
Feasibility of a Keystroke Timing Attack
on Search Engines with Autocomplete

John V. Monaco
Naval Postgraduate School

Abstract—Many websites induce the browser to send network
traffic in response to user input events. This includes websites
with autocomplete, a popular feature on search engines that
anticipates the user’s query while they are typing. Websites with
this functionality require HTTP requests to be made as the query
input field changes, such as when the user presses a key. The
browser responds to input events by generating network traffic
to retrieve the search predictions. The traffic emitted by the
client can expose the timings of keyboard input events which
may lead to a keylogging side channel attack whereby the query
is revealed through packet inter-arrival times. We investigate the
feasibility of such an attack on several popular search engines
by characterizing the behavior of each website and measuring
information leakage at the network level. Three out of the five
search engines we measure preserve the mutual information
between keystrokes and timings to within 1% of what it is on the
host. We describe the ways in which two search engines mitigate
this vulnerability with minimal effects on usability.

I. INTRODUCTION

It is becoming increasingly apparent that preventing side

channel attacks is a major security challenge. The unintended

leakage of information between processes can expose secrets,

enable unauthorized access, and violate user privacy. Part of

this difficulty stems from the difficulty in reasoning about the

physical systems upon which software is executed [1].

Many side channel attacks exploit device behavior. This in-

cludes microarchitectural attacks, which expose hardware state

leaked through the timing of software events on a device [2],

and physical side channels, which expose hardware state

through external measurements such as power consumption [3]

and acoustics [4].

A class of side channel attacks that exploit human behavior

has also emerged. Such attacks recognize a user’s actions from

their behavior sensed either externally or on the device. This

includes attacks that recognize the keys a user types on a

keyboard or mobile device based on the position of the hands

sensed through channels such as WiFi signal distortion, motion

of the device, and timings of keystrokes [5].

The manifestation of human behavior in network traffic can

enable such attacks remotely, which have primarily leveraged

the sizes of encrypted packets [6]. We explore how packet

inter-arrival time might also leak information about user

behavior. Many websites respond to user input events in near-

real time, which requires low latency communication with the

server. In this model, the timing of input events is exposed in

the network traffic from the client to the server.

Autocomplete is a feature that has been incorporated into

almost every major search engine. This service provides

suggested queries to the user as they type based on the par-

tially completed query, trending topics, and the user’s search

history [7]. Intended to enable the user to find information

faster, autocomplete requires the user’s client to communicate

with the server when input events are detected. As a result,

the user’s keystroke timings can manifest in network traffic,

potentially enabling a remote keylogging side channel attack

[5]. We determine the feasibility of such an attack in this work.

Considering the autocomplete feature of several popular

search engines, we aim to address the following questions:

1. How much information about a search query is leaked
in the network traffic generated by autocomplete? Prior work

has measured the mutual information, or information gain,

between keyboard keys and keystroke timings observed on

the host [8], [5]. This work has assumed that these timings

can be detected and are faithfully preserved in packet inter-

arrival times. We test this assumption using actual network

traffic generated by several major search engines and measure

the amount of information that is lost after the keyboard events

pass through the web browser in transit to the server.

2. What kind of event processing model is used by major
search engines to implement autocomplete? Search engines,

and dynamic websites in general, differ in the way input

events are processed and communicated to the server. In this

regard, characterizing the input event processing model of each

search engine will enable a better understanding of how web

application design considerations can lead to or mitigate side

channel attacks.

3. What defenses that are currently implemented, if any,
mitigate such an attack? Towards an effective defense against

keylogging side channels, we identify ways in which a search

engine is less vulnerable to attack. Specifically, we are inter-

ested in defense mechanisms that can mitigate such an attack

without greatly decreasing usability.

