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Abstract—In order to protect individuals’ privacy, data have
to be “well-sanitized” before sharing them, i.e. one has to remove
any personal information before sharing data. However, it is
not always clear when data shall be deemed well-sanitized.
In this paper, we argue that the evaluation of sanitized data
should be based on whether the data allows the inference of
sensitive information that is specific to an individual, instead
of being centered around the concept of re-identification. We
propose a framework to evaluate the effectiveness of different
sanitization techniques on a given dataset by measuring how
much an individual’s record from the sanitized dataset influences
the inference of his/her own sensitive attribute. Our intent is
not to accurately predict any sensitive attribute but rather to
measure the impact of a single record on the inference of sensitive
information. We demonstrate our approach by sanitizing two real
datasets in different privacy models and evaluate/compare each
sanitized dataset in our framework.

Index Terms—Sanitization, Inferences, Machine Learning, k-
Anonymity, �-Diversity, Differential Privacy

I. INTRODUCTION

Nowadays, organizations own large volumes of data about

individuals. Sharing those data provides several benefits for

both organizations and individuals. But, at the same time,

it puts individuals’ privacy at high risk. A straightforward

countermeasure to protect individuals’ privacy, known as

pseudoanonymization, is to exclude explicit identifiers such

as name, address, and phone number. However, it has been

shown that pseudoanonymization is not sufficient to protect

individuals’ privacy as the remaining information such as date

of birth, gender, and zip code can be used to re-identify

individuals [19], [20].

In order to provide more guarantees about individuals’

privacy, more sophisticated techniques have been proposed

to sanitize data from information that may lead to re-

identification. Examples of such sanitization techniques are

mechanisms that rely on data suppression and generalization

(known as anonymization techniques) [12], [16], [18], and
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those that rely on noise addition like in differential privacy [6].

Nevertheless, there is neither well-defined scheme to evaluate

the robustness of sanitization techniques, nor a clear under-

standing for “when data is regarded as well-sanitized”. The

European General Data Protection Regulation considers data

as properly sanitized (anonymized) if “data subject is no longer

identifiable”. A more specific approach can be found in the

Working Party 29 opinion on 05/2014 about “Anonymization

Techniques”, which considers the following three privacy

risks: “re-identification”, “linkability” and “inference”.

In this paper, we argue that inferences should be the primary

concern when it comes to individuals’ privacy. In particular,

we see identity disclosure as one way among others to infer

information about individuals. Actually, mitigating “identity

disclosure” is the primary goal of pseudoanonymization, how-

ever, it is not always relevant to data sanitization. Indeed, if

a dataset is “completely-sanitized”, then assigning an identity

to a certain record is pointless as the records will be highly

noised or aggregated. However, as far as the effectiveness of

sanitization is concerned, we should be aware about the precise

meaning of information inference as preventing any kind of

inferences usually lead to useless data [7]. Indeed, the ultimate

usefulness of a dataset is always to infer new information. So,

as a trade off between privacy and utility, sanitized data should

not allow the inferences of “private” information , but at the

same time, they have to allow the inference of some “public”

information about the population, i.e., the acquisition of any

generalizable knowledge. The acceptability or unacceptability

of an inference can be based on two criteria:

1) The basis of the inference: is the inference performed

on the records of one (or a small group of) individual(s)

or a large group of individuals. We will call these kinds

of inferences private and public, respectively.

2) The nature of the inference: can the inference be used

to discriminate users? Can it have a very negative (for

example social or financial) impact?

The intuition behind the first criterion is that if an adversary

cannot prove that the records of a user were used to generate

the inference, then, by definition, these records are “protected”.

Note that, it might happen that a model which is exclusively

built on population characteristics also accurately predicts

some sensitive information of individuals who are member
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of this population [3]. However, we do not consider this to

be a privacy breach as long as the population, which is used

to build the model, is large enough. Instead, as in [15], we

believe that there are acceptable and unacceptable disclosures:

“learning statistics about a large population of individuals is

acceptable, but learning how an individual differs from the

population is a privacy breach”. For instance, inferring an

attribute value about the population of a large city, or a rule

like “a man smoking between 1 and 4 cigarettes per day is 3

times more likely to die from lung cancer than a non-smoker”

should be acceptable. But, deriving some information about

the inhabitants of a building may or may not be acceptable

depending on the number of people in the building.
As regards the second criterion, the inference nature is partly

subjective and involves ethical and legal considerations [7].

