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Abstract—Modern operating systems for personal computers
(including Linux, MAC, and Windows) provide user-level
APIs for an application to access the I/O paths of another
application. This design facilitates information sharing be-
tween applications, enabling applications such as screenshots.
However, it also enables user-level malware to log a user’s
keystrokes or scrape a user’s screen output. In this work, we
explore a design called SwitchMan to protect a user’s I/O paths
against user-level malware attacks. SwitchMan assigns each
user with two accounts: a regular one for normal operations
and a protected one for inputting and outputting sensitive data.
Each user account runs under a separate virtual terminal.
Malware running under a user’s regular account cannot access
sensitive input/output under a user’s protected account. At
the heart of SwitchMan lies a secure protocol that enables
automatic account switching when an application requires
sensitive input/output from a user. Our performance evaluation
shows that SwitchMan adds acceptable performance overhead.
Our security and usability analysis suggests that SwitchMan
achieves a better tradeoff between security and usability than
existing solutions.
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I. INTRODUCTION

An important goal of computer security is to protect

private user data from unauthorized access or modification.

In recent years, we have witnessed a wide range of new tech-

nologies to protect user data, including full disk encryption,

secure data transmission protocols such as TLS/SSL, and

secure cloud storage. However, sensitive user input/output

data remain vulnerable to data stealing attacks by malware

residing in a user’s computer. Keyloggers can capture every

keystroke of a user and screen scrapers can take screenshots

of any displayed window. As an example, between 2013 and

2015, attackers used the Carbanak malware [1] to infect bank

computers and then recorded videos of a victim’s screen

and keystrokes to obtain sensitive banking information.

They successfully stole money from around 100 financial

institutions and the total financial loss amounted to almost

one billion dollars.

Protecting sensitive user input/output is challenging be-

cause modern operating systems for personal computers (in-

cluding Linux, MAC, or Windows) provide user-level APIs

for one application to share the I/Os with another application

running with the same user identifier. For example, X11

provides a function called XGrabKeyboard() to allow

an application to capture the keyboard events of another

application. Once a client application connects to an X

server, it would share its I/O paths with all clients connected

to the same X server. These function calls allow any malware

to steal the keyboard input and screen output of a user’s

applications.

Previous proposals to address this challenge fall into four

broad categories. Work in the first category protects a user’s

I/O paths at the hardware level. An example is the Intel

Protected Transaction Display (PTD) solution [2]. Work

in the second category proposes to use a second mobile

device as a trusted input/output device [3], [4], [5], [6],

[7], [8]. Work in the third category uses virtual machines

to isolate trusted applications [9], [10]. Finally, work in the

fourth category proposes to enhance an OS by implementing

fine-grained access control for I/O interfaces so that one

application cannot access another application’s I/O paths by

default [11], [12], [13], [14].

Each of the previous solutions requires a unique trusted

computing base (TCBs). However, they all require sig-

nificant user management to achieve the desired level of

security. A user needs to decide which data are sensitive

and then switch to a trusted hardware (e.g. a mobile device)

or a trusted terminal (e.g., one runs inside a trusted virtual

machine) or both to input/output sensitive data. We hypoth-

esize that it is challenging for a non-expert user to manage

these tasks. Therefore, it is beneficial to explore a design

alternative that can automatically manage the switching to

sensitive data input/output without user involvement.

In this work, we propose SwitchMan, an architecture that

enables a server to switch a user to a secure terminal for

sensitive user input/output. At the heart of SwitchMan lies a

protocol that enables a remote server (e.g. a web server)

to embed a secure terminal switching request inside its

traffic stream even if the client’s software (e.g. a browser)

is untrusted (§ IV-C). The TCB running on the client will

intercept the request and switch the user to a secure terminal.

The SwitchMan architecture can support different TCBs.

One design choice is to run a secure terminal inside a

trusted VM, and let the VM manager (VMM) intercept

the switching request. As a preliminary step, in this paper,

we assume that the OS kernel and its graphical interface

are trusted. We use the OS’s built-in user-level separation
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mechanism to create a trusted input/output terminal. This

preliminary design allows us to quickly prototype Switch-

Man, and evaluate its performance. It is our future work to

study how to reduce SwitchMan’s TCB.