II. BACKGROUND AND RELATED WORK

A. Keylogging side channels

A keylogging side channel attack aims to recover the

keystrokes of a victim using a channel outside of the intended

keyboard event processing pipeline. Such attacks date back 75

years when it was demonstrated that keystrokes on a teletype

terminal emitted a characteristic electromagnetic spike. They

have since been demonstrated for a wide range of modalities

such as acoustics, seismic activity, and hand motion [5]. These

attacks generally fall into two different categories: spatial

attacks, which utilize a channel that leaks information about

212

2019 IEEE Security and Privacy Workshops (SPW)

© 2019, John V. Monaco. Under license to IEEE.
DOI 10.1109/SPW.2019.00047



where a key is located on the keyboard, and temporal attacks,

which utilize a channel that leaks only the times of key press

and release events.

Two main problems arise when trying to determine

keystrokes from a side channel. The first is keystroke detec-

tion, a binary classification problem. In a packet trace, this

involves deciding whether each packet contains a keystroke

or not. The second problem is key identification: given that

a keystroke occurred, determine which key it was. This is a

multi-class classification problem.

Temporal keylogging attacks attempt to recognize which

keys a user typed based only on the key press and release

times. This attack may utilize timings sensed through acous-

tics, spikes in CPU load, or network traffic. In this regard,

websites that emit network traffic in response to keyboard

events, such as SSH in interactive mode or a search engine

with autocomplete, may unintentionally leak information about

keyboard events even when traffic is encrypted.

Temporal keylogging attacks are enabled by the similarity

with which different people type on a keyboard. The typist

is generally quicker to press keys that are far apart compared

to keys that are close together, a consequence of having to

reposition the hand or finger to strike neighboring keys [9].

This inverse scaling between key-distance and key-press la-

tency is common among touch typists [10], enabling general

inferences to be made about which keys were pressed based

only on the time interval between key-presses.

The feasibility of a temporal keylogging attack is measured

by the mutual information between timings and keys. Mutual

information is given by

I [k; y] = H0 [k]−H1 [k|y]
where H0 is the intrinsic entropy of symbol k and H1 is the

entropy of k conditioned on observation y. In this work, k
is an ordered key pair, or bigram, such as “TH” and y is

a time interval between keyboard events, such as the time

from pressing “T” to pressing “H”. The mutual information

measures the ability to predict keys from timings.

B. Web search autocomplete

Many search engines have autocomplete functionality. With

this feature, a list of suggested queries is presented to the user

as the query input field changes. When the user presses a key

on the keyboard, the client makes a request to the server and

the server responds with a list of suggested search queries [11].

This results in a series of HTTP requests following keyboard

events, such as those shown in Figure 1. In this example, an

HTTP GET request is made upon each key press that results

in a visible change to the query input field, i.e., modifier keys

are ignored. The server response contains a list of suggestions

aimed to anticipate the user’s complete query.

Previously, it has been demonstrated that the size of the

server response can leak a considerable amount of information

about the query [12]. For each request, the attacker must only

enumerate each possible key until a response with the same

size is found, a search space that grows linearly with query

size. However, this kind of attack is application dependent

(among different search engines), time dependent (since sug-

gestions change over time according to trending searches [7]),

and user dependent (since suggestions generally depend on a

user’s search history [7]).

Using both outgoing and incoming traffic over Tor, traffic

patterns could enable fingerprinting a limited set of keywords

contained in the query [13]. This technique is also application

dependent and requires a dictionary of target queries to be

built. Unlike these works, we consider unrestricted queries and

only examine the traffic emitted by the client.

The keystroke timings leaked by “on the fly” web apps, such

as Google autocomplete, were modeled in [14]. This work

investigated whether the latency distributions of particular

bigrams could be recovered from network traffic generated

by an autocomplete service. These may then be used in

a keystroke biometric imitation attack. However, this work

assumed that the traffic was unencrypted and measured only

whether the distribution of time intervals associated with a

particular bigram could be recovered. In the current study, we

assume that the traffic is encrypted and measure the attacker’s

ability to identify the query.

III. DATA COLLECTION METHODOLOGY

We assume a remote passive attacker that can observe

encrypted network traffic from a victim who types a query

on a search engine with autocomplete. We built a system that

captures network traffic while previously recorded keystrokes

are replayed in the browser as they would be typed by a human

subject. Since we aim to characterize only search engine

behavior, and do not consider other network effects such as

routing and buffering delays, we capture on the interface of the

victim’s machine and assume there is no background traffic.

