2019 IEEE Security and Privacy Workshops (SPW)

Detecting malicious campaigns in obfuscated
JavaScript with scalable behavioral analysis

1% Oleksii Starov
Palo Alto Networks, Inc.
ostarov @paloaltonetworks.com

Abstract—Modern security crawlers and firewall solutions
have to analyze millions of websites on a daily basis, and
significantly more JavaScript samples. At the same time, fast
static approaches, such as file signatures and hash matching,
often are not enough to detect advanced malicious campaigns,
i.e., obfuscated, packed, or randomized scripts. As such, low-
overhead yet efficient dynamic analysis is required.

In the current paper we describe behavioral analysis after
executing all the scripts on web pages, similarly to how real
browsers do. Then, we apply light “behavioral signatures” to the
collected dynamic indicators, such as global variables declared
during runtime, popup messages shown to the user, established
WebSocket connections. Using this scalable method for a month,
we enhanced the coverage of a commercial URL filtering product
by detecting 8,712 URLSs with intrusive coin miners. We evaluated
the impact of increased coverage through telemetry data and
discovered that customers attempted to visit these abusive sites
more than a million times. Moreover, we captured 4,633 addi-
tional distinct URLs that lead to scam, clickjacking, phishing,
and other kinds of malicious JavaScript.

Our findings provide insight into recent trends in unauthorized
cryptographic coin-mining and show that various scam Kkits are
currently active on the Web.

I. INTRODUCTION

Fine-grained URL categorization is an important and in-
tegral service for enterprise security solutions in that it of-
fers protection to customers from a myriad of web-based
threats, such as exploit kits, malicious redirections, phishing
pages, scams, and potentially inappropriate content (e.g. adult,
weapons, drugs). As the Web continues to scale both in terms
of quantity and complexity, categorizing websites quickly and
accurately becomes a more and more daunting yet important
task. Identifying the category of a URL usually involves crawl-
ing its content, analyzing it, and then making a decision. An
automated system has to repeat this process for millions URLs
on a daily basis. To complicate things, dynamic web content
creates even more hurdles for automated systems to identify
categories correctly. This is most evident in detecting malware
that uses highly-obfuscated JavaScript. Fast static approaches
to search for malicious scripts, such as file signatures and
hash matching, are often insufficient in detecting advanced
malicious campaigns, i.e., obfuscated, packed, or randomized
scripts. To detect such advanced cases on the given large-scale,
low-overhead yet efficient dynamic analysis is required.

There are many previous researches that enrich JavaScript
classifiers with dynamic features or build behavioral models

2" Yuchen Zhou
Palo Alto Networks, Inc.
yzhou@paloaltonetworks.com

3" Jun Wang
Palo Alto Networks, Inc.
junwang @paloaltonetworks.com

for malicious scripts [4], [10], [13]. However, proposed sys-
tems usually require additional instrumentation and resources
that are unsuitable for near real-time analysis on a large
population of URLs. Moreover, such approaches use machine
learning models, which must be trained and calibrated to
minimize false positives. In contrast, there is lack of research
in terms of lightweight behavioral detection methods and indi-
cators of dynamic script execution that conclusively determine
malicious behavior. To the best of our knowledge, we are the
first to present a systematic case-study on detecting modern
malicious campaigns with such scalable dynamic analysis.

In this paper, we describe behavioral analysis that exe-
cutes all the scripts on web pages, similarly to how real
browsers do, and observes their immediate behavior. Then,
we apply “behavioral signatures” to the collected dynamic
information, such as global variables declared during runtime,
popup messages shown to the user, and established WebSocket
connections/messages sent. In the result, if we find a confident
match with behavior of a known malicious family, we flag
the page as corresponding category. By using such dynamic
behavioral analysis with a low performance overhead, we can
effectively detect obfuscated malicious codes as their final
malicious behavior remains unchanged.

Applying this detection to URLs collected over one month
by a commercial security solution provider, we enhanced the
coverage of its URL categorization service by detecting 8,712
URLSs with intrusive cryptographic coin miners. Telemetry data
collected by this provider shows that its customers attempted
to visit these abusive sites more than one million times during
that period of time. We show that intrusive coin miners can be
often detected with lightweight “behavioral signatures” even
if repacked or obfuscated, and that the majority of mining
starts without user’s consent even on top popular websites. In
addition to coin-mining websites, we captured other highly-
popular 4,633 distinct URLs that lead to scam, clickjacking,
phishing, and other kinds of malicious JavaScript.