In the preliminary SwitchMan design, the OS provides

each user with two accounts: a protected account and a

regular account. The protected account is a “commodity”

account such that it only runs a small set of applications

trusted by the OS vendor. A user cannot install arbitrary

applications under this account and can only use it as a

trusted terminal, i.e., inputting and outputting sensitive data.

A user’s regular account is the same as the account a user has

today. He can use it without the above mentioned constraints.

We have implemented the SwitchMan design using Linux

and evaluated its performance. We have also conducted a

preliminary analysis of its security and usability (§ VI).

Our performance evaluation shows that SwitchMan adds

low overhead to the existing system. Our usability analysis

suggests that SwitchMan is easier to use than previous

proposals.

We make two main contributions in this work. First,

we introduce the SwitchMan architecture as an easy-to-

use alternative to secure user input/output. Second, we

build a SwitchMan prototype using Linux and evaluate its

performance. Our analysis shows that it improves personal

computers’ security compared to the status quo and is easy

to use. Our performance evaluation shows that SwitchMan

has low overhead.

II. RELATED WORK

In this section, we describe the related work.

VM-based isolation: A large body of work proposes

to use virtual machines to separate untrusted applications

from trusted ones [9], [10], [15], [16], [17]. VM-based

isolation offers strong security but it requires significant

user management effort. A user must choose the right VM

for the right applications. Otherwise, untrusted applications

may gain access to a user’s sensitive data. The Android [17]

architecture assigns each application a unique user identifier.

This isolation model is similar to SwitchMan’s. However, the

Android architecture only allows an application to set its I/O

sharing permission at the application level, not based on the

sensitivity of its I/O data. An application can choose to allow

I/O sharing or not. If it allows I/O sharing, then malware can

steal its I/O data; if it does not, then a user cannot take a

screenshot of the application. In contrast, SwitchMan allows

a server to choose the level of I/O protection based on the

sensitivity level of the data. The same application, e.g., a

browser, can allow screenshots for non-sensitive data but

prohibits I/O data sharing for sensitive data.

Device-level isolation: There also exist proposals that use

a personal device such as a mobile phone to input/output

sensitive user data [3], [5], [6], [7], [8], [18], [19]. These

proposals assume that a user’s personal device is trusted and

use it for the input or output of sensitive data. We consider it

inconvenient for users to use a separate device for sensitive

input/output. In addition, smart phones can also be infected

with malware and may no longer be trusted.

Securing the input/output path by minimizing

TCB: Some researchers argue that obtaining input/output

data does not require a general purpose OS and propose to

use a separate module isolated from a user’s OS to receive

a user’s input/output data. Borders et al. propose to use a

small Trusted Input Proxy (TIP) [20] to receive secure user

input. The Cloud Terminal architecture [21] proposes to

run all application logics inside a server hosted at a cloud

provider, including the graphic rendering logic. A user’s

computer only runs a small TCB to receive input from

the user and render graphical output from an application

running in the cloud. Bumpy [4] uses an encrypted keyboard

and mouse to protect sensitive user input. Zhou et al. [22]

propose to build a trusted I/O path between I/O devices and

a user’s trusted program.

All these solutions assume that the OS cannot be trusted

and require a user to initiate the switching to a secure

input/output device. They require a user to install additional

software or require special hardware such as encrypted

keyboards [4].

Fine-grained I/O control: Nitpicker [13] uses a mini-

mized secure graphical user interface. SELinux [11], [12]

proposes to enforce strict access control of an X server.

DriverGuard [14] proposes to use fine-grained I/O flow

protection in the kernel space. However, these solutions

require significant changes on application program interfaces

(APIs), operating systems, or window managers, and have

not gained wide adoption.

Advanced hardware: Intel protected transaction display [2]

proposes to use a random input pin pad to replace keyboard

input to prevent keylogging. It provides hardware-level sup-

port to prevent an application from taking screenshots of the

input pin pad. However, it has not been widely available on

general purpose computers.

