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Abstract—The Internet of Things (IoT) and mobile systems
nowadays are required to perform more intensive computation,
such as facial detection, image recognition and even remote
gaming, etc. Due to the limited computation performance
and power budget, it is sometimes impossible to perform
these workloads locally. As high-performance GPUs become
more common in the cloud, offloading the computation to the
cloud becomes a possible choice. However, due to the fact
that offloaded workloads from different devices (belonging to
different users) are being computed in the same cloud, security
concerns arise. Side channel attacks on GPU systems have
been widely studied, where the threat model is the attacker
and the victim are running on the same operating system.
Recently, major GPU vendors have provided hardware and
library support to virtualize GPUs for better isolation among
users. This work studies the side channel attacks from one
virtual machine to another where both share the same physical
GPU. We show that it is possible to infer other user’s activities
in this setup and can further steal others deep learning model.
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I. INTRODUCTION

The Internet of Things (IoT) and mobile devices are

used to perform heavier workloads nowadays, including

image recognition, facial detection, etc. As the need for

computation increases while the physical limitation, such as

thermal and size of these devices remains, it is impossible to

perform all the heavy workloads locally on these devices. A

possible solution is to offload these workloads to the cloud.

In this scenario, the offloaded tasks from different devices

that belong to different users can be executed on the same

machine.

Using the cloud to accelerate mobile and IoT devices can

certainly extend their capabilities, while concerns on security

arise due to the sharing of computation resources. Recent

works on side channel attacks, that leverages the information

from the system (e.g., cache, memory, etc.) other than the

vulnerabilities in the algorithm, have shown it is possible

to bypass the existing system-level protection and access

the private data of other processes [1, 4, 8, 29, 37, 38, 40].

The recent Spectre [15] and Meltdown [20] attacks have

demonstrated the feasibility of breaking the inter-process

isolation provided by the operating system. Their success

has inspired a variety of research on attacks and defenses on

the hardware [2, 5, 6, 14, 16, 32, 36], more specifically, side

channel attacks on the central processing unit (CPU). The

graphics processing unit (GPU), on the other hand, features

high-performance parallel computing. Conventional systems

use GPU as a dedicated accelerator for graphics processing,

such as video streaming and gaming. Modern workloads,

such as big data analytics, machine learning and artificial

intelligence, require highly parallel computing that the CPU

is not specialized at. As GPU features parallel computing,

modern systems typically use GPUs to accelerate these

workloads for better performance and efficiency. Therefore,

using the GPU to bypass the system isolation becomes a

possible approach. Moreover, in cloud computing scenarios,

GPUs can be shared among different clients [28] for tasks

such as 3D rendering, remote gaming [24, 27], and other

acceleration for computation [25, 28]. This resource sharing

on GPUs makes it possible for attackers to gain information

about other users on the cloud.

The execution model of GPU differs from that of CPU due

to its use cases and architectual design. First, GPU features

parallel computing and optimizes for throughput. A group of

GPU cores can execute hundreds of threads in parallel, where

cores running the same instructions can have divergent control

flows. To simplify the process of control flows on different

threads and improve parallelism, GPUs have execution mask

to individually disable some of the code when the branch

diverges on different threads. This way, each thread has the

same execution time, in spite of their differences in the control

flow. For the same reason of optimizing for parallelism and

throughput, GPU processors are simpler than those in CPUs,

which do not perform speculation. These characteristics make

many of the CPU side channel attacks ineffective to GPU.

However, there have been works that exploit side channels

that exist on GPUs [11, 12, 18, 23] and defend against GPU-

specific side channel attacks [13]. Second, a GPU typically

works as an external PCI-E device. Therefore, the program

does not directly execute on the GPU, instead, a runtime

system schedules and offload tasks (program kernels) to

the GPU device. This execution model makes the runtime

library a potential target for attackers. There have been recent

works that launch attacks to access private data of other GPU

processes, leveraging the vulnerabilities in GPU libraries and

runtime environments [19, 35, 41]. These attacks assume a

threat model where the attacker and the victim GPU processes

run on the same OS and share the entire GPU system stack,

including the GPU library and runtime system.

