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Abstract—Voice synthesis uses a voice model to synthesize arbi-
trary phrases. Advances in voice synthesis have made it possible
to create an accurate voice model of a targeted individual, which
can then in turn be used to generate spoofed audio in his or
her voice. Generating an accurate voice model of target’s voice
requires the availability of a corpus of the target’s speech.

This paper makes the observation that the increasing popular-
ity of voice interfaces that use cloud-backed speech recognition
(e.g., Siri, Google Assistant, Amazon Alexa) increases the public’s
vulnerability to voice synthesis attacks. That is, our growing
dependence on voice interfaces fosters the collection of our
voices. As our main contribution, we show that voice recognition
and voice accumulation (that is, the accumulation of users’
voices) are separable. This paper introduces techniques for locally
sanitizing voice inputs before they are transmitted to the cloud
for processing. In essence, such methods employ audio processing
techniques to remove distinctive voice characteristics, leaving only
the information that is necessary for the cloud-based services
to perform speech recognition. Our preliminary experiments
show that our defenses prevent state-of-the-art voice synthesis
techniques from constructing convincing forgeries of a user’s
speech, while still permitting accurate voice recognition.

I. INTRODUCTION

A person’s voice is an integral part of his or her identity.

It often serves as an implicit authentication mechanism to

identify a remote but familiar person in a non-face-to-face

setting such as a phone call. The ability to identify a known

person based on their voice alone is an evolutionary skill

(e.g., enabling a child to quickly locate its parents) and is an

ingrained and automated process that requires little conscious

effort [31].

That humans regularly authenticate each other based solely

on voice lends to a number of potential impersonation attacks,

which notably include voice spearphishing and various other

forms of social engineering. The ease at which such attacks

can be conducted has increased due to advances in speech

synthesis. Emerging services such as Adobe Voco [1], Lyre-

bird.ai [15, 16] and Google WaveNet [13] aim to produce

artificial speech in a person’s voice that is indistinguishable

from that person’s real voice. Surprisingly, producing believ-

able synthetic speech does not require a large corpus of audio

data. For example, it has been reported that Adobe Voco can

mimic a person’s speech with as little as 20 minutes of the

targeted speaker’s recordings [1, 2], and Lyrebird.ai can create

a digital version of a voice from a one minute speech sample.

Advances in voice synthesis open up a large number of

potential attacks. An adversary who has access to a speech

sample of a target victim could apply voice synthesis to au-

thenticate as the victim to banks and other commercial entities

that rely on voice authentication [19–21]. Forged speech could

also be used to impugn reputations (e.g., for political gain)

or plant false evidence. In general, voice synthesis poses

a significant security threat wherever voice is used as an

authenticator.

A core requirement of such attacks is that the adversary

must have access to a corpus of voice recordings of its target.

The ability to obtain such samples is buoyed by the rising

popularity of voice input. Voice input has become ubiquitous

and a common method of computer-human interaction, in

no small part because it is a natural (to humans) method

of communication. Smartphones, tablets, wearables and other

IoT devices often come equipped with voice assistants (VAs)

such as Alexa, Siri, Google Now and Cortana. Dedicated VA

devices such as Amazon Echo and Google Home have found

their way into living rooms, constantly listening to users’

voice input and providing quick responses. Users of these

devices regularly surrender their voice data, making them more

vulnerable to future voice synthesis attacks.

Currently, only the voice assistant service providers have

access to the voice samples of a user. However, it is unclear

due to conflicting reports whether the application developers

will get access to user’s voice samples [3, 8]. For example, it

had been reported that Google Home allowed access to raw

voice command audio to application developers while Amazon

Echo also plans to do so in the future [8]. Thus, the increased

use of voice input increases the opportunities to gain access

to raw voice samples of the users.