Compared to the existing solutions, SwitchMan has two

main differences. First, it does not require user involvement

to switch from an untrusted environment to a trusted one.

Second, it does not require changes on client applications,

and only requires a small set of changes on the OSes of a

client and a server, and on the server software.

III. OVERVIEW

We describe SwitchMan’s design goals, assumptions, and

adversary model in this section.

A. Goals

Protecting sensitive input/output data against user-level

malware. SwitchMan aims to secure sensitive input/output

106



data from user-level malware running on a conventional

multi-user OS such as Windows, MAC OS, or Linux. In

this work, we only consider GUI and keyboard access, and

leave how to extend the design to multi-modal interactions

for future work. We do not aim to prevent data leakage when

attackers compromise a user’s OS or other software with root

privilege. Local applications may store sensitive data on a

computer’s permanent storage. Securing access to such data

is outside the scope of this work.

Easy to use. SwitchMan aims to be easy to use, as

past experience suggests that it is challenging for non-

expert users to adopt sophisticated or cumbersome security

solutions [23].

Efficient. We aim to make SwitchMan efficient to use.

SwitchMan should not introduce user perceivable perfor-

mance degradation.

B. Assumptions

Trusting OS and its vendor. SwitchMan’s design assumes

that a user’s OS kernel and the graphical system distributed

with the OS can be trusted, as in previous work [3], [5].

We make this assumption mainly because of our design

goals. Trusting the OS makes SwitchMan easy-to-use. By

trusting the OS, we can provide a turnkey solution to the

user. An OS vendor can distribute SwitchMan with the OS

and turn it on by default. We expect that ease of use can

increase the chance of user adoption.

Admittedly, trusting the OS has the drawback that when

a user’s OS is compromised, SwitchMan cannot secure the

access to sensitive user input and output data. However, we

believe there are a few remedies that can reduce the security

risk of this assumption.

First, there exist techniques such as the Integrated Mea-

surement Architecture (IMA) [24] that can measure and

attest an OS’s integrity. Second, trusting an OS significantly

reduces the TCB compared to the status quo. Today, if one

application residing in a user’s account is compromised, the

application can steal sensitive user input/output. We obtain

data from the Common Vulnerabilities and Exposures (CVE)

dataset [25] for the time period from 2013 to 2018. We

find that the percentage of privilege escalation vulnerabilities

and root privilege vulnerabilities among all vulnerabilities

are in the range of [3.01%, 9.34%] and [0.17%, 0.65%]
respectively. This result shows that the number of OS

vulnerabilities is much fewer than the total number of

vulnerabilities, suggesting that trusting the OS rather than

all applications can significant reduce the security risk of

data leakage.

Finally, there exists market competition among OS ven-

dors. The OS vendors are accountable for security breaches

caused by OS compromises, and accountability can motivate

an OS vendor to improve its security, reducing the risk that

Figure 1. This figure shows the overall SwitchMan architecture.
Each user has a protected account and a regular account. A
user switches to his protected account and uses the trusted I/O
proxy running under that account for sensitive input/output.
SwitchMan can help secure both sensitive local and network
input/output data.

the OS is compromised.

Secure Storage & Network Transmission. We assume that

sensitive user data can be securely transmitted by protocols

such as HTTPS/TLS or SSH and can be securely stored on

disk by file system encryption technologies such as [26].

C. Adversary Model

No Physical Access. We assume an attacker does not have

physical access to a user’s computer. Therefore, an attacker

cannot capture a user’s screen with a camera or capture a

user’s key strokes with a hardware keylogger.

Malicious Man-in-the-Middle (MITM). We assume that

there are active attackers in the middle of the network who

attempt to modify and access network traffic to further

extract user sensitive data. We assume the malware residing

in a user’s computer and MITM may collude to attempt to

steal user data.

IV. SWITCHMAN DESIGN

In this section, we describe how we design SwitchMan to

achieve its design goals.