Recently, major GPU vendors have released GPUs that

support virtualization to better satisfy the demand for GPU in

cloud computing environments [10, 25, 39]. In a virtualized

GPU system, each virtual machine (VM) has an exclusive

virtualized GPU (vGPU) and thus having its own GPU library

and runtime system. This lower-level, virtualization-based

isolation makes cross-VM attacks on GPU more difficult in

the following two ways: First, virtualization provides stronger
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isolation. Each VM has its own GPU system stack. Therefore,

the weakness in GPU library no longer exists. Second, GPU

hardware performance counters are (typically) not available

to VMs, therefore, attackers cannot easily launch a side

channel attack using these performance counters. Our goal is

to exploit the potential vulnerabilities in a virtualized GPU

environment.

To overcome the challenges in attacking virtualized GPUs,

we have the following key ideas: (1) We observe that even

though virtualization has isolated vGPUs, the contention

among GPU workloads still exists, as they share the same

physical GPU device. Therefore, we can launch probing GPU

kernels and measure their execution time as a replacement

for the GPU performance counters. The change of prober’s

execution time provides information about the workload

running on the victim VM. (2) The execution time, however,

is a low-resolution performance indicator. To overcome this

problem, we take an approach from a prior work [23] that

utilizes machine learning approaches to better identify the

victim’s GPU workload.

In this work, We use an Intel’s GPU (HD530) and

virtualization support (Intel GVT) as our platform, and test

our attacking method with three GPU activities and five deep

learning models. Applying the aforementioned key ideas, we

achieve an F1 Score of 0.95 when identifying the victim’s

activities, and a 100% accuracy in extracting the deep learning

models.

II. BACKGROUND AND MOTIVATION

A. GPU Architecture

GPU features high parallelism and high throughput, being

highly optimized for graphics and other parallel general

purpose computing tasks. Different from CPUs, a GPU

consists of a number of Graphical Processing Clusters (GPCs),

each of which includes a group of graphics units such as

raster engine and Streaming Multiprocessors (SMs). SMs are

all shared among the computational threads that are mapped

to it. These units are originally designed for accelerating

graphics and multimedia workloads, such as 3D rendering

and video streaming. Recently, as the need is growing for

workloads such as big data analytics, machine learning and

scientific computing, GPUs are also used to accelerate these

general purpose applications. There have been library and

languages, such as CUDA and OpenCL, to support this

general purpose computation on GPUs.

B. GPU Virtualization

Similar to CPUs, GPUs can also be virtualized to provide

an abstraction over the hardware to VM users. Typically,

there are two ways to divide the GPU resources: physical-

slice and time-slice [7]. The physical-slice method allocates

different VM separate computation units (GPU cores), while

the time-slice method allocates all GPU computation units to

one VM periodically. AMD takes the physical-slice approach,

Figure 1. Threat Models. (a) The threat model in prior works: the victim
and attacker execute in the same OS. (b) The threat model in this work: the
victim and attacker reside in different VMs where each VM has its own
virtualized GPU.

Figure 2. The system stack in (a) normal GPU systems, and (b) virtualized
GPU systems.

and Intel and Nvidia use time-slice. With GPU virtualization,

different virtual machines (VMs) have their own exclusive

virtualized GPU. Therefore, each VM has its own GPU

library. The only sharing resource is the physical GPU device.

III. SYSTEM OVERVIEW

This section gives an overview of our system, threat model

and attack approaches.

A. Threat Model

Prior works assume that the attacker and victim GPU

processes execute on the same machine, as shown in

Figure 1(a). In this project, we assume a different threat

model, that is the attacker and victim are on different virtual

machines. Virtual machines have their own GPU memory,

but still share the same GPU device with others, as shown

in Figure 1(b).

B. System Setup and Key Ideas

Figure 2 shows the system stack in the aforementioned

threat models. Figure 2(a) shows the system stack in prior

works where different GPU applications (App A and App B)

run on the same GPU runtime in the same OS and access

the same GPU device. Figure 2(b) shows the system stack in

this work. We assume that the host machine creates vGPUs

on top of the physical GPU device (e.g., using Intel GV-

T [10]). Then, different guest machines (VMs) use their own

vGPU. From the perspective of each VM, it has its “exclusive”

access to the GPU. Therefore, each VM has its own GPU

system stack, including the driver and runtime system. In our
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Category GPU Workload Description
Baseline Idle Having Ubuntu desktop on, but no GPU load.