In this paper, we focus on the first criterion and propose a

framework called Differential Inference Testing to assess the

inference basis. Namely, we make the following contributions:

• We propose an inference-based framework that can be

used to evaluate the robustness of a given sanitized

dataset against a specific adversary that is modeled by

an inference algorithm (Section III). In particular, the

adversary builds a machine learning model in order to

infer an individual’s sensitive attribute from his publicly

known attributes in the sanitized dataset. We consider the

attack successful (and the data not ”well-sanitized”) if

the adversary obtains sufficiently different (but perhaps

inaccurate) results depending on whether the target in-

dividual’s record was used to train the model or not,

i.e., the output of the inference potentially leaks some

individual specific information aside from more general

population characteristics. Our approach is reminiscent of

Differential Privacy [6], however, it also differs from that

in several aspects that we detail in Section II-B. A key

feature of our testing procedure is that it needs to have

access only to the sanitized data itself and requires no

knowledge about the sanitization technique. Thus, it can

be used to assess datasets that are sanitized by organiza-

tions which may prefer not to disclose their sanitization

techniques. Even more, the verifier (e.g., Data Protection

Authority) of a sanitization process does not need to

understand or analytically analyze its privacy guarantees

which can be very tedious and error-prone [13].

• We use our framework to evaluate two datasets after being

sanitized in the k-anonymity, �-diversity, and differential

privacy (Section IV) models. In this paper, we consider

microdata, but our solution is general and can be applied

to any type of datasets, such as aggregated data.

II. RELATED WORK

A. Testing Data Sanitization
To the best of our knowledge, our approach is the first

one that proposes a general practical test to evaluate sani-

tized datasets by making distinction between acceptable and

unacceptable inferences. Yet, there are some prior related

works [1], [4], [5], [17].

The authors of [4] propose a framework to test whether a

machine learning (ML) model can predict sensitive attribute

values from a given sanitized dataset. But, they consider all

types of inferences as privacy breaches. More precisely, their

framework tests, for every record, whether the ML model can

predict the true value of the sensitive attribute. If the ML model

succeeds to predict the true value (what they call “empirical

utility”), then the sanitization technique does not pass the

test. Note that the framework does not consider whether the

prediction was obtained from the record of the target individual

(that was somehow poorly sanitized) or from the records

of other users (that happen to be correlated with the target

individual). By contrast, we propose a framework that does not

consider data utility (i.e., ignores the accuracy of inferences

in absolute sense), but instead tests whether an inference is

private (depends on the target individual) or public. In our

framework, a dataset is deemed “well-sanitized” if it can be

shown that, for any user, the resulting inferences based on this

dataset do not depend on the contribution of a single user but

on the contribution of all users together: the inference accuracy

should not change too much whether the user’s record is

included or not in the dataset. Such a dataset protects against

“private” inferences while still allowing “public” inferences.

Recently, [1] and [5] have proposed statistical techniques

to identify the violations of differential privacy. Unlike these

approaches, our method considers the sanitization technique as

a black-box and only requires access to the sanitized datasets.

This can be a favorable feature if the sanitization schemes are

proprietary and their exact operations are not published. Also,

our testing procedure is more general as it can be applied

beyond differential privacy.

Pyrgelis et al. [17] used machine learning for membership

inference on aggregated location data. They build a single

binary classifier to predict a given individual’s presence in the

sanitized data. By contrast, we follow a more general approach

and measure how much the inference of a particular sensitive

information/attribute is affected by a single individual’s data

using a specified distance measure. For this purpose, we

build two classifiers; one which predicts the sensitive attribute

using all the sanitized dataset and another one which uses the

sanitized data excluding the individual’s data, then report the

difference between the output of these classifiers according to

the chosen distance measure. Of course, we can easily turn

our approach into membership inference by combining the

output of the two models into a single binary classifier to

infer membership. However, the choice of different distance

measures allows to incorporate different privacy requirements

into our framework which makes our approach more general.

For instance, membership may be already publicly known, but

not some sensitive attributes.

B. Differential Inference Testing vs. Differential Privacy

Our approach is inspired by differential privacy [6]. Indeed

like differential privacy, it guarantees that the inferences one

can derive from a sanitized dataset are similar, whether or
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not the record of a certain individual is included. However it

differs from differential privacy in several aspects:

• Our approach provides a method to measure the ro-

bustness of sanitized datasets, and to compare different

sanitizations of the same dataset. Differential privacy, on

the other hand, is a property of the sanitization scheme

and not of the sanitized dataset.

• For differential privacy to hold, the sanitization must

be done probabilistically (typically, by adding controlled

noise to the answer to the query). Our approach, on the

contrary, can also be applied to deterministic sanitization

techniques, like k-anonymity [18] and �-diversity [16].

• The possible inferences one can make in differential

privacy are strictly related to the query for which the

mechanism is defined without any further restrictions

on how the inference model is built. In our case the

inferences are produced by a machine learning algorithm,

which constitutes a parameter of the framework.