A. SwitchMan Architecture

Figure 1 shows the SwitchMan’s architecture. A com-

puter’s OS assigns two user accounts to one user. One is a

regular account, where the user has the freedom to run any

application. The other is a protected account. This account

comes with a set of pre-configured software that the OS

manufacturer trusts. A main purpose of this account is to

provide a trusted terminal for users to input/output sensitive

107



data. Each user account has its own display server. Appli-

cations running under the regular account cannot connect to

the protected account’s display server. Each server uses its

own virtual terminal so that their I/O paths are isolated at

the software level.

The design of SwitchMan includes four main components:

1) a program called the Trusted I/O Proxy (TIOP) running

under a user’s protected account; 2) a kernel module called

SwitchMan for managing the switching between a user’s two

accounts; 3) a kernel filter for managing sensitive network

input/output data; and 4) a network protocol which we

call SwitchMan’s Network Protocol (SNP). SNP enables a

remote server to send a request to a user’s OS to switch

the user to his protected account for accessing sensitive

input/output data (§ IV-C). SwitchMan can secure both

local and network input/output. Due to space limit, we only

describe how to secure network input/output in this paper.

Next, we describe each design component in more detail.

B. Trusted Input/Output Proxy(TIOP)

In the SwitchMan design, a user interacts with sensitive

data via TIOP. One can view TIOP as a simple web browser

distributed by a user’s OS vendor. It displays the sensitive

output received from a remote server and takes a user’s input.

To be secure, the OS will prohibit a user from installing

arbitrary extensions to TIOP and may also disable advanced

browser features such as Javascript to reduce security risk.

Figure 2 shows a sample user experience flow when a

user is using SwitchMan. A user does his normal operations

in his regular account. When a server sends a switching

account, a user is switched to using TIOP under his protected

account. A user must know whether he is under his protected

account to prevent a malicious program from impersonating

TIOP. In the SwitchMan design, a user chooses a secret

background image for his protected account when he creates

his accounts. The image will be encrypted and stored with

a user’s other login credentials. A user will see this image

when he is under his protected account. In the example of

Figure 2, the white-check-mark-on-green-shield image is the

user’s chosen background image.

TIOP is the only application connected to the virtual

terminal running under the protected account. Thus, other

applications under a user’s normal account cannot connect

to the same protected virtual terminal to steal sensitive user

input/output. A user is switched back to his regular account

after he finishes sensitive input/output.

C. SwitchMan’s Network Protocol (SNP)

SwitchMan’s design includes an HTTPS-based protocol

which we refer to as SwitchMan’s Network Protocol (SNP).

SNP enables a remote server to securely request the Switch-

Man OS to switch a user to his protected account. We

choose to base the design on HTTPS due to its prevalence.

However, we believe SNP can be adapted to other TCP-

based protocols.

SNP has three main features. First, it is backward com-

patible with the present TLS/TCP protocol stack. A non-

SwitchMan-upgraded client can continue to connect to a

SwitchMan-upgraded server and vice versa. Second, the

protocol is resistant to MITM attacks. A MITM attacker can

at most launch denial of service attacks by discarding traffic,

but cannot steal a user or a server’s sensitive data. Third, it

does not require the client application (e.g. a browser) with

which the server interacts to be trusted. A malicious browser

is treated the same way as an MITM. That is, it can at most

discard a server’s request to switch a user to a protected

account, but cannot steal sensitive input/output data.

Next we describe how SNP works as shown in Figure 3.
1) Step 1: TCP/TLS handshake: In the first step, a

client connects to a server via HTTPS. This initial step

is the same as the standard TCP/TLS protocol except that

1) a SwitchMan-enabled client and server will exchange

additional information via TCP options and 2) a client’s OS

will intercept and store a server’s SSL/TLS certificate, as

shown in pseudo code SNP Step 1. We introduce a new TCP

SNP Step 1 :

// TCP Handshake.

ClientOS → Server : SY N w/ Opt(SM)
ClientOS ← Server : SY NACK w/ Opt(SM Echo)
ClientOS → Server : ACK

// TLS Handshake.