Entertainment
Online video streaming Watch a 4K YouTube video.
OpenArena A game that runs on Linux.

Machine learning models
VGG-16 [33]

Deep Neural Networks that run on an OpenCL-based
deep learning framework – clDNN [9].

AlexNet [17]
GoogleLeNet-V1,V2,V4 [34]

Table I
GPU VICTIM WORKLOADS.

system setup, different GPU applications (App A and App

B) are isolated by the lower-level virtualization technology.

This isolation minimizes the resource sharing between the

attacker and victim, as compared to a scenario where the

attacker and victim run in the same OS, and share the same

GPU library and runtime system. Therefore, the two major

attacking methods no longer work:

Library-based Attacks. Different VMs have their own

exclusive vGPU device, and the upper-level GPU library

and runtime support. As a result, attacks based on flaws

in the GPU library and runtime does not work anymore –

the underlying virtualization has provided strong isolation

between different VMs.

Performance-counter-based Side Channel Attacks. As

directly stealing data from the victim via GPU library

and runtime is no longer a feasible solution, side channel

attack becomes an appealing choice. GPU-based side chan-

nel attacks require certain performance-related information,

e.g., memory size, computation unit utilization, etc. to

infer the details about the victim workload. A typical

approach is to read the GPU performance counters. However,

virtualization blocks the guest machine (VM) from accessing

these performance counters. Therefore, side channel attacks

require other indirect methods to infer the victim’s activities.

Given that fewer methods are feasible in this virtualized

scenario, the difficulty of launching GPU-based attacks

increases. Next, we present our key ideas that overcome

these difficulties.

Probing Program. Due to the unavailability of GPU

performance counters, we need a new method to monitor the

performance status of the victim VM. We observe that even

though virtualization has provided strong isolation between

VMs, the resource contention still exist. Therefore, programs

that utilize GPU on the victim VM can lead to a performance

impact on the attacker VM. To leverage this impact, we

run a probing program on the attacker side. In the system

we study, the proper program consists of a simple read-

compute-store pattern that can be contended with the victim

both in terms of memory and computation units. The more

contention the victim creates, the slower the prober executes.

Therefore, the execution time of the prober act as a low-

resolution “performance counter”. We discuss the details

about the prober in Section IV-A3.

Machine-learning-based Characterization. Given

performance-counter-like results, the next step is to

determine what GPU workload the victim is running.

However, due to the low resolution, i.e., the execution time

of the prober only approximately tells how much memory

and computation contention the victim causes, it is still hard

to directly tell what GPU workload the victim is running.

To improve the accuracy of identification, we take a similar

method as [23], that is to use machine-learning techniques

to extract richer features within the raw data (execution time

of prober). We detail our method in Section IV-A3, and

present our classification results in Section IV-B.

IV. EXPERIMENTATION

In this section, we present our real-system-based attack.

First, we describe the system setup, including the virtu-

alization method, the victim workload, and the attacker’s

probing program. Second, we detail our machine-learning-

based analysis that classifies the GPU workload running on

the victim VM.

A. Methodology

1) Virtualized System.: In this work, we use a system

based on Intel’s GPU and virtualization technologies. Table II

shows the system configuration. Our virtualization is based

on a KVM-accelerated QEMU, that uses the vGPU devices.

Note that due to the limitation of GPU memory, we can only

instantiate two vGPUs and run at a low display resolution

of 960×640. One VM acts as the victim that runs the GPU

workload, and the other VM runs the prober program. Next,

we describe the victim and the attacker in detail.

Hardware

CPU
Host: Intel i7 6700, 8 logical cores
Guest: 2 logical cores

GPU Intel GT2 HD530

Memory
Host: 48GB DDR4, 2133Mhz
Guest: 4GB

Display
Host: 1920×1080
Guest: 960×640

Software
OS Host and guest: Ubuntu 16.04

Kernel
Host: 4.17 (with Intel GVT support)
Guest: 4.15

QEMU 2.12.0 (with Intel GVT support)

Table II
SYSTEM CONFIGURATION.

