-

bering, a function vector (f(I)) pre-computed on values cor-

responding to said indices, and an encrypted vector (E(v)).
Suppose v = 4:

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2
3
4
5
6
7
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f(I) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)
f(8)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, E(v) = E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
4
4
4
4
4
4
4
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

)

.
Step 2: subtract:

E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
4
4
4
4
4
4
4
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

)−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
2
3
4
5
6
7
8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
3
2
1
0
−1
−2
−3
−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

) = E(x)

.
Step 3: shift by one and multiply:

E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
3
2
1
0
−1
−2
−3
−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

)× E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4
4
3
2
1
0
−1
−2
−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

) = E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16
12
6
2
0
0
2
6
12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

)

.
Step 4: shift by two and multiply:

E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16
12
6
2
0
0
2
6
12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

)× E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
12
−16
12
6
2
0
0
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

) = E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−96
144
−96
24
0
0
0
0
24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

)

Step 5: shift by four and multiply:

E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−96
144
−96
24
0
0
0
0
24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

)× E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
24
−96
144
−96
24
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

) = E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

576
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

)

.

Step 6 (preamble): Since we know I, what every possible

value xi can be, and the ring modulus p, we can pre-compute

the following vectors (say p = 65537):⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7711
5780
53977
14450
53977
5780
7711
56381
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5040
1440
−720
576
−720
1440
−5040
40320
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1(mod 65537)
1(mod 65537)
1(mod 65537)
1(mod 65537)
1(mod 65537)
1(mod 65537)
1(mod 65537)
1(mod 65537)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Step 6: premultiply:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7711
5780
53977
14450
53977
5780
7711
56381
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0

576
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

) = E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

)

.

Step 7: postmultiply:

E(

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(1)
f(2)
f(3)
f(4)
f(5)
f(6)
f(7)
f(8)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= E(f(4))

.

The table lookup step has linear-time online complexity at

runtime.

V. NUMERICAL ANALYSIS

A. Encoding Variables

The very first step in converting an algorithm to an FHE-

friendly form is to make the data amenable to FHE opera-

tions. This includes transforming floating point numbers into
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approximations, such as by computing an approximate rational

representation for them [19].

We follow the method suggested in [5] by choosing the

number of decimal places to be retained based on a desired

level of accuracy φ, then multiplying the data by 10φ and

rounding to the nearest integer.

Though straightforward, tests have yet to be run on which

values of φ would lead to decent accuracies for various tasks.

This work makes a contribution in this space.

B. Numerical Precision Experiments

To determine how well our method might do in practice,

we simulate the floating point precision limitations of the

BFV scheme by varying the precision of the inputs into the

ReLU and sigmoid activation functions of both a Variational

Autoencoder and a handwritten digit classifier. We compare

our method for calculating ReLUs to the alternative activation

function suggested in [18] for the same handwritten digit

classification task. Instead of ReLUs, [18] uses a square

activation function (f(x) = x2).

It is worth highlighting that in [19] the authors mention:

“[...] functions such as trigonometric functions or the ex-

ponential function are not D-polynomial, which rules out

methods like exact logistic or probit regression and non-linear

neural networks which rely on the evaluation of sigmoidal

functions, in particular bounded sigmoid functions which are

hard to approximate with polynomials.” Furthermore, in [18]

the authors mention that they “don’t have a good way of

dealing with the sigmoid function in the encrypted realm.”

Seeing as our method can be used to calculate the sigmoid

function, it can be applied during the learning phase of an

encrypted neural network.

In our experiments, we use the plaintext modulus p =
14942209 and set the scheme’s parameters to correspond to

over a 256-bit security level, given the values presented in [2].

This means that it would take over 2256 computations to crack

the key.

Using the modulus trick in place of true division, it takes

5219.1 ms to run Algorithm 3 on an Intel Core i-7-8650U CPU

@ 1.90GHz and 16GB RAM using an f of size 5, 10797.3 ms

for one of size 9, and 28605.6 ms for one of size 17, 49698.4
ms for one of size 33, 108988 ms for one of size 65, and

237488 ms for one of size 129 3.