Browser → Server : Hello

Browser ← Server : Hello+ Certificate

Browser → Server : Key

option SM for backward compatibility. If a client does not

include this option in its initial handshake with the server, it

indicates the client is not SwitchMan-enabled. Similarly, if

the server does not echo back the TCP option SM Echo, it

indicates the server is not SwitchMan enabled. When either

of these happens, SNP falls back to the standard HTTPS.

During this step, the client OS will also intercept the server’s

SSL/TLS certificate for later verification purpose. We note

that a malicious browser or malware with user-privilege

cannot intercept a TCP option, because it is the OS that

receives and processes a TCP option and the OS can decide

not to pass it to an application. Therefore, malware cannot

degrade a SwitchMan-enabled client/server to stop running

SNP.
2) Step 2: Server Initiated Switching: After a client and

a server have established an HTTPS connection, they may

proceed with their normal data exchange. When the server

desires to receive or send sensitive data to the client, it

will send a switching request to the client. When a client

OS receives a server’s switching request, it needs to 1)

validate the request is from the server, and 2) invoke the
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Figure 2. A sample user experience flow of switching between two accounts. The leftmost figure shows a user accesses an e-
commerce website under his regular account. The middle figure shows the user is switched to using TIOP to enter his credit card
information under the protected account. The protected account display has a secret background image. The rightmost figure
shows that the user is switched back to his regular account.

Figure 3. This figure shows how SwitchMan’s network protocol
works at a high level. 1) A client connects a server via HTTPS.
2) If a server desires to receive sensitive data or display sensitive
data, it notifies the client’s kernel. The client’s OS intercepts
this signal, and switches an eligible server session to a user’s
protected account. 3) The user uses the trusted TIOP program
to interact with the server. 4) The user resumes his previous
session in his regular account after the TIOP session finishes.

TIOP program from a user’s protected account to exchange

sensitive data with the server. To accomplish the first task,

we let the server sign its request. Since in Step 1, the client

OS intercepts the server’s TLS certificate. It can validate the

authenticity of the server request with that certificate.

It is challenging to accomplish the second task, because

TIOP must establish a secure connection with the server,

authenticate itself to the server, and associate its new con-

nection with the existing connection established in Step 1.

Otherwise, when the server receives the new connection

from the TIOP program, it cannot validate whether the client

is the one it interacts with previously, and does not know

what sensitive data to send to or receive from the client.

One can use a secret session identifier to establish the

association between the client/server’s original connection

and the new connection TIOP initiates. The server generates

a secret identifier, and uses it to uniquely identify its request,

and sends it only to the intended client.

However, how to send this secret session identifier se-

curely becomes a design challenge. In the SwitchMan de-

sign, the communication channel between a server and a

client is either a TCP option field, or an HTTPS connection.

If the server sends the secret session identifier to the client

via a TCP option, it is not encrypted. A MITM may intercept

this session identifier and impersonate the TIOP program to

establish a connection with the server. If the server sends it

encrypted in the HTTPS payload, an untrusted application

will receive it and may impersonate the TIOP program.

We address this challenge by splitting the secret session

identifier into two halves. The server sends the first half of

the session identifier as a TCP option and the second half in

the HTTPS payload to the client. The client’s OS intercepts

the first half, and the untrusted application (e.g., a browser)

receives the second half. The server signs the second half and

includes the signature in the HTTPS payload to prevent an

untrusted application from tampering the session identifier.

The untrusted application stores the second half at a well

known location. The TIOP program cam read it from the

well known location, validate a server’s signature, combine

the two halves into a secret session identifier, and establish

an HTTPS connection with the intended server. TIOP will

include the secret session identifier in the payload of its

HTTPS connection to authenticate itself to the server and

associate its new connection with the previous connection

between the untrusted client program and the server. The

pseudo-code SNP Step 2 illustrates this design.

SNP Step 2 :

Browser → Server : Request

Browser ← Server : Normal Data

// First half of the switching request.