• In differential privacy the metric used to compare the

inferences in the dataset with and without a certain

individual is fixed and based on the upper bound to the

likelihood ration. In our setting, the comparison is based

on a parametric notion of distance between distributions.

• Differential privacy relies on tedious and error-prone

analytical analyses of the privacy guarantee, while our

approach uses easy-to-implement empirical evaluation of

a very similar (but weaker) guarantee [1], [14].

III. DIFFERENTIAL INFERENCE TESTING

In this section, we introduce the notion of indifferentiability
(Section III-A), then we propose a testing procedure in order

to evaluate the indifferentiability of a given sanitized dataset

against a certain inference model (Section III-B).

A. Model

Given a sanitized dataset, our approach tests whether the

inference of some sensitive attribute(s) is influenced by the

presence of any single individual in the dataset. If the

“amount” of this influence is large, then the inference leaks

some private information, i.e., any information that potentially

differentiates the individual from the rest. In this case, the

dataset is not sanitized properly. Conversely, smaller influence

indicates stronger sanitization. In order to measure such an

influence, we propose the notion of δ-indifferentiability de-

fined in Definition 1. Without loss of generality, we express

the sensitive attribute(s) to be inferred using a single attribute

S, which can be any function of other attributes. Note that,

the explicit distinction between quasi and sensitive attributes

is only for demonstration purposes. Moreover, we assume

that the contribution of every individual i to D is a single

record (qi, si) where qi represents his quasi-identifiers and si

represents his sensitive value.

Definition 1 (Indifferentiability): Let D be a dataset (Q,S)
where Q is a tuple of quasi-identifiers and S is a sensitive

attribute. Let D−i denote the dataset obtained from D by

removing the record (qi, si) of individual i. Let A be a

(possibly randomized) inference algorithm, and let f be a

sanitization technique. Let Mf(D) and Mf(D−i) denote the

random variables describing the output of the models Mf(D)

and Mf(D−i) which are built according to A respectively us-

ing f(D) and f(D−i) to provide each, given a quasi-identifier

tuple from Q, a prediction distribution over the domain of

the attribute S. We say that f(D) is δ-indifferentiable with

respect to A, if we have that

∀(qi, si) ∈ D, distance
(Mf(D),Mf(D−i)

) ≤ δ

where distance is a statistical distance measure.

Somewhat abusing the notation, M denotes both the model

and the random variable describing its output henceforth.

The evaluation of the sanitized dataset f(D) depends on

the value of δ. If δ is small enough (depending on the case

study) then, for every individual i in D, the inference about i’s
sensitive value does not strongly depend on the i’s record (i.e.,

public inference). On the other hand, for larger δ’s, there may

exist i’s in D such that the inference about the i’s sensitive

value depends on the i’s record (private inference).

Definition 1 does not consider any external knowledge about

i or D, however, it can be generalized in a straightforward way

to capture any such possible knowledge. For instance, in case

of Bayesian inference, auxiliary information can be used to

compute the prior probabilities, and thus favorizing one value

of the sensitive attribute over the others.

The inference algorithm A represents the adversarial strat-

egy to predict/infer the value of the sensitive attribute. The

choice of inference algorithm A depends on the case study

and is a task of the analyst. Indeed, the differentiability δ of

sanitized dataset f(D) depends on the considered inference

algorithm A. In this paper, we use Bayesian inference as an

inference algorithm for it is simplicity and popularity. Note

that, the aim of our framework is not to accurately predict

any sensitive attribute but rather to measure the impact of a

single record on the inference of sensitive information.

We note that Mf(D) and Mf(D−i) belong to the same

model family since they are built using the same algorithm A.

For instance, if Mf(D) is a neural network then Mf(D−i) is

also a neural network with the same architecture and with the

same hyper parameters, but with potentially different model

parameters as they are trained using two different training

datasets f(D) and f(D−i). In the rest of the paper, we may

use M and M−i to refer to Mf(D) and Mf(D−i), respec-

tively. Definition 1 assumes that the output of a model M is a

vector of probability values, i.e., a prediction distribution on

the possible values of the sensitive attribute. Specifically, if

there are n possible sensitive values s1, . . . , sn, then for some

record (qi, si), M(qi) = {(s1, pi1), . . . , (sn, pin)} where pij
denotes M’s confidence that si = sj . In the rest of the paper,

we refer to the number of possible sensitive values by n, and

we write M(qi) = (pi1, . . . , p
i
n) when the related sensitive

values are clear from the context. Similarly for model M−i,

we write M−i(qi) = (p−i
1 , . . . , p−i

n ).
Finally, distance denotes a distance measure (such as total

variation distance, KL-divergence, etc.) chosen by the analyst.
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The choice of distance should depend on the privacy require-

ments, and it fundamentally impacts the result of our approach.