This paper aims to reduce the threat of voice synthesis

attacks for ordinary users. We concede that much voice data

is already in the public domain—certainly, it is not difficult

to obtain audio recordings of celebrities and politicians, or of

ordinarily users who post their own video or audio content

to publicly accessible social media (e.g., YouTube). Such

users are already vulnerable to voice synthesis attacks and

the techniques that we propose in this paper unfortunately

do not attempt to protect them. Rather, our aim is to present

wide-scale vulnerability to voice synthesis attacks by changing

the norm – that is, by permitting the use of voice-based

services (e.g., VAs) while preventing the collection of users’

raw (unmodified) voice inputs.

We propose a defense that prevents an adversary with access

to recordings of voice commands, issued by users to VAs, from
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building a voice model of a targeted user’s voice. Our proposal

is based on the following two observations:

1) A user does not need to sound like herself to use a voice
assistant. The first step in generating a response to a

user’s voice command is conversion of speech to text, i.e.,

speech recognition. Modern speech recognition systems

are oblivious to unique characteristics of a person’s voice,

and thus, are able to transcribe audio from thousands of

users. Therefore, altering a user’s voice so that it does

not sound like the user herself does not prevent her from

using VAs1.

2) Speech recognition systems do not need all the in-
formation present in spoken audio. The first step in

speech recognition is usually a feature extraction step

that converts the high dimensional input audio into low

dimensional feature vectors which are then used as inputs

to machine learning models for transcribing the audio.

Removing some of the information from the high di-

mensional audio, that is anyway thrown away during the

feature extraction, will not affect the speech recognition

process but can be used to alter the voice characteristics

of the audio.

In brief, our proposed defense extracts audio information

from voice commands that are relevant for speech recog-

nition while perturbing other features that represent unique

characteristics of a user’s voice. Put plainly, we strip out

identifying information in audio, which significantly hinders

(if not makes impossible) the task of speech synthesis. Our ap-

proach could be applied locally—in particular, on smartphones

and smartspeaker devices—as a “security filter” that prevents

third parties (whether they be the speech recognition service

itself, third-party developers, or even network eavesdroppers)

from being able to construct convincing synthesized voices.

Additionally, our proposed defense has the benefit that it

does not require any modifications to the cloud-based speech

recognition systems.

In what follows, we describe our initial design and prototype

of our defense. Our preliminary experiments, including a small

(IRB-approved) user-study, show that our proposed approach

prevents the constructing of convincing voice synthesis models

while imposing minimal effects on the accuracy of speech

recognition.

II. RELATED WORK

We believe we are the first to propose filtering raw voice au-

dio data for the purposes of thwarting voice synthesis attacks.

However, existing work has proposed several approaches for

achieving privacy-preserving voice recognition:

Smaragdis et al. [37] propose a privacy-preserving speech

recognition system as an instance of secure multiparty com-

putation, where one party (the transcriber) has a private model

1The speaker based personalization supported by various VAs is not
hampered by such alteration, since the speaker detection is done locally on the
client device (e.g., smartphone) and only applies to the activation keywords
for the voice assistants.

for performing speech recognition while the other parties have

private audio data that need to be transcribed without revealing

the audio content to the transcriber. However, their work does

not describe the performance or accuracy of such a system

and is limited to HMM-based speech recognition systems. Ad-

ditionally, secure-multiparty computation is computationally

expensive and requires both parties to cooperate. In contrast,

our approach can be deployed locally and does not require any

changes to existing speech recognition services.

Pathak et al. [33] provide a number of techniques for

privacy-preserving speech processing. They describe various

frameworks that aim to make conventional speech process-

ing algorithms based on statistical methods, such as HMM,

privacy-preserving by computing various operations via secure

operations such as secure multiparty computations, additive

secret sharing, and secure logsum. Their techniques are im-

pressive, but suffer from practical limitations due to their

dependence on computationally expensive cryptography. Their

framework also does not achieve good speech recognition

accuracy; in contrast, our defense is intended for advanced

and (arguably) accurate services such as Google’s, Apple’s,

and Microsoft’s cloud-based speech recognition systems.