TIOP ← Server : TCP Option(nonce1, nonceid)
// Second half of the switching request.

Browser ← Server :
https(JS(URLsensitive, nonce2, nonceid, signature))

The nonce1 and nonceid fields constitute the first half

of the secret session identifier, and nonce2 and nonceid
constitute the second half of the secret session identifier.
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SwitchMan design assumes the untrusted application is a

browser. So the server will send the second half of the

session identifier in a Javascript with code to store it at a well

known location. In the SwitchMan design, a user can read

down from a protected account to his regular account. So

the TIOP program can read any file located inside a user’s

regular account.

3) Step 3: TIOP Connects to the Server: In SNP Step 3,

TIOP connects to the sensitive URL (URLsensitive) sent

by the server. The TIOP program authenticates itself by

presenting the secret session identifier composed by nonce1,

nonce2, and nonceid. Note that a malicious application

cannot modify URLsensitive because it is protected by the

server’s signature in Step 2.

SNP Step 3 :

TIOP → Server :
https(URLsensitive, nonce1, nonce2, nonce id)
TIOP ↔ Server : Sensitive Data

With this design, a MITM cannot intercept the secret ses-

sion identifier as it is protected by the HTTPS connection. In

the meantime, the untrusted application cannot impersonate

TIOP either, because it does not have the first half of the

secret session identifier.

4) Step 4: Switching back to the regular account: Finally,

when TIOP and the server finish exchanging sensitive data,

the server can actively terminate the connection, and resume

the session between itself and the browser.

D. Deployment Modifications

Both a client and a server’s OS needs to be modified

to support SwitchMan’s new TCP options and SwitchMan

functions. In addition, we also need to modify a web server

to deploy SwitchMan. The server software must separate

sensitive data from non-sensitive data. But SwitchMan does

not require client applications to be modified.

V. IMPLEMENTATION

As a proof of concept, we implemented SwitchMan

using the open source platform Linux. We implemented the

SwitchMan component as a daemon process running with

root privilege. It starts a user’s account on two different vir-

tual terminals: the default /dev/tty7 for a user’s regular

account, and another available terminal /dev/ttyn for a

user’s protected account, where n is a number ranging from

1 to 6. The SwitchMan component is in charge of three

tasks: 1) extracting a server’s TLS certificate; 2) invoking a

user’s TIOP program; and 3) switching a user to the virtual

terminal running under his protected account. Our current

implementation has 4900 lines of C code. We implemented

the TIOP program using the X11’s GUI.

We implemented the Filter component and the new

TCP option field as a kernel patch to Linux 3.13.11. We

modified the kernel’s TCP handling code to add and strip

off the TCP options. When a server requests a trusted

I/O path, the Filter component strips off nonce1 and

session id fields carried by a TCP option, and passes them

to SwitchMan, which in turn passes them to a user’s TIOP

program. The total patch is around 200 lines of C code.

A SwitchMan-enabled server uses the same kernel to add

and extract new TCP options. We implemented a server

application which generates the switching request, and splits

content into normal and sensitive data. The total changes is

around 900 lines of Java code.

VI. EVALUATION

In this section, we evaluate the design and implementation

of SwitchMan from three aspects: usability, security and

performance.

1) Usability. A strong motivation of this work is to make

SwitchMan easy to use. We compare its usability with

related work.

2) Security. Due to space limit, we omit a thorough se-

curity analysis of the SwitchMan design under various

threats. Instead, we use the size of TCB of a solution

as the security indicator.

3) Performance. Finally, we evaluate SwitchMan’s per-

formance overhead using a prototype implementation.

We measure both the client and server’s communica-

tion overhead.

We compare SwitchMan with three other systems to

evaluate its strengths and weaknesses: Qubes OS [9], Cloud

Terminal [21], and BitE [3]. Qubes OS is a secure desktop

operating system that isolates different applications into

different virtual machines. Cloud Terminal installs a secure

thin terminal on a user’s computer and moves all other

application logics to a cloud. Each application runs inside a

separate VM on a cloud and a user only uses the secure thin

terminal for input and output. BitE uses a mobile phone as

a secure input/output device.