B. Testing Procedure

We propose a procedure to find, given a sanitized dataset

f(D) and an inference algorithm A, the minimal distance δ
such that f(D) is δ-indifferentiable with respect to A (that

is the the minimal δ that satisfies Definition 1). In order to

perform the test, one should also have access to f(D−i) for

every (qi, si) ∈ D. Nevertheless, the sanitization technique

f itself is not needed by our testing procedure. The testing

procedure runs through the following steps:

1) Choose a record (qi, si) ∈ D for some individual i.
2) Use A to build two models M and M−i respectively

using datasets f(D) and f(D−i). For example, in the

case where A is a machine learning algorithm, then

f(D) and f(D−i) will act as training datasets.

3) Provide qi as an input to the modelM. The output ofM
takes values from the set of all prediction distributions

which corresponds to an n-dimensional simplex in R
n

(i.e., M(qi) = (pi1, . . . , p
i
n) over the domain of the

sensitive attribute S, where
∑n

j=1 p
i
j = 1).

4) Repeat the last step for M−i whose output also takes

values from the set of all prediction distributions (i.e.,

M−i(qi) = (p−i
1 , . . . , p−i

n ) over the domain of the

sensitive attribute S, where
∑n

j=1 p
−i
j = 1).

5) Compute the distance d i = distance(M,M−i).
6) Repeat Steps 1-5 for every individual i in D.

7) Return the maximal distance d i for every i ∈ D, as δ.

The outputs of M and M−i can be described by random

variables whose output range is the n-dimensional simplex in

R
n. Indeed, the sanitization algorithm f is a possibly ran-

domized black-box mechanism, which means that the output

distributions of Mi and M−i can only be approximated by

sampling. However, sampling from the n-dimensional simplex

is not scalable if n is large and/or there are many records in

D. Hence, in this paper, we rely on the following simplifi-

cation; we approximate the distribution of every coordinate

of the prediction distribution independently, and compare the

approximated distributions of the corresponding coordinates.

More precisely, for every 1 ≤ j ≤ n, let Pi
j and P−i

j denote

the random variables describing the values of pij and p−i
j , re-

spectively. Then, distance(M,M−i) =
∑n

j=1 div(Pi
j ,P−i

j ),
where div is a distance measure (or divergence) between

distributions. In this paper, we use the 1st Wasserstein dis-

tance (or Earth Mover’s Distance, shortly EMD) as such a

distance measure, that is, div(Pi
j ,P−i

j ) = EMD(Pi
j ,P−i

j ) =
infπ

∫
R

∫
R
|x − y|dπ(x, y), where the infimum is taken over

all probability measures π on R × R with marginals Pi
j and

P−i
j . Intuitively, EMD measures how far one has to move the

probability mass of Pi
j to turn it into P−i

j , where ”farness”

between the values of Pi
j and P−i

j is measured by their

absolute distance1. We approximate the empirical measures of

1EMD permits different “farness” measures other than the absolute differ-
ence |x−y|. We chose this metric due to its simplicity and fast computation.

Pi
j and P−i

j and compute the EMD between these empirical

measures (see [2] for details). In particular, if xi
1, . . . , x

i
N and

x−i
1 , . . . , x−i

N denote the samples taken from the distributions

of Pi
j and P−i

j , respectively, then EMD(Pi
j ,P−i

j ) can be

approximated by:

EMD(P̂i
j , P̂−i

j ) =
1

N

N∑

k=1

|xi
(k) − x−i

(k)| (1)

where P̂i
j and P̂−i

j denote the empirical measures of Pi
j and

P−i
j , respectively, and xi

(k) denote the kth order statistic (kth

smallest value) of samples xi
1, . . . , x

i
N (analogously to x−i

(k)).

We use EMD as it makes randomized and deterministic

sanitizations comparable in our framework. In particular, the

uncertainty of the adversary has two sources; one is measured

deterministically by the inference algorithm and represented

by the prediction confidences of each sensitive value in its

output. The second source of uncertainty stems from the

”artificially” introduced perturbation in the sanitization process

(e.g., by the Laplace Mechanism in differential privacy) which

induces a probability distribution on these (deterministic)

confidences. Unlike traditional divergences like total variation

distance or the max-ratio distance used in differential privacy,

EMD also considers the value of the inference algorithm’s

output and not only the distribution of these values.

Example. Consider the dataset presented in Table Ia. It has two

quasi-identifier attributes: “Age” (an integer) and “Gender”

(M:Male or F:Female), and a sensitive attribute: “Disease”

which can take two values (Flu and Cancer). Table II rep-

resents a 2-anonymous version of this dataset (as every record

is syntactically indistinguishable from at least another record

considering their quasi-identifiers)2.