Ballesteros and Moreno propose scrambling of a private

speech message to a non-secret target speech signal using a

secret key, which the receiver unscrambles using the same

shared secret [27]. The target speech signal’s plaintext is

different from that of the secret message, so as to fool an

eavesdropping adversary. However, the technique requires both

cooperation between the sender and receiver of the scrambled

signal as well as out-of-band key sharing.

More generally, techniques that prevent speech recogni-

tion services from learning the transcription (e.g., via secure

multiparty computation) are not applicable to our problem,

since in our setting, transcriptions are required by the service

provider to respond to voice commands. All major existing VA

systems (including Google Home, Amazon Alexa, and Siri)

use proprietary, cloud-based speech recognition; it is unlikely

that these services would choose to deploy expensive and

poorly scalable cryptographic-based protocols. In contrast, our

proposed defense aims to improve the privacy of voice data

for existing and already deployed systems that are widely used

by millions of users worldwide without requiring any changes

to the speech recognition systems.

Most relevant to this paper are recent studies by Vaidya

et al. [38] and Carlini et al. [29]; there, the authors show

the feasibility of specially crafting audio that is intelligible

to computer speech recognition services but not to human

listeners. Our work borrows the use of MFCCs to extract audio

information from their approach, and removes additional audio

features that provide uniqueness to a person’s voice.

III. THREAT MODEL

We consider an adversary whose goal is to impersonate a

targeted individual’s voice. The adversary achieves its goal of

generating spoofed audio in the target’s voice by building an
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accurate model of his voice by using speech synthesis services

such as Adobe Voco or Lyrebird.ai. Crucially, to be successful,

the adversary needs to first collect a corpus of the target user’s

speech.

Acquiring voice samples: Our threat model assumes that

the adversary requires high quality voice speech samples of the

target to build its voice model. As an example means of col-

lecting voice samples, an adversary could create a (legitimate)

voice application2 for a voice assistant, which provides raw

voice command audio data to the application. Alternatively,

a speech recognition service may itself be malicious and/or

sell users’ speech data to other parties. Finally, if speech is

transmitted unencrypted (which hopefully is a rarity) during

a voice-over-IP call, a network eavesdropper could trivially

collect a corpus.

We emphasize that in this paper, we explicitly do not con-

sider voice collection from in-person conversations, postings

of audio on social media websites (e.g., YouTube), broadcast

media (e.g., TV), or other sources. We acknowledge that

highly skilled and committed adversaries can likely obtain

audio of a specific person, for example, by physically planting

a listening device near the target. Our goal is to change the

norm such that the collection of ordinary users’ audio is much

more difficult. Specifically, we want to enable ordinary users to

use VAs while minimizing their risk to voice synthesis attacks.

Generating voice models: Our threat model assumes that

the adversary has access to services such as Adobe Voco or

Lyrebird.ai that can be used to create a voice model of a

person’s voice from the acquired voice samples.

Lyrebird.ai, at its current state of deployment, is able to

create a voice model of a person’s voice and synthesize

arbitrary audio that share the voice characteristics of that

person. We tested how well Lyrebird.ai is able to imitate a

person’s speech by replaying the synthesized phrases against

the speaker recognition (as opposed to speech recognition)

systems that are built into personal voice assistants. Siri and

Google Assistant both employ speaker recognition on their

respective activation phrases “Hey Siri” and “Ok Google” to

identify the active user and to provide a more personalized

experience based on the user’s identity [11, 18]. One of the

authors trained both Google Assistant and Siri on a Google

Home and iPhone 8 Plus, respectively, with his voice. To

ensure that the VAs were not tricked by another speaker’s

voice, we successfully verified the voice assistants did not

accept the respective activation phrases generated by MacOS’

say text-to-speech command. We then created a voice model

of the first author’s voice using Lyrebird.ai and used the

service to synthesize the activation keywords. Both of the

synthesized phrases were successfully able to trick Siri and

Google Assistant into believing that the phrases were spoken

by the registered user. Although this is an admittedly small ex-

periment and we acknowledge that much more sensitive voice

authentication systems exist, it demonstrates the feasibility of

2These are sometimes called skills.

defeating widely deployed speaker recognition systems—in

particular, those that guard our smartphone devices.