II. BEHAVIORAL SIGNATURES

There are many ways how malware can manifest its
malicious behavior during execution. Malicious JavaScripts
span various families which perform totally different harmful
actions (e.g., coin miners establish WebSocket connections
to transmit mining data, scareware pages show frightening
alerts, phishing kits mimic popular websites). However, most

© 2019, Oleksii Starov. Under license to IEEE. 218

DOI 10.1109/SPW.2019.00048

var miner = new CoinHive.User (' SITE_KEY',
miner.start ();

’ john-doe’) ;

var miner = new CRLT.Anonymous (' PUBLIC_KEY',
miner.start ();

{threads:2});

Listing 1: Examples of coin-mining integration scripts.

(function () {
var _0xdf51=["\x70\x61\x72\x61\x6D\x73", "\x5F\x73\x69\
x74\x65\x4B\x65\x79", "\x5F\x75\x73\x65\x72", "\x5F\x74\
x68\x72\x65\x61\x64\x73", "\x5F\x68\x61\x73\x68\x65\x73
", "\x5F\x63\x75\x72\x72\x65\x6E\x 74 \x4A\x6F\x62", "\x5F
\x61\x75\x74\x6F\x52\x65\x63\x6F\x6E\x6E\x65\x63\x74",

MINER_URL:_0xdf51[207],AUTH_URL:_0xdf51[208]};CoinHive|[

_0xdf51[104]]= CoinHive.Res (_0xdf51[209]);var user=window|[
_0xdf51[211]][_0xdf51[210]]1|| _0xdf51[212],miner= new
CoinHive.User (_0xdf51[213],user, {throttle:0.3});miner[
_0xdf51(89]] () || miner[_0xdf51[53]] ()

1NN

Listing 2: Example of an obfuscated coin miner.

malicious JavaScripts we observe create variables, functions
and other execution artifacts, and as we show below, such indi-
cators like variable names declared in a global scope are often
unique and descriptive enough to create a high-confidence
signature. Moreover, in case of obfuscated JavaScripts, we
observe that the same discriminating variables are often re-
vealed during execution as careless malware simply unpacks
and evaluates (e.g. via “eval” or “document.write”) the original
malicious code. Our assumption is that it puts much burden
on malicious actors behind mass campaigns to uniquely ran-
domize variable names per each malicious sample. This fact
makes dynamic retrieval of variable names an important source
of behavioral signatures, and so we will describe it first.

A. Global Variable Signatures

In order to illustrate this approach, let’s take a look at several
code examples of malicious JavaScripts of various types.

Unauthorized cryptographic coin miners. Popular coin-
mining libraries like Coinhive and Crypto-Loot usually require
standard snippets on a web page to start mining, such as shown
on Listing 1. As we see, in the first case, CoinHive is visible as
a global variable on the page, and in the second case, similarly,
the Crypto-Loot’s CRLT object is visible. In addition, in both
cases the code creates the variable miner which is accessible
via window object too. As a result, we can easily look for the
existence of such variables after rendering the web page.

Though, the main benefit of the dynamic execution is
explained by the following example from a real website. While
previous code snippets can be detected by other methods such
as static signatures, or just by the presence of a coin-mining
library on the page (coinhive.min.js or crypta.js correspond-
ingly), the whole coin-mining code can be obfuscated in a way
as shown on Listing 2.

In such obfuscated cases, matching static signatures and
file hashes face obvious difficulties, but when we execute
such scripts — it is straightforward to detect the same known
global variables created on the page, namely CoinHive and

var hea2p = (/0123456789
ABCDEFGHIJKLMNOPQRSTUVXYZabcdefghijklmnopgrstuvxyz’) ;
var hea2t = ’'UQIgIxFigFvTwP50vMgrc9ml0GHxUgsv0gqWaSdrXOFJw3

VOAJf1gvPk+QBh7Vp+Mw6Z6uS+kTPYikXQcCOtwsrY9Q4bxT1lpl 9uQHk6p
0almGy8/1luCIrMarTmM0laa0CR7yOoa3nPkGlwmorbrl4ETB+pWCWEV737

SqorG0GsDOgEcCRIOpupIBels8csWlEbpOcMBBi2Y0sszLVtU9sqoLFvgME
+0UZS+nIGpc7UgjP1loOrRRTWne+s0l13j55dTzvE9 JABmggGxOB6PGs=";
var output = Aes.Ctr.decrypt (hea2t, heaZp, 256);

document .write (output)

Listing 3: Example of a phishing kit.