In future work, we plan to relax these assumptions.

The measurement setup consisted of: a keystroke dataset

previously collected from human subjects, browser automation

with Selenium WebDriver, and a low latency system to replay

the keystrokes. Our data collection methodology assumes the

victim types a query without corrections or selecting a search

suggestion before the complete query is entered. We used a

subset of a publicly available keystroke dataset collected from

over 100k users typing excerpts from the Enron email corpus

and English gigaword newswire corpus [15]. The timestamps

in this dataset have millisecond resolution. From this dataset,

we randomly selected 1000 phrases that contain between 5

and 50 printable characters, i.e., we do not consider sequences

containing deletions or keys that may cause the cursor to

change position, such as arrow keys. This selection contains

a wide variety of typing speeds, ranging from 1.5 to 22 keys

per second (KPS, averaged over each sample).

Each capture proceeded as follows. The web browser was

opened and cookies cleared before starting the capture process

(tshark). One second after the capture began, the website was

loaded using the web driver. There was then a two second

delay before replaying the keystrokes. The keystroke sequence

was replayed by writing the sequence of key events to the

213



GET
 /…

?q=
E&

GET
 /…

?q=
Ex&

GET
 /…

?q=
Exa

&

GET
 /…

?q=
Exa

m&

GET
 /…

?q=
Exa

mp&

GET
 /…

?q=
Exa

mpl
&

GET
 /…

?q=
Exa

mpl
e&

RShift E E RShift X X A A M M P P L L E E

… …

Fig. 1. Search autocomplete example. As a search query is entered, the client submits a request with the partially completed query and the server responds
with a list of suggested queries. A request is only made upon visible changes to the query box, such the key press of a printable character (↓=press, ↑=release).

uinput device with delays between each event that corre-

spond to the original keystroke sequence. The data collection

was performed on an Ubuntu Linux desktop machine with

kernel version 4.15 compiled with the CONFIG_NO_HZ=y

option, which omits clock ticks when the CPU is idle. This

ensured keyboard event times were replayed with high fidelity

and not quantized due to the presence of a global system

timer. Traffic was decrypted by setting the SSLKEYLOGFILE

environment variable before each capture, which specifies a

file to record the TLS session keys. Ground truth for the

purpose of measuring keystroke detection accuracy and mutual

information was obtained using the decrypted packets.

We collected 1000 queries on each of five different search

engines: Google, Bing, DuckDuckGo (DDG), Baidu, and Yan-

dex, all of which implement autocomplete albeit in different

ways. To understand how the browser itself might affect net-

work timings, the data collect was performed in both Chrome

(v.71) and Firefox (v.64). All the search engines considered

except Baidu currently support HTTP/2.

The dataset we collected contains a total of 10k queries

(1000 keystroke sequences × 5 search engines × 2 web

browsers), obtained over approximately 5 days. During this

time, we did not experience any rate limiting. However, some

captures did either miss some of the outgoing traffic or fail to

completely decrypt (approximately 1%). These unsuccessful

captures were repeated until the decrypted queries matched

the original keystroke sequence.

IV. ANALYSIS OF WEBSITE BEHAVIOR

We characterize several aspects of search engine autocom-

plete behavior that, to our knowledge, have not been examined

previously. We then evaluate the ability to detect keystrokes

based on packet size and the ability to identify keystrokes from

packet inter-arrival times.

A. Packet size

The problem of keystroke detection involves deciding

whether each captured packet contains a keystroke event or

not. As the user types, the client repeatedly sends HTTP GET

requests that contain the partially completed query. The size of

each request increases over the previous one since it contains

the cumulative text that the user has typed. As a result, the

sequence of packet sizes increases by about 1 byte with each

request. All of the search engines we considered followed this

behavior with some exceptions noted below.