Variational Autoencoder (VAE). We use the PyTorch VAE

example to learn a latent representation of MNIST images,

which employs an architecture inspired by [24]. It is made

up of an encoder that has one fully connected layer with 784

input features and a ReLU activation function, followed by

two fully connected layers, each with 400 input features, that

3As far as we know, PALISADE does not allow for the rotation of
ciphertexts for which the plaintext is unknown, since automorphism keys are
first generated for a specific plaintext and are only usable on its corresponding
ciphertext. Our runtimes are therefore a result of rotations performed through
the matrix multiplications of SIMD-encoded values. In all likelihood, regular
ciphertext rotation (without the overhead of matrix multiplications in which
only one value within most of the encrypted SIMD-encoded vectors is useful)
would significantly improve efficiency.

produce the means and variances of a 20-dimensional Gaussian

distribution. The decoder is made up of a fully connected

layer with a ReLU activation function, followed by another

fully connected layer with 400 input features with a sigmoid

activation function. The results are shown in Table I.

MNIST Image Classification. We test the classification

accuracy of the simple Pytorch MNIST model, described in

Table II. Table III shows the results of integrating our method

within the model. Replacing the ReLUs with a square activa-

tion function resulted in 10% accuracy, perhaps because, as

mentioned in [18], the square activation function’s derivative

is unbounded, and so prevents the model from converging

during training. In [18], a novel neural architecture for image

classification is proposed expressly for the square activation

function, obtaining 99% accuracy on the MNIST dataset. Since

most prevalent neural network architectures do not use square

activation functions, our method may be a more practical

option than devising a new alternative model for each task

in which a square function either explodes or overfits.

C. Analysis

What exactly happens between φ = 0 and φ = −1 for

rounding to lead to significantly worse results? Of course, as

we lower the value of φ, the range of distinct input values to

the activation function decreases as well. A typical example

of this effect, as observed in both the VAE and MNIST image

classification experiments, can be seen in Figure 1. We cannot

overemphasize how superb the news is for homomorphic

encryption enthusiasts that the loss increases minimally when

allowing 52 (at φ = 0) distinct numbers to be encoded rather

than 549301760 (at φ = 5) as inputs to the VAE decoder’s

sigmoid function. φ = −1 seems to be the breaking point, at

which stage only 6 distinct values are used. To put this into

context, if we know that the range of potential inputs to a

particular activation function is from −40 to 12, we need to

have a lookup table containing only 26 + 1 = 65 values. For

reference, at φ = 0, the VAE encoder’s ReLU function takes in

an aggregate of 27 different input values over the 10 epochs

(from −17 to 9), its decoder’s ReLU takes in 16 (from −7
to 8), the MNIST image classifier’s forward algorithm’s first

ReLU takes in 22 (from −8 to 13), its second ReLU takes in

65 (from −33 to 31), and its third ReLU takes in 59 (from

−21 to 27).