TABLE I: Original dataset, and related result.

(a) Dataset.

# Age Gender Disease
1 28 M Flu
2 36 M Flu
3 47 F Cancer
4 53 M Flu
5 72 F Flu

(b) M(qi), M−i(qi), and d i.

# M(qi) M−i(qi) di

1 (1, 0) (1/2, 1/2) 1
2 (1, 0) (1/2, 1/2) 1
3 (2/3, 1/3) (1, 0) 2/3
4 (2/3, 1/3) (1/2, 1/2) 1/3
5 (2/3, 1/3) (1/2, 1/2) 1/3

Let i denote the individual that corresponds to record 4 from

Table Ia. If we know that i is a 53 years old male, then we

can infer from Table IIa the following prediction distribution

about his disease: Pr[Flu | (53,M)] = 2
3 and Pr[Cancer |

(53,M)] = 1
3 , i.e., M(q4) = {(Flu, 2

3 ), (Cancer, 1
3 )}, as

(53,M) belongs to the second equivalence class of Table IIa

which is composed of the last three records (Step 3). Notice

that we used a very simple inference algorithm A here for

simplicity (i.e., computing the probability of a sensitive value

conditioned on the values of all the quasi-identifiers), though

one can use any sophisticated inference model in practice.

2In our example, the sanitization technique f is k-anonymity [18].
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Now, if we remove the 4th record from the original dataset

(Table Ia) then apply 2-anonymity we obtain Table IIb. It is

important to remove the record from the original dataset before

applying sanitization again. Hence, the new sanitized dataset

f(D−4) (after removing the record) can be different from the

first sanitized dataset f(D) (obtained by sanitizing the whole

original dataset). The prediction distribution after removing the

4th record is M−i(q4) = {(Flu, 1
2 ), (Cancer, 1

2 )} (Step 4).

Finally, considering EMD distance, then d i =
distance(M4,M−4) = distance(M(q4),M−i(q4)) =∑n

j=1

∣∣p4j − p−4
j

∣∣ = 1
3 (Step 5) since M(q4) and M−i(q4)

are the only possible output of M and M−4, respectively

(i.e., the sanitization scheme is deterministic). After repeating

the previous steps for every record in the dataset (Step 6),

the maximal distance δ = max
i∈D

d i can be computed (that is

the the minimal distance that satisfies Dentition 1), which is

δ = 1 = max{1, 1, 2
3 ,

1
3 ,

1
3} in our example. Table Ib depicts

the distributions M(qi),M−i(qi) and the distance di for

every record i in the dataset of Table Ia.

Notice that using a different distance metric the results

can completely change. For example, if distance denotes the

total variation distance (TVD), then distance(M4,M−4) =
distance(M(q4),M−i(q4)) = 1 + 1 = 2 which suggests that

the data is blatantly non-private as distance(Mi,M−i) ≤ n
for any i.

TABLE II: 2-anonymous versions of Table Ia.

(a) f(D) (with i = 4).

# Age Gender Disease
1 < 45 M Flu
2 < 45 M Flu
3 ≥ 45 {M, F} Cancer
4 ≥ 45 {M, F} Flu
5 ≥ 45 {M, F} Flu

(b) f(D−4) (without i = 4).

# Age Gender Disease
1 < 45 M Flu
2 < 45 M Flu
3 ≥ 45 {M, F} Cancer
5 ≥ 45 {M, F} Flu

IV. EVALUATION

A. Datasets

We demonstrate our approach using two datasets: the UCI

Adult (Census Income) dataset3 and the “General Demograph-

ics” dataset from Internet Usage data4. Table III summarizes,

for each dataset, its size (|D|), number of distinct record

(|D†|), quasi-identifiers (QI), and sensitive attribute (SA) as

well as the number of values that SA can take (n).

TABLE III: Datasets description.

Dataset Adult Internet Usage
|D| 10,000 9,799

|D†| 7,960 7,049

QI

“age”, “education” “age”, “race”
“marital status” “education attainment”

“hours per week” “major occupation”
“native country” “marital status”

SA “occupation” “household income”
n 14 9

3https://archive.ics.uci.edu/ml/datasets/Adult
4http://www.cc.gatech.edu/gvu/user surveys/survey-1997-10

B. Sanitization

For sanitization techniques, we consider the basic Mondrian

k-anonymity [9], Mondrian �-diversity [10], and data pertur-

bation required to satisfy differential privacy [6].

1) k-anonymity and �-diversity: The Mondrian sanitization

algorithm modifies the records by generalizing the quasi-

identifiers until each record becomes syntactically indistin-

guishable from k − 1 other records (k-anonymity), or the

correct sensitive value of any individual cannot be predicted

with probability more than 1/� (�-diversity)5. After being gen-

eralized, the data is then published with the related sensitive

values.