We characterize the sequence of packet sizes emitted by

each website by normalizing to the size of the first packet.

That is, let si be the size in bytes of the ith packet and s0
the size of the first packet. Relative packet sizes are given by

s1−s0, s2−s0, . . .. This sequence characterizes packet size as
a function of query length, invariant to the size of the initial

request which may vary across hosts due to different sized

identifiers, authentication tokens, user agent string, etc. The

relative packet sizes are shown in Figure 2.

We observed some variations to this general behavior. To

initialize the autocomplete service, a website may include

some additional parameters in the first request. These initial-

ization parameters are then removed in subsequent requests.

As a result, packet size initially decreases and then increases

linearly thereafter. Both Bing and DuckDuckGo exhibit this

behavior, noticeable by the sharp decline in packet size after

the first request. In contrast, we found that Google includes

additional parameters after a threshold is reached: after about

12 characters, an additional “gs_mss” parameter with the

partially completed query at that point is included in each

additional request. This results in a sudden increase of about

20 bytes (8 bytes for “&gs_mss=” and 12 bytes for the query),

again increasing by about 1 byte per character thereafter.

Unlike other search engines, the autocomplete packet sizes

of Baidu increase at about 2 bytes per character. This is due to

the previous partially completed query being included in each

request. For example, if the user types “cat”, the request after

pressing “t” will contain “?wd=cat&pwd=ca” where “pwd”

refers to the previous partial query and “wd” to the current.

From these observations, keystroke detection may be ac-

complished by finding an increasing sub-sequence of packet

sizes within the complete trace. Assuming that the time of

214



Fig. 2. Relative packet sizes of each search engine.

page load is known by the attacker and keystroke detection

is applied only thereafter, we detect keystrokes by finding the

longest increasing sub-sequence (LIS) of packet sizes, a prob-

lem that can be solved efficiently by dynamic programming.

The LIS achieves near-perfect keystroke detection accuracy (F-

score > 99%) for every website except Bing and DuckDuckGo.

Taking into account the website specific behaviors above, such

as the initial decrease in packet size, would further improve

accuracy. The F-scores are summarized in Table I.

B. Event processing model

The event processing model describes the way in which

the website detects and processes input events before making

a request for autocomplete suggestions. Among the websites

we examined, we found there are generally two kinds of event

processing models: callback and polling.

In a callback model, an input event triggers a callback

function responsible for sanitizing the query text and making

an HTTP request to retrieve the list of autocomplete sug-

gestions. The delay from the time of the input event to the

time of request depends primarily on the execution time of

the callback function. If this execution time does not vary

between successive events, the time intervals between events

is faithfully preserved in packet inter-arrival times.

In a polling model, the contents of the query input field are
periodically checked at fixed intervals according to a timer

cycle. When a change in the query field is detected, an HTTP

request for autocomplete suggestions is made. Thus, the delay

from input event to request depends on where in the cycle

the event occurred. The packet inter-arrival times are closely

aligned to some multiple of the timer period.

The event processing model introduces perturbations to

the timing of keyboard events as seen in packet inter-arrival

times. Perturbations may be caused by sampling noise, low

frequency polling, or the presence of background processes

(in the browser or on the host) with higher priority. We

consider the spectral coherence to measure how much noise

the event processing model introduces to the event times in

each website. The spectral coherence measures the fractional

part of the power spectral density of the keyboard event times

that is preserved in packet timings. This reveals not only

how much the keyboard event times are perturbed, but at

what frequencies. The spectral coherence of each website is

Fig. 3. Spectral coherence between keystroke events and autocomplete
network traffic in Chrome (left) and Firefox (right).

shown in Figure 3. From this figure, we can make several

observations:

• There is a gradual decay in coherence for Google, Duck-

DuckGo, Baidu, and Yandex. This indicates that these

websites use a callback model, which faithfully preserves

lower frequencies.

• That decay is generally steeper in Firefox than in Chrome.

This indicates higher-frequency variations in the timing

of input events in Firefox compared to Chrome.