VI. RELATED WORK

Our algorithm can be qualified as a private information

retrieval (PIR) protocol. Prior work on PIR using HE is

presented in [16], [9], and [12]. [9] propose a single server

PIR protocol which relies on both a somewhat homomorphic

encryption scheme and a symmetric encryption scheme in

order to function. Specifically, the symmetric secret key is

encrypted using the homomorphic encryption key and the

query index is compared with the indices embedded within

the entries of the encrypted database through homomorphic

evaluation. This is an example of how to achieve very low

communication costs for querying, at the expense of a far
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original *1.0e5 *1.0e4 *1.0e3 *1.0e2 *1.0e1 *1.0e0 *1.0e-1
1r 105.8954 105.8795 105.8053 105.796 105.8069 105.7872 106.6232 164.9262
1t 105.8954 105.8554 105.8638 105.8022 105.7999 105.7899 107.8547 182.7708
2r 105.8954 105.8962 105.8831 105.9115 105.8593 105.8793 114.4415 221.438
2t 105.8954 105.8444 105.7312 105.678 105.7479 105.934 190.439 221.438
3r 105.8954 105.8466 105.8598 105.8646 105.836 105.8159 116.906 543.4274
3t 105.8954 105.8021 105.7998 105.825 105.825 106.0815 180.8667 543.4274
4r 107.3935 107.3934 107.3902 107.3664 107.2444 107.6297 114.7207 221.438
4t 107.3935 107.3944 107.3932 107.3943 107.4063 107.3695 145.1698 221.438
5r 107.3935 107.3913 107.3913 107.37 107.37 107.6602 116.7702 543.4274
5t 107.3935 107.3935 107.3932 107.3928 107.3503 107.4812 146.6633 543.4274

TABLE I: Resulting losses for the VAE on MNIST. (Xr) and (Xt) mean the input values were approximated using rounding

and truncation, respectively. The results shown are from: (1) approximating the inputs to the sigmoid activation function;

(2) approximating the inputs to both ReLU activation functions; (3) approximating the inputs to both ReLU activation

functions and the sigmoid activation function; (4) replacing the ReLU activation functions with a square activation function

and approximating the inputs to square functions; (5) replacing the two ReLU activation functions by the square activation

function and approximating the inputs to the two square functions as well as to the sigmoid activation function.

The column headers refer to the precision of the input values (e.g., *1.0e5 means φ = 5).

(a) φ = 5 (b) φ = 0 (c) φ = −1
Fig. 1: Histograms of the aggregate number of distinct values over 10 epochs input into the VAE decoder’s sigmoid function

for various values of φ. The x-axis represents the input values and the y-axis represents the quantity of inputs with that value.

In (a) there are 549301760 many distinct values, in (b) there are 52, and in (c) there are 6.

Layer Type
10 Conv 5× 5
Max-Pooling

ReLU
20 Conv 5× 5

Dropout, p = 0.5
Max-Pooling

ReLU
50 Fully Connected

ReLU
Dropout

20 Fully Connected
Log Softmax

TABLE II: Description of the MNIST image classifier.

higher computational cost. [16] and [12]’s PIR protocols use

polynomials of degree log(N) + 1. While we could frame

our algorithm in terms of a polynomial operation, our method

regardless requires log(N) + 2 multiplications. We leave a

more systematic comparison of these methods for future work.

Work on secure search using homomorphic encryption (e.g.,

[3] and [4]) is similar to PIR, but instead of using indices

to access data at a particular location, the task is to seek a

particular value within a dataset. It is easy to see that our

method can be adapted to secure search, given a dataset at

which no value occurs at more than one index.

To the best of our knowledge, PIR and secure search have

not been proposed as methods for computing approximations

of non-polynomial functions within the encrypted domain.

VII. CONCLUSION

We described a novel approach of approximating the value

of any function on an interval over which it is defined

and bounded, given encrypted input data, without needing to

decrypt any intermediate values before obtaining the function’s

output. This approach can be incorporated into a privacy-

preserving neural network. Numerical analysis can be per-

formed in order to optimize our approach for different machine

learning tasks and architectures. Furthermore, it makes sense

to use a symmetric key encryption scheme with our method,

which would likely lower the runtime. It would also be useful

to calculate performance metrics for our method when imple-

mented with the popular CKKS [10] homomorphic encryption

scheme.
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original *1.0e5 *1.0e4 *1.0e3 *1.0e2 *1.0e1 *1.0e0 *1.0e-1
Loss (Rounded) 0.0524 0.0531 0.0535 0.0542 0.0541 0.0534 0.0642 2.301
# Correct (Rounded) 9839 9835 9838 9836 9832 9841 9807 1135
Loss (Truncated) 0.0524 0.0526 0.0535 0.0548 0.0526 0.0542 2.3011 2.3011
# Correct (Truncated) 9839 9838 9834 9828 9836 9829 1135 1135

TABLE III: Resulting losses and number of correct classifications of 10000 test set images from MNIST with the inputs to

the three ReLU activation functions approximated at various precisions. The column headers refer to the precision of the input

values (e.g., *1.0e5 means φ = 5).
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