IV. STRAWMAN SOLUTION:

CLIENT-SIDE SPEECH RECOGNITION

We can trivially prevent an adversary from getting access to

voice data by performing only client-side speech recognition.

However, there are various practical challenges that prohibit

such a solution:

Cloud-based speech recognition allows for large, complex

models to be trained, deployed, and updated transparently

without affecting client-facing services. Such speech recogni-

tion models require significant computing power since state-of-

the-art systems rely heavily on computationally expensive deep

neural networks. Cloud deployment also allows for constant

improvements in speech recognition without requiring updates

to client-side software or any service downtime for clients.

Sending raw audio to remote servers also allows service

providers to gather more data for improving the performance

of their speech recognition systems. The majority of com-

mercially deployed speech recognition systems use supervised

machine learning techniques [7, 12] that can potentially benefit

from access to more data for training or testing. In particular,

Alexa, Siri, Google Assistant and Cortana all reportedly use

recorded voice commands to improve thee performance and

accuracy of their voice-based service offerings [22–25].

Additionally, existing open source client-side speech recog-

nition tools (e.g., CMU Sphinx [26] and Mozzila’s Deep-

Speech [17] generally have worse accuracy compared to

current cloud-based speech recognition services [28]. Client

devices such as smartphones and in-home assistants are usually

too resource constrained to employ the better performing

speech recognition techniques that are used by cloud-based

services.

Aside from the technical benefits of cloud-based speech

recognition, service providers may also consider their speech

recognition models to be intellectual property. Pushing such

models to client devices would increase the risk of reverse

engineering and could, in turn, lead to the leakage of trade

secrets. We posit that the the ability to maintain speech

recognition as a closed, cloud-based, black-box service is

likely a powerful motivator for service providers.

V. AUDIO SANITIZER

Our high-level approach to reducing the threat of voice

synthesis attacks is to make it more difficult to collect corpora

of ordinary users’ voices. We introduce the concept of an

audio sanitizer, a software audio processor that filters and

modifies the voice characteristics of the speaker from audio

commands before they leave the client device. Altering such

features transforms the voice in the audio commands that is

available to the adversary, making it difficult to extract the

original voice characteristics of the speaker and reducing the

accuracy of the speaker’s voice model.

The unique characteristics of a person’s voice can be

attributed to the anatomy of various organs involved in the
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process of generating the voice. To identify the audio features

that capture the uniqueness of a person’s voice, we identify

features used in speaker recognition to identify a speaker

from his voice. Since the goal of speaker recognition is

to tell users apart from each other based on their voice

characteristics, we believe that modifying the features used

for speaker recognition provides a good starting point for the

audio sanitizer.

Speaker recognition system typically employ the following

three types of features [39]:

1) Short-term spectral features: These features are extracted

from short overlapping frames and correlate to voice

timbre. Common spectral features include Mel-frequency

cepstral coefficients (MFCCs) and linear predictive cep-

stral coefficients (LPCCs).

2) Prosodic and spectro-temporal features: These features

include pitch, rhythm, tempo, pause and other segmental

information and capture the speaking style and intonation.

3) High level features: These features represent speaker

behavior or lexical clues and are usually extracted using

a lexicon.

We focus on a subset of these features—namely MFCCs,

pitch, tempo and pause—and modify them to alter the voice

characteristics of the spoken audio. Our perturbations are

random, but are applied consistently for the audio of a given

individual speaker. (Otherwise, if our modifications were ran-

domly chosen per sample, then an adversary who collects a

sufficient number of samples could recover the underlying

voice characteristics by “subtracting away” the mean of the

applied random distribution.)

In addition to modifying the identifying features of a

speakers voice, we also remove the extraneous information

present in the audio that is not required for speech recognition.