• The spectral coherence quickly drops to 0 after 10 Hz

for Bing in both browsers. This indicates a polling

mechanism with clock rate around 100 ms, which cuts

off frequencies above that range.

• There are apparent peaks at multiples of 125 Hz. We

verified that these artifacts are present in the original

keystroke dataset and were not introduced by our mea-

surement setup. They are likely due to USB polling which

is 125 Hz by default for low speed devices.

We examined the web page source code to verify the event

processing model of each search engine. This involved beau-

tifying the obfuscated JavaScript, setting breakpoints at places

where XMLHttpRequest objects are created, and toggling

callbacks to keydown and keyup input events. This revealed

that Google, Baidu, and Yandex use callbacks on input
events, DuckDuckGo uses a callback on keyup events, and

Bing uses a polling mechanism with 100 ms timer. Note that

input events are triggered immediately following keydown
events [16]. Baidu additionally has a polling mechanism with

200 ms timer, seemingly as a fallback mechanism for when

autocomplete requests are not triggered by other input events.

Results are summarized in Table I.

C. Censoring

A temporal keylogging attack depends on the ability to

observe keyboard event times as a victim types. The network

traffic generated by a search engine autocomplete service

reveals these timings as the client makes HTTP requests

215



Fig. 4. Keyboard event time censoring. Polling censoring (top) occurs when
typing speed exceeds polling rate in a polling event model. Rollover censoring
(bottom) occurs when keystrokes overlap in a key-release callback model.

upon user input events. However, for some websites, if typing

occurs too fast, characters could be merged into the same

request and a single packet is generated for multiple keyboard

events. When this occurs, some of the keyboard event times

become censored1 at the network level since they cannot be

observed. The ability to perform a temporal keylogging attack

is diminished.

We identified two ways in which keyboard event times may

be censored. The first is through polling, when the typing

speed of the victim exceeds the polling rate. This situation

is shown in Figure 4 (top). The query input field is monitored

for changes with polling interval T . When two key presses

occur within a single polling window, the first event becomes

censored since the following autocomplete request contains

two additional characters instead of one.

Censoring can also occur in a callback model with hooks

registered to keyup events. In such a model, censoring

occurs when two consecutive keystrokes overlap, a typing

phenomenon known as key rollover. An example is shown

in Figure 4 (bottom). Key “B” is pressed after key “A” is

pressed but before “A” is released. When key “A” is released,

the query input field already contains “ab” since characters

appear immediately following the keydown events. When

the autocomplete request is made after releasing key “A”, it

contains the partial query “ab”. Following this, key “B” is

released; however this results in no visible changes to the

contents of the query input field, so no request is made. As a

result, the release of key “B” is censored.

Typing speed can affect both kinds of censoring. In a polling

model, events become censored when two key press events

occur within the same polling window, which is more likely

to occur as typing speed increases. In a callback model trig-

gered by keyup events, events become censored due to key

rollover, a phenomenon characteristic of faster typists [15]. We

measured the censoring rate (proportion of censored events) of

Bing, which implements a polling model, and DuckDuckGo,

which implements a keyup callback model. The positive

relationships between censoring rates and typing speed are

1We borrow this term from survival analysis, a branch of statistics. In
survival analysis, censoring occurs when the time of an event is not known.

Fig. 5. Censoring rates of Bing and DuckDuckGo as a function of average
typing speed. Each point is a keystroke sequence.

shown in Figure 5, an indication that faster typists are less

prone to attack in both models. The queries in the keystroke

dataset we used had an average 27% rollover ratio, calculated

by the proportion of overlapping to total number of keystrokes.

D. Information gain

A temporal keylogging attack exploits the mutual informa-

tion between time intervals and keyboard keys. In a remote

attack, mutual information is diminished as noise is introduced

to the packet inter-arrival times. This may occur through

variations in latency. The latency is the delay from the input

event on the victim’s host to the observed packet arrival time.