2) Victim Programs.: We select a few common GPU

workloads, as listed in Table I. The baseline is an idle system

that has the Ubuntu desktop on, but does not actively use the
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(a) Idle Kernel Mean (b) OpenArena Kernel Mean (c) Video Kernel Mean

(d) Idle Kernel Skewness (e) OpenArena Kernel Skewness (f) Video Kernel Skewness

Figure 3. Feature distribution visualization for side channel attack that infers the victim’s activity.

GPU. The second category of applications is for entertainment

purposes. We take 4K video streaming and the OpenArena

game as examples. The third category is main-stream deep

learning workloads. As NVIDIA recently announced their

partnership with ARM for accelerating deep learning on

IoT devices [26], we expect that deep learning will be a

common application in the cloud with vGPUs. We choose

five commonly used models: VGG-16 [33], AlexNet [17] and

three versions of GoogleLeNet [34]. These deep learning

models perform inference over the ILSVRC [31] images.

Note that the training procedure can also become a targeting

workload, however, due to the computation capability of

the Intel integrated GPU, we only consider the inference

workloads.

3) Attacker Approach.: To perform an attack on the victim

VM, the attacker needs to take two steps: (1) launch the

probing program, and (2) interpret the results from the prober

to classify the victim’s GPU workload. Note that we assume

the attacker has a brief knowledge about the victim’s GPU

workload, such as the commonly used deep learning models

that we have listed above.

Probing Program. The probing program consists of an

OpenCL kernel that runs on GPU, and a wrapper that offloads

this kernel repeatedly. The OpenCL kernel first accesses a

random location in a float32 array (the array is on GPU

memory), then calculates the square of the selected data value

in the array, and eventually writes back this new value to

the original location. This simple read-compute-write pattern

utilizes both the memory and computation units on the GPU

device, therefore any contention from the victim program can

change the execution time of this probing OpenCL kernel.

The wrapper program uses OpenCL Events (cl_event) to

measure the execution time of the OpenCL kernel.

Probing Result Interpretation. For each GPU workload,

we create a dataset of 1000 probing sequences, where each

sequence has 1000 probing data points (execution time of the

probing kernel). Then, we use machine learning approaches

to interpret these probing results, where we take 80% of the

sequences as the training data and the remaining 20% for

testing. As our probing results represent the activity over

time, we use the common pipeline of time-series analysis to

process the results: feature extraction, feature selection and

classification.

(1) Feature Extraction: We use the tsfresh package [3]

to extract the time-series-based features. In total, we extract

over 1200 features from the probing results, including the

most common features in time series classification such

as means, skewness and Kurtosis. We showcase some of

the features in Figure 3, where different workloads present

distinguishable features.

(2) Feature Selection: We use the univariate feature

selection method [21] to extract the features that are most

useful to classification. Univariate feature selection works by

selecting the best features based on univariate statistical tests.

It computes the scoring function (e.g., Chi-squared statistics

and mutual information) of each feature and discards the

less relevant ones with low scores. In our experiment, we

only keep 400 features after feature selection.

(3) Classification: We use different machine learning

models to learn the victim’s GPU workload based on the

features we extracted from the probing results. We use the

following models for classification: Random Forest (RF), K-

nearest Neighbors (KNN), Support Vector Machine (SVM),

Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes

(NB).

B. Evaluation Results

We use precision, recall and F1 scores to evaluate the

classification results. We present the results using these

metrics in Table III and Table IV. Table III shows the results

of user (victim) activity classification, that includes the first

three activities in Table I. All classifiers indicate that we can

successfully infer the user activities. The optimal classifiers
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Classifier Precision Recall F1 score
RF 0.96 0.95 0.95
KNN 0.82 0.82 0.82
SVM 0.95 0.95 0.95
AdaBoost 0.86 0.85 0.85
NB 0.74 0.71 0.69

Table III
RESULTS OF SIDE CHANNEL ATTACK ON USER’S ACTIVITIES.

Classifier Precision Recall F1 score
RF 1.00 1.00 1.00
KNN 1.00 1.00 1.00
AdaBoost 0.47 0.60 0.50
NB 0.92 0.90 0.90

Table IV
RESULTS OF SIDE CHANNEL ATTACK ON MODEL EXTRACTION.

for probing the victim’s activities are RF and SVM that could

achieve an F1 scores of 0.95.