A. Usability

Evaluating the usability of a security system is challeng-

ing, as there is no single usability metric that measures

the usability of a system. To address this challenge, we

use several usability factors to analyze SwitchMan’s user

friendliness.

Nothing-to-carry considers whether a user needs an addi-

tional physical device (e.g., a phone) to use a system.

No user management effort means a user does not need to

manually manage the switching between a trusted I/O path

and an untrusted one.

No noticeable performance degradation means a user

does not experience noticeable slow down when using a

system.

Comparison: Table I shows the comparison results. As
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Table I
THIS TABLE COMPARES SWITCHMAN WITH THREE OTHER SYSTEMS FROM MULTIPLE DIMENSIONS.

factor Qubes OS Cloud Terminal BitE SwitchMan

USABILITY

Nothing-to-carry � � � �

No user management effort � � � �

No noticeable performance degradation � � � �

SECURITY

TCB size VMM + guest OS kernel kernel modules kernel kernel
+ graphic system + hypervisor + cloud + mobile OS + graphic system

can be seen, SwitchMan is one of the most user friendly

system. It does not require a user to carry any additional

device and requires no user management effort in switching

between the trusted and untrusted I/O paths. As we soon

show, SwitchMan introduces a low latency when a user

switches to his protected account. BitE requires a user to

carry a mobile device. Qubes requires a user to manage

the switching between different VMs, while Cloud Terminal

requires a user to use a special escape sequence to launch

the terminal. In addition, Qubes OS runs one VM for

applications in one domain, imposing significant memory

and computational overhead. Furthermore, different from

SwitchMan, Cloud Terminal, Qubes OS, and BitE all require

a user to determine the sensitiveness of data, and initiate the

I/O path switching. If a user fails to identify the sensitiveness

of data or forgets to initiate the switching, these solutions

cannot help. In contrast, SwitchMan does not require user

management, and lets a server initiate the switching from an

untrusted I/O path to a trusted one.

B. Security

We use the size of TCB to estimate the security level

of a system. As can be seen in Table I, SwitchMan’s TCB

size is on par with that of Qubes OS and that of BitE, but

is larger than Cloud Terminal’s. Qubes OS uses a VM to

isolate the guest OS each application runs on, but Qubes

itself, the administrative VM, and the guest OS that runs

the trusted applications must be trusted. Cloud Terminal uses

the network protocol stack provided by a commodity OS and

it needs to trust this part of the OS and a set of binaries.

BitE trusts the OS kernel. In addition, BitE also trusts the

additional mobile devices. Nowadays the size of a mobile

phone OS is similar to that of a PC OS. So we consider the

size of BitE and that of SwitchMan are similar.

C. Performance

For all the following experiments, we use two Dell Opti-

plex PCs with Intel Core i7 CPU 860 @ 2.80GHz and 8 GB

RAM as the client and the server machine. Both machines

use Ubuntu 18.04.

I/O Path Switching Latency: We test the I/O path

switching latency using our prototype implementation of

SwitchMan. In our experiments, we access a test web
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Figure 4. This figure shows the original page load time of the
top five Alexa [27] websites and top five bank websites, and
the extra latency added by SwitchMan.

page from a user’s regular account, and switch a user to

his protected account when receiving a server’s switching

request. We repeat the experiments 10k times and measure

the average latency. The experiments show that the average

latency for switching is around 14ms.

Extra Latency: We run experiments to measure the extra

latency SwitchMan introduces to access a normal web

page. The latency is caused by the HTTPS/TLS connection

established by TIOP. We connect a client to one of the top

five websites and top five bank sites ranked by Alexa [27].

We assume each of the web pages has a login button. We

then simulate the case where a user clicks on the login button

and the server requests a trusted I/O path for the user to input

his login information. We measure the time from the client’s

OS receiving the server’s request to TIOP finishing loading

the login page. We consider this time as the extra latency

to load the entire page. We repeat the experiments for each

site 500 times, and measure the average extra latency and

standard deviation, and show them in Figure 4. As can be

seen, the extra latency is less than 0.5s for all sites. We

consider this extra latency acceptable for improved security.