Recall that the first step in speech recognition is feature

extraction, which converts high dimensional, raw audio to

low dimensional feature vectors. To preserve the acoustic

information relevant for speech recognition, we first compute

the MFCCs of the input audio and then convert the MFCCs

back to audio signal by adding white noise [29]. Importantly,

performing an MFCC and then inverting the MFCC back to an

audio signal is a lossy operation that cannot be reversed (since

information is lost). Here, our goal is to keep only the audio

that is required for speech recognition while losing information

that is useful to construct accurate voice models.

As we discuss in more detail in the next section, for each

speaker, we choose a parameter for each feature such that

the resulting sanitized audio has minimal voice characteristics

of the speaker and is accurately transcribed by the speech

recognition service.

VI. EVALUATION

We evaluate our proposed audio sanitizer by analyzing the

degree to which it can degrade the quality of voice models

to conduct speech synthesis attacks while simultaneously

enabling accurate speech recognition.

Feature Modification

Pitch Shift up or down by 0 - 1
5

th octave

Tempo Change by 85% - 115%
Pause Introduce 0 - 15ms of pause at random 1% positions.
MFCCs Nbands: 100, Numcep: 100, Wintime: 0.025s, Hoptime: 0.01s

TABLE I: Modifications performed to various features by the

audio sanitizer.

A. Impact on Speech Recognition

We evaluate the impact of sanitizing audio (audio output

from the audio sanitizer) by comparing the transcription accu-

racy of the unsanitized (unmodified) and the sanitized audio.

Ideally, sanitized audio should provide identical accuracy to

the baseline unsanitized audio.

We choose a random subset of 500 audio samples from

the West Point Company English speech data corpus from

the University of Pennsylvania’s Linguistic Data Consortium

(LDC) [32]. The LDC corpus consists of both male and

female, American English-language speakers, each speaking

short, multiple sentences. Our subset is comprised of 130

different speakers, with 53 females and 77 males. We measure

our impact on speech recognition quality using Google’s

and IBM’s cloud-based speech recognition services [14, 34].

To quantify the accuracy of speech recognition systems, we

consider the Levenshtein edit distance between the words of

the correct, expected transcription and the best transcription

provided by the speech recognition service. We report the

normalized word edit distance by dividing Levenshtein edit

distance by the number of words in the baseline transcription.

For each audio sample in the corpus, we first transcribe

the unsanitized audio file to establish the baseline accuracy

using the online speech recognition services. Each file is then

sanitized using the audio sanitizer, which modifies the features

that provide unique characteristics to a speaker’s voice (see

§V). To permanently remove the extraneous audio not required

for speech recognition, we compute the MFCCs for each audio

and then invert those MFCCs and add white noise to generate

the sanitized audio [30]. The audio sanitizer first modifies the

pitch, tempo and pause features followed by the lossy MFCC

step to produce the sanitized audio. Finally, we transcribe the

sanitized audio file generated by the audio sanitizer using the

online speech recognition services.

Table I shows the features and the level of modifications

performed to each of those features for each audio file.

For example, for male speakers, we increase the pitch by

0 to 1
5 th octave, randomly choosing the octave value in the

specified range. To modify the tempo, we multiply the tempo

of the audio by a number chosen uniformly at random from

[0.85, 1.15].
Figure 1 shows the cumulative distribution (CDF) of the

normalized edit distances for the unsanitized and sanitized

audio samples when using Google’s and IBM’s speech recog-

nition services. For Google’s speech recognition service, the

best-case accuracy (i.e., having a perfect transcription and a

normalized edit distance of zero) drops from 83.2% to 60.4%
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Fig. 1: Impact of audio sanitizer on transcription accuracy.

Same speaker Different speaker

Baseline 47 45
Unsanitized audio 23 25
Sanitized audio 22 20

TABLE II: Number of participants assigned to each baseline

condition and each of the four test conditions.

when the audio sanitizer is used. In the case of IBM’s speech

recognition service, sanitizing the audio decreases the accuracy

from 70.8% to 50.1%.