We further demonstrate the model extraction performance

in Table IV, that includes the five deep learning models in

Table I. The results show that the attacker is also able to

infer which deep learning model the victim is running for

model inference with 100% accuracy when the attacker using

the RF and KNN classifier.

V. DEFENSE

Our attacks require that there exists a significant resource

contention between different vGPUs. During our experiment,

we find out that the attacker’s prober has a noticeable

slowdown due to the intensive deep learning workload

running on the victim VM. The performance impact finally

leads to information leakage. On the other hand, a successful

probing program needs to perform a specific pattern of work

– repeating a simple GPU kernel for example. This clear

pattern can also expose the attacker. To mitigate (in part) the

side channel across vGPUs, we have the following proposals.

Side-channel-aware Resource Scheduling. The GPU

virtualization support allocates resources to each vGPU

and schedules the tasks. Defending against side channel

attacks on vGPUs requires the scheduler to expose fewer

characteristics about the workload, such as memory and

computation intensity. When the GPU resource is sufficient,

it is possible to limit the maximum resource that one vGPU

can acquire. For example, in our experiments, GoogleLeNets

are much more intensive compared to other models. Limiting

the maximum resource for each vGPU can reduce the

difference in memory/computation intensity between different

workloads. This way, the variation of resource utilization

(due to workload’s characteristics) is lower, and therefore,

providing less information to the attacker.

Attacker Behavior Detection. The detection of an at-

tacker requires the hypervisor (e.g., KVM, Xen, etc) monitor

the GPU activities on each VM. Existing products or

proposals have considered CPU activities, but requires more

awareness on the GPU side. Once a potential attacker

has been detected, the hypervisor can either change the

scheduling mechanism or move the VM to another machine.

VI. RELATED WORKS

GPUs have been widely used for tasks beyond its original

multimedia tasks. As GPU computing is becoming more and

more general purpose, concerns on its security arise.

GPU Runtime Information Leakage. Recent works

demonstrate that the information leakage in GPUs can lead

to security issues [11, 19, 22, 23]. There are two major

categories of GPU-based attacks. The first type of attacks

leverages the design flaws of the GPU library, such as inappro-

priate data sharing, switching the processes without clearing

the buffer, etc. Yao et al. [41] discovers the vulnerabilities in

the WebGL library can lead to graphics memory leakage and

propose to use virtualized GPU platforms to mitigate this

leakage. Pietro et al. [30] showcases leakages in different

types of GPU memory, including shared memory, global

memory and registers, and successfully steal the SSL key

stored in the GPU. In a virtualized system, each VM has

its own GPU driver and runtime library. Therefore, it is

impossible to read data from the GPU runtime in other VMs.

GPU Side Channel Attacks. The second category of

attacks uses the side channel in the GPU device, such as

performance counters and cache, to infer information of other

GPU processes. Naghibijouybari et al. [23] demonstrate that

by leveraging the GPU performance counters, it is possible

to gain user information with an OpenGL-based spy process.

For example, the attacker can fingerprint the websites’ GPU

activity and infer the website the user is browsing. Using

a similar technique, the attacker can also estimate some of

the parameters, such as the number of neurons and the size

of input layers, of user’s neural network models. Jiang et

al. [11] conduct a timing attack on a CUDA-based Advanced

Encryption Standard (AES) implementation. Their key idea

is to capture the difference in timing between addresses

generated by different threads as they access GPU memory.

By observing the execution time of an encryption algorithm

on GPU, the attacker can infer the likely encryption key.

Luo et al. [22] demonstrate a power-based side channel

attack on AES encryption executing on a GPU. In virtualized

systems, performance-counter-based side channel attacks no

longer work as the VM does not have the privilege to access

performance counters. As a result, launching side channel

attacks to another VM is challenging.

VII. CONCLUSIONS

The integration of GPU in the cloud accelerates mobile

and IoT devices, while causing potential vulnerabilities due

to resource sharing. The GPU virtualization technologies

provide better isolation among vGPU users, making many

of the existing side channel attacks ineffective on vGPUs. In

this work, we demonstrate that it is still possible to launch

side channel attacks on vGPUs.
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