Keyboard events are temporally buffered on the client

(either implicitly or explicitly) from the time the event occurs

until an HTTP request is made. In a callback model, this

depends primarily on the time to sanitize the query and con-

struct the request. In a polling model, this depends primarily

on where in the polling window the event occurred. In both

models, latency may also depend on request number: the delay

of the first event is generally greater than the following events

due to the time to setup the autocomplete service or to ready

the user interface for search predictions [14].

As the latency varies, this introduces noise to the packet

inter-arrival times. This form of obfuscation was previously

proposed as a defense against temporal keylogging attacks

[5], [17]. As more noise is introduced, the mutual information

between time intervals and keys decreases. Note that obfusca-

tion occurs only through variations in latency; if the latency

remains constant, the time intervals between successive input

events are preserved in the packet inter-arrival times.

The mean and standard deviation latency is shown for each

website in Table I. Websites that implement a callback model

have noticeably lower latency deviations than Bing, which

implements a polling model. And while latencies are generally

larger in Firefox than in Chrome, there is no consistent

relationship between variation in latency and browser. The

correlation between time intervals on the host and packet inter-

arrival times is also shown in Table I.

We use the relative loss of mutual information to measure

how much each website mitigates the possibility of attack.

That is, let ypre be the time intervals on the host and ypost
be the packet inter-arrival times. The relative loss in mutual

216



TABLE I
RESULTS SUMMARY. CENSORING MEASURES PROPORTION OF CENSORED EVENTS. DETECTION MEASURES ABILITY TO DETECT UNCENSORED

KEYSTROKES. MI LOSS IS THE REDUCTION IN MI FROM HOST TO NETWORK AND MEASURES THE INCREASED DIFFICULTY OF KEY IDENTIFICATION.

Website Proto. Event model Censoring
Detection (F-score %) Latency (ms) Interval correlation MI loss (%)

Chrome Firefox Chrome Firefox Chrome Firefox Chrome Firefox

Google HTTP2 Callback (keydown) None 99.8 99.7 6.2±3.3 14±10 0.99 0.99 0.0 0.7

Bing HTTP2 Polling (10 Hz) 11% 90.7 90.3 52±29 60±31 0.98 0.98 7.1 6.3

DDG HTTP2 Callback (keyup) 32% 96.5 96.5 5.7±10.9 6.7±6.9 0.99 0.99 0.4 0.1

Baidu HTTP Callback (keydown) None 99.4 99.9 15±20 20±25 0.99 0.99 0.3 0.5

Yandex HTTP2 Callback (keydown) None 99.9 99.0 10±12 13±10 0.99 0.99 0.6 0.5

information is given by 1 − I [k; ypost] /I [k; ypre] . A loss of

0% indicates that the mutual information on the network is

completed preserved to what it was on the host, while a loss

of 100% indicates that there is no shared information between

keyboard keys and the time intervals on the network. These

results are summarized in Table I, considering only uncensored

intervals. With the exception of Bing, the mutual information

on the network is within 1% of what it is on the host.

V. DISCUSSION AND CONCLUSIONS

Search engines that implement autocomplete suggestions

using a keydown-based callback model (Google, Yandex, and
Baidu) are susceptible to the same kind of keylogging side

channel attack as those on the host [8], [18]. Keystrokes can

be detected based on the increasing pattern of packet sizes,

and the key-press time intervals are faithfully preserved in the

packet inter-arrival times. Little information (< 1%) is lost

compared to what would be available on the host. Note, this

result indicates only that if a keystroke timing attack were

successful on the host, then it would succeed on the network.

The success of the attack on the host itself varies among users

[5], and potentially other factors such as hardware, language,

and keyboard layout, which have not yet been studied.

Among the search engines we considered, two seem to

provide mitigation against a remote keylogging attack. Bing,

which uses a polling model with 100 ms timer, has approxi-

mately a 10% censoring rate for a user typing at a speed of

6 keys per second. Not only does the polling model quantize

event times, but it makes it practically infeasible to predict the

keys that become censored. Reducing the polling rate would

further increase censoring, although at the cost of increased

latency to retrieve the autocomplete suggestions.