Our initial implementation of the audio sanitizer shows

promise: in the worst case, transcription is perfect more than

half of the time. However, we anticipate that accuracy could be

significantly increased by more intelligently performing voice

modifications. In particular, in our initial version of the audio

sanitizer, we use a fixed set of modifications (see Table I) for

all speakers. Given significant variations in people’s voices,

we can likely achieve improved accuracy results by ana-

lyzing individual voice characteristics and choosing specific

parameter ranges on a per-speaker basis. We posit that by

moving away from a one-size-fits-all model and performing

per-speaker audio sanitization, we can make our sanitizer less

coarse and more focused by removing only the information

that makes an individual speaker’s voice distinctive.

B. Privacy Gain

To conduct a speech synthesis attack, the attacker requires a

corpus of the targeted user’s speech. We evaluate the efficacy

of the audio sanitizer by comparing attacks’ effectiveness

when the corpus is based on unmodified speech (the current

norm) and speech that has been filtered by the audio sani-

tizer. More concretely, we examine the adversary’s ability to

successfully launch an attack—that is, cause actual human

listeners to conflate a synthesized voice with a legitimate

recording of a speaker. To perform such an evaluation, we

conduct a small user study to measure how well the attacker

is able to fool human listeners when (i) using a voice model

created from unsanitized voice commands and (ii) comparing

that to the case in which the voice is is based on sanitized

audio.

Fig. 2: Sections and flow of the user study.

Metric Percentage
Gender
Female 41.3%
Male 54.3%
Other 2.1%

Ethnicity
Caucasian 75.0%
African American 8.7%
Hispanic 4.3%
Asian 7.7%
Other 4.3%

Metric Percentage
Age
18-29 years 38.0%
30-49 years 47.8%
50-64 years 9.8%
65+ years 1.0%

Education
H.S. or below 9.8%
Some college 32.6%
B.S. or above 55.4%

TABLE III: Participant demographics for the user study.

Percentages may not add to 100% due to non-response or

selection of multiple options.

a) User Study: Our user study is designed to determine

the success rate of an attacker when attempting to trick human

evaluators with synthesized audio. The user study presents the

participants with different pairs of audio samples and asks

them to specify whether they think the audio samples were

spoken by the same person.

Figure 2 illustrates the design of our online user survey. In

Part A of the survey, participants listen to two short audio

samples with different speech content and are then asked

about the content of the first audio as an attention check.

The two audio samples are normal speech samples either from

the same speaker or two different speakers, shown evenly to

the participants. On the next page of the survey, participants

are asked to describe the relationship between the speakers of

both audio samples using a five-point scale, from “definitely

spoken by same speaker (person)” to “definitely spoken by

different speaker (person)”. Part A was designed to establish

a baseline accuracy of how well survey participants are able to

correctly identify whether two voice samples reflect the same

or different speakers.

Part B of the study measures whether participants can

determine the relationship between the speakers of two audio

samples, when one of the audio is synthesized from a voice

model. The survey participants listen to two short audio

samples with different speech content. The first audio is always

a normal speech audio from a single speaker, the second audio

is always a synthesized audio generated from a voice model

chosen based on the following two factors:

1) Voice model: the voice model is generated by either using
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unsanitized audio or sanitized audio.

2) Speaker: the speaker can either be same or different

speaker with respect to the first audio.

Using a full factorial design, we consider the four conditions

based on the above two factors for choosing the second audio

in Part B as shown in Table II. All voice synthesis was

performed using the Lyrebird.ai service. Participants are first

asked about the content of the first audio as an attention check.

On the next survey page, participants are asked to describe the

relationship between the speakers of both audio samples, again

on a five-point scale ranging from “definitely spoken by same

speaker (person)” to “definitely spoken by different speaker

(person)”.

Part B was designed to answer our primary condition of

interest: i.e., while using synthesized audio constructed from

a corpus of sanitized audio data, were the participants less able

to identify whether the speakers were the same or different?