2) Differential Privacy: As for differential privacy, noisy

statistics of the microdata are computed which are then used

to compute the prediction distribution of each record. In

particular, contrary to k-anonymity and �-diversity, differen-

tial privacy provides weak utility when it is directly ap-

plied on microdata. Instead of generating sanitized microdata,

the differentially private prediction distributions M(qi) and

M−i(qi) are directly computed from the original dataset, and

these distributions are compared in Step 5 of the Differential

Inference Test described in Section III. In other words, our

differential private sanitization technique f is coupled with a

simple inference algorithm A that we describe below.

The sanitization technique f consists of releasing the

perturbed conditional probabilities Pr[s|q] for all sensitive

attribute value s and value of quasi-identifier tuple q. These

conditional probabilities are directly used as the prediction

distributionsM(qi) andM−i(qi) in our Differential Inference

Test (see Section III). Specifically, in order to obtain the dif-

ferential private prediction distributions M(qi) and M−i(qi)
for a quasi-identifier tuple qi = (qi1, . . . , q

i
m), we compute

Pr[sk|qi] = Pr[sk, q
i]

Pr[qi]
(2)

In Eq. (2), we calculate the joint probability Pr[sk, q
i] as

Pr[sk, q
i] =

Cik∑
i

∑
k Cik

(3)

and the marginal probability Pr[qi] as Pr[qi] =
∑

k Pr[sk, q
i]

where Cik = 1 +max(0, |{(q, s) ∈ D : q = qi ∧ s = sk}|+
noise) and the noise is drawn from the Laplacian distribution

L(0, 1/ε) with zero mean and variance 2/ε2. This perturbation

technique is also referred to as the Laplace Mechanism in the

literature of differential privacy6. Note that the addition of 1

to Cik is the standard Laplacian correction in order to avoid

zero value of the denominator in Eq. (3).

The privacy guarantee of differential privacy comes from

the randomness of the Laplace Mechanism; if the variance of

the added noise is larger, we have stronger guarantee (i.e.,

smaller ε), and the reverse direction holds for small variance.

Differential privacy is formally defined in Definition 2.

5Using only f(D) as a background knowledge for inference.
6The scale parameter of the Laplace noise is adjusted to the global

sensitivity of the counts Cik which is 1 in our application.
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Definition 2 (ε-differential privacy [6]): A sanitization algo-

rithm f guarantees ε-differential privacy if for any database D
and D′, differing on at most one record, and for any possible

output O ⊆ Range(f), e−ε ≤ Pr[f(D)∈O]
Pr[f(D′)∈O] ≤ eε.

In our case, the range of f is the space of all prediction

distributions (i.e., vectors from an n-dimensional simplex), and

an output O of f is a random vector from this space.

C. Pre-processing

Many sanitization techniques (such as Mondrian) generalize

the attribute values according to a specific generalization hier-

archy. In order to feed the learning algorithm with generalized

data in our experiments, we use an encoding mechanism that

is relative to the target record selected in Step 1 of our

testing procedure (see Section III-B) and works as follows:

a generalized quasi-attribute value q′ (e.g., an interval or set)

is represented by 1, if the corresponding quasi-attribute value

q′′ of the target record can also be generalized to q′ (i.e., q′′

is inside q′ if q′ is an interval, or q′′ is a member of q′ if it is

a set). Otherwise, q′ is represented by 0.

For example, consider the two generalized records:

r1 = ([15, 25], Female, {France,Germany}) and r2 =
([17, 20],Male, {Italy,Germany}). Assuming that the target

record, which is selected in the first step of our testing

procedure, is rt = (16,Male, France), then r1 and r2 will be

encoded as follows: encode(r1, rt) = (1, 0, 1) because 16 ∈
[15, 25], Male �= Female, and France ∈ {France,Germany}.
Similarly, encode(r2, rt) = (0, 1, 0) because 16 /∈ [17, 20],
Male = Male, and France /∈ {Italy,Germany}.

An advantage of this encoding technique is that it depends

on the target record which will be used as an input for the

inference model. This may increase the sensitivity to the pres-

ence of the target record in the dataset, and thus help to better

capture the difference between the two intended distributions.

Another advantage of this approach is that it is very fast

to compute and has to be done only once for each record

(other approaches may require different encodings of the same

record for the computation ofM andM−i). Nevertheless, any

encoding mechanism can be used in our framework as long

as the encodings of each record is sufficiently different from

that of the target record.