DuckDuckGo, which uses a keyup callback model, has a

30% censoring rate at a typing speed of 6 keys per second.

While both Bing and DuckDuckGo are resilient to attack due

to the presence of censored events, the keyup callback model

seems to be an effective self-regulating mitigation strategy.

Prior work has shown timing attacks to be more effective

for faster touch typists compared to slower “hunt-and-peck”

typists [5]. The faster typists also exhibit greater rollover [15],

which in a keyup callback model has the effect of censoring

the keyboard event times. Thus, as typing speed increases,

rollover generally increases and so does censoring rate.

Future work will consider the performance of an actual

attack and examine how the relatively low entropy of natural

language could be leveraged to increase attack success.

REFERENCES

[1] C. Herley and P. van Oorschot, “Sok: Science, security and the elusive
goal of security as a scientific pursuit,” in Proc. IEEE Symp. on Security
& Privacy (SP). IEEE, 2017, pp. 99–120.

[2] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, pp. 1–27, 2016.

[3] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology — CRYPTO’ 99. Springer, 1999, pp. 388–397.

[4] D. Genkin, A. Shamir, and E. Tromer, “RSA key extraction via
low-bandwidth acoustic cryptanalysis,” in Advances in Cryptology –
CRYPTO 2014. Springer Berlin Heidelberg, 2014, pp. 444–461.

[5] J. V. Monaco, “Sok: Keylogging side channels,” in Proc. IEEE Symp.
on Security & Privacy (SP). IEEE, 2018.

[6] A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose, “Phonotactic
reconstruction of encrypted VoIP conversations: Hookt on fon-iks,” in
2011 IEEE Symposium on Security and Privacy. IEEE, may 2011.

[7] “Search using autocomplete,” https://support.google.com/websearch/ an-
swer/106230, Accessed: 2018-12-17.

[8] D. X. Song, D. Wagner, and X. Tian, “Timing analysis of keystrokes
and timing attacks on ssh.” in Proc. Usenix Security Symp., 2001.

[9] T. A. Salthouse, “Perceptual, cognitive, and motoric aspects of transcrip-
tion typing.” Psychological bulletin, vol. 99, no. 3, p. 303, 1986.

[10] J. V. Monaco, M. L. Ali, and C. C. Tappert, “Spoofing key-press
latencies with a generative keystroke dynamics model,” in Proc. IEEE
7th Intl. Conf. on Biometrics Theory, Applications and Systems (BTAS).
IEEE, 2015, pp. 1–8.

[11] S. D. Kamvar et al., “Anticipated query generation and processing in a
search engine,” U.S. Patent 7,836,044, 2004.

[12] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in
web applications: A reality today, a challenge tomorrow,” in Proc. IEEE
Symp. on Security & Privacy (SP). IEEE, 2010, pp. 191–206.

[13] S. E. Oh, S. Li, and N. Hopper, “Fingerprinting keywords in search
queries over tor,” Proceedings on Privacy Enhancing Technologies, vol.
2017, no. 4, pp. 251–270, oct 2017.

[14] C. M. Tey, P. Gupta, D. Gao, and Y. Zhang, “Keystroke timing analysis
of on-the-fly web apps,” in Proc. Intl. Conf. on Applied Cryptography
and Network Security. Springer, 2013, pp. 405–413.

[15] V. Dhakal, A. M. Feit, P. O. Kristensson, and A. Oulasvirta, “Obser-
vations on typing from 136 million keystrokes,” in Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems - CHI
18. ACM Press, 2018.

[16] “UI Events,” https://www.w3.org/TR/uievents, Accessed: 2018-12-17.
[17] J. V. Monaco and C. C. Tappert, “Obfuscating keystroke time intervals

to avoid identification and impersonation,” in Proc. Intl. Conf. on
Biometrics (ICB). IEEE, 2016.

[18] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
javascript,” in Proc. 21st Intl. Conf. on Financial Cryptography and
Data Security (FC). IFCA, 2017, p. 11.

217