We compare this to the case in which synthesized audio is

based on normal, unmodified audio. Put simply, we determine

whether the voice synthesis attacks are less convincing when

they are forced to train models based only on sanitized audio

samples.

In Part C, the participants again listen to the same pair of

audio from Part B. They are then asked about the speech in

both of the audio samples with options: “both are human

voices”, “first in human voice but second is a computer

generated voice”,“first is computer generated voice but second

is a human voice”, “both are computer generated voices” and

“not sure”. The goal of Part C was to indirectly measure

how well users can identify speech that is synthesized using

Lyrebird.ai.

The online survey concludes in Part D with demographic

questions about education, gender, ethnicity and age.
b) Recruitment: We used Amazon’s Mechanical Turk

(MTurk) crowdsourcing service to recruit participants for the

user study. We required participants to be at least 18 years old

and located in the United States. To improve data quality, we

also required participants to have at least 95% HIT approval

rate [35]. Participants were paid $1.00 for completing the

study, which was approved by the IRB at Georgetown Univer-

sity. The demographics of our participants are summarized in

Table III.
c) Results: In total, 104 MTurk workers participated and

completed our study. Table II shows the number of responses

across the baseline conditions and the four test conditions. We

exclude 11 responses as duplicates based on their originating

IP addresses and only consider their first response and also

exclude three responses that failed the attention checks. For

the remainder of the paper, we refer to the remaining 90

participants.

Table IV summaries the results of the user study and shows

the percentage of users that reported a given relationship

between the speakers of the two audio samples for the given

condition. For the baseline response, 65.2% of the participants

correctly identified the relationship between the speakers from

Part A of the survey; 76.6% correctly identified the same

Same Speaker Different Speaker

Same Different Same Different

Baseline 76.6% 21.3% 40.0% 53.3%
Unsanitized 30.4% 60.9% 12.0% 72.0%
Sanitized 9.1% 81.8% 0.0% 95.0%

TABLE IV: Summary of responses from the user study

for various conditions. Each cell shows the percentage of

participants that reported a given relationship (excluding the

“not sure” response) between the speakers of the two audio

samples for the given condition. For Baseline, the two audio

were human speech, for Unsanitized and Sanitized, the first

audio was human speech while the second was generated by

Lyrebird.ai.

speaker whereas 53.3% were able to correctly differentiate

between two different speakers. This shows that the majority

of the participants were able to correctly identify whether or

not two audio samples are from the same speaker.

We next focus on the case in which the survey participants

are tasked with identifying whether two samples originate

from the same speaker, when one of the samples is synthet-

ically generated using Lyrebird.ai. When the synthetic voice

was produced using a corpus of the first speaker’s unmodified

(non-sanitized) voice, 30.4% of the participants correctly iden-

tified that voices were from the same speaker. This corresponds

to the attacker’s success rate in impersonating the targeted

individual by spoofing his voice using synthesized speech

generated from his voice model built using unsanitized speech

audio. However, when the synthetic voice was produced using

a corpus of the first speaker’s modified (sanitized) voice, only

9.1% of the participants believed that the voices were from the

same speaker while 81.8% reported them to be from different

speakers. Our results show that the audio sanitizer is able to

significantly reduce the efficacy of the attack; that is, the attack

is far less successful when the attacker only has access to

sanitized speech audio samples.

In the case of different speakers, when the synthesized

voice was generated using a corpus of another speaker’s

unmodified (non-sanitized) voice, 72.0% of the participants

correctly identified the voices to be from different speakers

while 12.0% reported them to be from the same speaker.

However, the use of a sanitized audio corpus to synthesize the

audio for another speaker resulted in 95.0% of the participants

correctly identifying the voices to be from different speakers

and none of the participants reporting the voices to be from

the same speaker.