D. Differential Inference Test

1) Inference algorithm: For the purpose of inference A
and the computation of the prediction distributions M(qi)
and M−i(qi), we use a Naive Bayes classifier7 in the case

of k-anonymity and �-diversity, and the noised conditional

probabilities in Eq. (3) in the case of differential privacy. In

both cases, the inference algorithms use the encoded sanitized

data to build the models M and M−i. The Naive Bayes

classifier has been used by several prior works [3], [4], [11]

to perform inference on sanitized data. Although Naive Bayes

makes the simplistic assumption that the quasi-identifiers are

independent, it usually performs remarkably well, especially

when the size of the training dataset is not so large.

7We use the Bernoulli Naive Bayes from the sklearn python module.

After choosing the encoding mechanism and the inference

algorithm, we proceed according to the Differential Infer-

ence Test described in Section III-B: for every record ri
in the dataset, we train a model M where D includes ri,
and also train another model M−i where D−i excludes ri.
Then, the corresponding two prediction distributions of M
and M−i are approximated by sampling, and the distance

d i = distance(M,M−i) is computed for every i. Finally,

we obtain the minimal distance δ that satisfies Dentition 1,

i.e., δ = max
i∈D

d i. In what follows, “minimal δ” refers to the

minimal distance δ that satisfies Dentition 1.

We emphasize that the (in)differentiability of a sanitized

dataset depends on the inference algorithm A, which repre-

sents the adversarial algorithm to infer sensitive information

from the dataset. This is in stark contrast to differential

privacy, which provides the same guarantee (i.e., the same

ε value) against all inference algorithms. On the other hand,

(in)differentiability (in Definition 1) can be empirically eval-

uated unlike differential privacy (in Definition 2) which relies

on analytical evaluation that is often tedious and error-prone.

E. Results

1) k-anonymity and �-diversity:
a) Adult Dataset: Figure 1 depicts the minimal δ (that

satisfies Dentition 1 in the case of Adult dataset) depending on

the privacy parameter (k or �). The cases of k = 1 and � = 1
implies the absence of sanitization, i.e., the testing procedure

is applied directly on the original data without any sanitization.

(a) k-anonymity. (b) �-diversity.

Fig. 1: Minimal δ (Adult data).

From Figure 1, we can notice that:

• δ is smaller for �-diversity than for k-anonymity when k
and � have identical values. This is expected as, unlike k-

anonymity, �-diversity was designed to mitigate inference

attacks, though not the same type of inference that we

measure in our approach. Specifically, �-diversity ad-

dresses the absolute accuracy of inferences. By contrast,

we focus on the relative accuracy of inferences.

• δ decreases when the privacy parameter (k or �) increases,

however not monotonically. For instance, counterintu-

itively, the minimal δ increases when k increases from

8 to 16 and when � increases from 2 to 3.

The second observation above shows that increasing the value

of the privacy parameter may decrease the privacy guarantees

against private inferences for some individuals (worst-case
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privacy), even if the guarantees on average (average-case

privacy) can be stronger. In particular, Figure 2 presents the

Cumulative Distribution Function (CDF) of d i. The CDF is the

sum of the relative frequencies for all values that are less than

or equal to the given value of d i. Figure 2 shows that, for

both k-anonymity and �-diversity, the majority of d i values

are smaller for larger k or �. The CDF illustrates the level

of the average-case privacy, which increases if the value of

the privacy parameter also increases (as one could expect for

k-anonymity and �-diversity). This emphasizes the fact that

average-case privacy, which is usually adopted by companies

and governments’ regulations, does not always imply worst-

case privacy, which is considered in our framework. Indeed,

Dentition 1 has to be satisfied for every record in the dataset.

A closer investigation reveals that there are only few outlier

records with large value of d i when � = 3 or k = 16. For

example, when � = 3, there is only one record ri whose d i

value is greater than 10−1 (for this record, d i = 0.21), which is

the minimal δ in this case. Similarly, for 16-anonymity, there

are only 3 outlier records which have much larger d i values

than others.

In order to achieve stronger sanitization (smaller δ), we

remove the outlier records identified above from the original

dataset, then repeat the entire testing procedure to compute a

new value of minimal δ (remember that it is not sufficient to

remove the outlier records only from the sanitized dataset).

For � = 2, we obtain the following new values of minimal

δ: 0.165 for � = 2 and 0.092 for � = 3, what one naturally

expects when � increases.

(a) k-anonymity. (b) �-diversity.

Fig. 2: CDF of d i (Adult data).

b) Internet Usage Dataset: Figures 3 and 4 present the

minimal δ and the CDF of d i, respectively, for the Internet

Usage dataset. The results confirm the conclusion that average-

case guarantees against private inferences often differs from

the worst-case guarantees in practice due to the existence

of a few outlier records with much worse privacy guarantee

than the average. However, on average, increasing the privacy

parameters k and � results in stronger guarantee against private

inferences using the Mondrian sanitization scheme.