Client Computational Resource Overhead: We measure

the extra computational resource overhead introduced by

SwitchMan to a client computer. With SwitchMan, a client’s

computer needs to run an extra graphic server, the kernel
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Figure 5. The latency at the server side when sending files with
different sizes.

SwitchMan module, and TIOP. We measure how much

these processes cost. For our implementation, the total

memory cost of all SwitchMan’s components is 280M .

And there is nearly no difference in the number of system

operations per second and CPU resources consumption,

since the extra graphical server is running at the background

and usually stays in a “sleep” condition. We also measure

the kernel module SwitchMan’s memory consumption:

when SwitchMan is running as a daemon, it takes 15160k
mapped memory. We consider this overhead acceptable,

given that modern PCs typically have at least a few gigabytes

of memory.

Memory Cost Comparison: The memory cost of our

experimental machine during idle time is 0.933GB. When

SwitchMan is turned on, the memory cost is 1.213GB. When

we run Qubes OS with 5 VMs, the cost is 2.870GB. This

is because SwitchMan just uses an extra virtual terminal to

launch another graphical server, while Qubes uses different

VMs to launch an operating system module.

D. Server Evaluation

Server Side Latency: We test the overhead on the server

side when a server sends files with varying sizes. The server

side overhead mainly comes from the additional SNP data

a sever sends at the connection setup time and during the

client account switching time. We measure the time from

when a connection is established to when it is finished.

Figure 5 shows that the server side latency is relatively

fixed and does not vary by file size. This is because the

additional overhead is only added at Step 1 and 2 of the SNP

protocol, and does not affect the actual data transmission.

The additional latency is less than 10ms for all file sizes.

Concurrency: We let the client machine send concurrent

requests to the server to evaluate how the server performs

when there are multiple simultaneous connections. For this

experiment, we use a file size of 300 bytes. Figure 6
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Figure 6. The latency at the server side when there are
concurrent requests.

shows the results. With the increasing number of concurrent

requests, the average page load time slightly increases for

both SwitchMan server and a normal server. SwitchMan

adds a small latency compared to the normal server when the

number of concurrent requests increases from two to 1000.

VII. DISCUSSION AND FUTURE WORK

In this section, we discuss a few additional design issues

and future work.

SwitchMan needs OS modifications but does not require

modifications of client applications. Although we have kept

the modifications minimal and much fewer than previous

proposals [3], [9], [21], we acknowledge that such modifi-

cations may not be adopted by OS vendors. However, our

goal as researchers is to provide an easy to use security

alternative for the real world to choose from.

We use a server initiated switching design. This design

may enable a malicious server to unnecessarily switch a user

to his protected account, launching a denial of service attack.

Malicious client software cannot launch such an attack.

SwitchMan’s design allows a user to use a special keystroke

sequence to leave the protected account, and future work

can add a blacklist option to allow a user to blacklist such

a malicious server.

One might argue that it is a client’s interest to protect

its sensitive data. Therefore a server-initiated protection

mechanism has ill-aligned incentives. However, in practice,

since there are multiple services competing for customers,

we believe they have incentives to offer security-enhanced

services to their customers. For instance, a bank may desire

to adopt our solution to prevent its customers’ passwords

from being stolen, and customers may prefer a bank that

offers such a solution.

Finally, we currently design TIOP as a simple HTML

browser without advanced features such as Javascript to

avoid security vulnerabilities. Future work can extend TIOP

to be a secure and fully functioning browser.
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VIII. CONCLUSION

In this paper, we present SwitchMan, an architecture that

enables a server to automatically switch a user to a secure

terminal for sensitive user input/output. Our experiments and

analysis suggest that SwitchMan is lightweight and easy to

use. Protecting a user’s sensitive information from being

stolen by malware remains an open problem. We believe

SwitchMan offers a valuable design alternative for the real-

world to adopt.
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