In summary, the results from our user study show that given

the current quality of Lyrebird.ai’s voice synthesis, an attacker

with access to unmodified speech audio samples of the targeted

individual can synthesize convincing spoofed speech samples

in the target’s voice. However, sanitization of the audio to

remove the voice characteristics prevents the attacker from

generating an accurate voice model, resulting in synthesized

spoofed audio that are far less convincing.

89



VII. DISCUSSION

We conclude by discussing in more detail the benefits,

limitations, and deployment considerations surrounding our

audio sanitizer defense.

Detection of Computer Generated Audio by Humans. In

Part C of the online survey, we asked the survey participants

to identify whether the two audio samples presented to them

were spoken by a human or were computer generated. 76.7%

of the participants correctly identified the first audio to be

human generated speech while the second one being computer

generated across all four conditions. This shows that the users,

with the current state of voice synthesis, are able to correctly

identify computer generated voices. However, this does not

diminish the threat posed by the collection of voice data for the

purpose of building voice models for malicious purposes, since

further improvements in the underlying technologies for voice

synthesis and conversational voice assistants will increase pri-

vacy risks. Additionally, the availability of more training data

for creating a voice model is likely to improve the accuracy

of the synthesized voice. For example, the synthesized audio

used in our user study were generated from voice models,

with each model built using 40 short audio samples. As stated

by the Lyrebird.ai voice synthesis service, providing more

training samples improves the quality of the voice model and

the synthesized speech.

Practical Deployment. A major goal of our proposed audio

sanitizer is to improve the privacy of users without requiring

any support from various transcription services. Our defense

requires only the manipulation of audio on client devices

before it is sent to the remote transcription services. Any

device that accepts voice commands and does not perform

speech recognition locally can leverage the audio sanitizer. To

be effective, the audio sanitizer has to be placed somewhere

in the path between the user and the transcription service so

that it can intercept and sanitize the audio that comprises the

voice command.

One possible point of interception is the communication

link between the client device and the remote service. The

audio sanitizer can capture the voice command from network

packets and then forward it to the service after sanitization.

However, the communication between the client device and the

remote transcription service usually happens over an encrypted

channel3.

A more practical point of interception of audio data is within

the client device itself, after the audio has been recorded by

the microphone(s) and before it leaves the device. Relatedly,

mechanisms for tracking and intercepting sensor data before

delivering it to applications have previously been explored [36,

40]. For example, Xu and Zhu [40] propose a framework for

Android smartphones that allows users to control the data

generated by various sensors based on user-defined policies

for the requesting application before forwarding the sensor

3We verified that Google Home and Amazon Echo use encrypted TLS
connection to send voice commands to remote servers.

data to that application. In particular, for audio data recorded

by a microphone, their approach allows replacement of actual

audio with mock data or with the addition of random noise.

Thus, we can leverage such existing mechanisms on devices

running Android to allow the audio sanitizer to intercept and

sanitize the audio from the microphone before it is delivered

to the application.

For in-home assistants with dedicated hardware such as

Amazon Echo or Google Home, our defense can be deployed

in a less subtle way. An ideal scenario would be to allow the

user to run custom software on these devices. That way, we

can directly integrate the audio sanitizer on such devices. A

motivating example is the Amazon Echo that runs FireOS,

which is an Android-based operating system [9, 10] and thus,

can possibly use the same strategy as other Android devices.

Additional Benefits. In addition to thwarting an adversary’s

attempt to build an accurate voice model of targeted speaker,

the audio sanitizer also allow service providers to make

stronger claims about user privacy. Current devices such as

Amazon Echo and Google Home record and transmit any

sound they hear after the activation word. Thus, any accidental

triggering of such always-on voice assistants during confiden-

tial conversations poses a significant threat to user privacy [6].

As highlighted by recent events, governments can subpoena

service providers for any such recordings [4, 5], which can

harm a provider’s efforts to alleviate public concern about the

privacy risks of installing always-on listening devices. Service

provides may opt to build audio sanitizers into their appliances

and applications, as a way of assuaging privacy concerns.
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