2) Differential Privacy:
a) Adult Dataset: Figure 5 presents the CDF and δ for

the Adult dataset in the case of differential privacy (DP). We

quantized the “age” and “hours per week” attributes, each, into

5 quantiles. This results into 2952 distinct records (instead of

(a) k-anonymity. (b) �-diversity.

Fig. 3: Minimal δ (Internet Usage data).

(a) k-anonymity. (b) �-diversity.

Fig. 4: CDF of d i (Internet Usage data).

7960) out of 10K records. ε = ∞ corresponds to the case

when no Laplace noise is added to the counts in Eq (2).

We performed N = 25K samples per record in order

to have an estimate of the prediction distribution for every

individual. From these noisy predictions, we can compute the

minimal δ (in Figure 5a) as it is described in Section III-B. The

minimal δ curve shows that smaller ε indeed yields stronger

protection, for every individual, against private inferences, as

δ is monotonically decreasing with ε as one would expect.

(a) Minimal δ. (b) CDF of d i.

Fig. 5: CDF and δ (DP, Adult data, N = 25K).

b) Internet Usage Dataset: Figure 6 presents the CDF

and δ for the Internet Usage dataset. Again, we have quantized

the “age” attribute into 5 quantiles. This results into 2926

distinct records (instead of 7049) out of 9799 records.

The CDF and minimal δ curves (in Figure 6) show sim-

ilar trends to the Adult dataset and confirm our observation

that, for every individual, smaller ε yields stronger protection

against private inferences.

Finally, we note that, for both datasets, the values of δ are

smaller for k-anonymity and �-diversity on average than for

differential privacy (Figures 1, 3, 5, and 6). Hence, differential

privacy even with ε = 0.1 may provide weaker protection on
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(a) Minimal δ. (b) CDF of d i.

Fig. 6: CDF and δ (DP, Internet Usage data,

N = 25K).

average against private inferences if we use the EMD distance

measure defined in Eq. (1), but it is worst-case guarantee is

superior to k-anonymity and even to �-diversity if � < 5.

3) Computation time: All the experiments that are pre-

sented above were conducted on a machine with a 2.6 GHz

Intel Core i7 Processor and 16 GB RAM. Table IV summarizes

the average computation time of the differential inference test

per privacy parameter (excluding the raw data case, i.e., where

k = � = 1 and ε = ∞). Note that the computation can be

substantially improved since the sanitizations of the dataset

(per user) are highly parallelizable.

TABLE IV: Average computation time.

Dataset k-Anonymity �-Diversity Differential Privacy
Adult data 60m 24s 76m 6s 5h 41m 51s

Internet data 47m 30s 50m 12s 4h 23m 22s

V. CONCLUSION

This paper presents an inference-based framework to eval-

uate the effectiveness of sanitization performed on a given

dataset. In particular, we empirically measured how the san-

itized dataset prevents the private inferences of sensitive at-

tribute values. We demonstrated the usage of this framework

on two datasets. Our framework allows to compare different

sanitized datasets that might use different privacy models,

such as k-anonymity, �-diversity or differential privacy. It

can potentially be employed by companies or DPAs (Data

Protection Authorities) to test the robustness of sanitized

datasets. It is important to note that our solution tests the

robustness of sanitized datasets, not that of the underlying

sanitization technique.

Our case study shows that �-diversity and k-anonymity can

provide stronger average protection against private inferences

in our framework than differential privacy if ε is chosen to be

too large. This result should be handled with caution, since

these techniques have quite different adversary models and

some attacks which are hard to be modeled using a machine

learning algorithm in our framework can have devastating

effect on �-diversity and k-anonymity yet still difficult to

launch against a differentially private dataset [8]. In particular,

our model considers only a specific adversarial inference

attack as well as some potentially defined extra background

knowledge of the adversary. We also showed that increasing

the value of k and � results in stronger protection on average,

but can also entail weaker worst-case guarantee when each

individual is considered.

We believe that there is a need for a toolkit to test the

robustness of sanitized datasets by implementing different re-

identification or inference attacks. Our framework could be

one component of such a toolkit. One benefit of the proposed

testing tool is that the sanitized dataset is analyzed as a

“black box”, i.e. the sanitization algorithm does not need to be

published. It is enough for the verifier to get access to an oracle

that, given a dataset, outputs its sanitized version. We believe

this is a desirable property for at least two reasons: (i) many

companies are unwilling, for different reasons, to publish their

sanitization algorithms, and (ii) the verifier does not need to

go through the difficulty of understanding and analyzing the

underlying algorithm.

In the proposed framework, the verifier can use his favorite

inference models. This paper uses a Naive Bayes classifier,

but other classifiers could be used. Evaluating our framework

with other classifiers is part of our future work.
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