function ClickJackFbHide () {

jQuery ("div[id"='clickjack-button-wrapper’]") .hide();
}
function ClickJackFbShow () {

jQuery ("div[id"='clickjack-button-wrapper’]") .show();

}

Listing 4: Example of a clickjacking kit.

miner. In this study, we encountered many examples of the
mining JavaScript libraries similar to the above, served from
custom servers and usually named unrecognizably or even
masked as popular benign scripts, such as jquery.min.js. Due
to the fact that most of these coin miner libraries have a
larger-sized library and smaller bootstrap snippet for sites to
customize miner ID and/or mining parameters such as throttle
and number of cores used, the larger library cannot wrap itself
in a closure, i.e. has to expose global variables for snippet to
refer. This gives us excellent opportunity to discover miner
presence by iterating JavaScript variables under “window”
object. To detect results presented in this paper, our system
is able to detect at least 23 popular coin-mining families by
global variable signatures.

Phishing kits. In this study, we observed many malicious
scripts with similar structure as on Listing 3. While unpacking
its phishing payload, the script creates several global variables,
namely hea2p, hea2t and output. In combination these vari-
ables create a high entropy signature, which can be used to
facilitate detection.

Clickjacking kits. Another type of malicious JavaScript
campaign discovered on many websites during November
2018 is the clickjacking campaign that targets at Facebook’s
Like clicks. Its code, partially shown in Listing 4, creates
several rather descriptive global functions, including Click-
JackFbHide and ClickJackFbShow.

In addition, specific cases like redirectors, iframe droppers
and even particular JavaScript exploits can be identified by
variable signatures derived with dynamic execution.

B. Malicious Websocket Connection Signatures

While presence of variables can be a strong enough signal
in some cases, we sometimes need additional proof of the
actual mining behavior that starts without user’s consent. To
this end, we use additional methods to detect the start of the
mining process.

219

"type": "submit",
"params": {
"version": 7,
"job_id": "871932594873942",
"nonce": "8a462f80",
"result": "7516e787d860071b2496laca...ded4df27£300"

"type": "hash_accepted",
"params": {

"hashes": 256
}

Listing 5: Examples of Stratum request and response.

The malicious party will never benefit from injected coin-
miners without generating mining traffic from the browser
client. Coin-mining JavaScripts do so by establishing Web-
Socket connections and exchanging special messages between
the client script and a backend server. This gives us the
ability to implement detection signatures with high confidence,
since most mining libraries rely on the standard Stratum
Protocol [3], which has detectable patterns. For example,
Listing 5 illustrates messages exchanged during in-browser
Coinhive mining via WebSocket connection.

Even when mining code encrypts or obfuscates its Web-
Socket traffic, which happens in case of more sophisticated
Stratum wrappers, it is often still possible to derive spe-
cific per-miner signatures as obfuscation is not randomized.
For example, the Coinlmp miner, which we found to be a
popular choice for unauthorized coin-mining, obfuscates its
WebSocket traffic. However, its messages still have unique
patterns (such as, “suu9sLms6/” prefix), which are constant
across all the websites that use this library. In the result, we
can effectively detect mining with Coinlmp by looking for
specific WebSocket messages.

C. Malicious intrusive API calls

Another type of highly popular malicious JavaScript,
namely scam and scareware campaigns, often show alert
messages to trick visitors. For example, Figure 1 shows
screenshot of a common fake Flash update scam. Pretending
to be legitimate warnings, such web pages trick users into
installing malware. Such campaigns periodically rotate their
templates, text content, and usually adjust the overall look to
match a victim’s browser and operating system. However, they
continue to show JavaScript popups with unique scam mes-
sages. As the result, such messages become effective malicious
indicators. To detect scareware campaigns, we intercept all the
popups that a website shows to a visitor via JavaScript APIs
(namely, window.alert, window.prompt and window.confirm),
and compare the captured content with prepared signatures for
different kinds of scam messages. Note that this approach is
also effective against obfuscated alert messages as the attacker
must unfold however many layers of obfuscation to display the
original message.

This site says.

Fig. 1. Example of a Fake Flash Update Scam.

III. DATA COLLECTION

In this paper, we report on the detection results using
behavioral signatures for around one month (from October
19th to November 19th, 2018). In particular, we measure how
behavioral analysis can improve a state-of-the-art commercial
URL categorization service. For that, we leverage an existing
crawling and analysis infrastructure of Palo Alto Networks,
a cybersecurity company, which provides its customers with
URL categories, such as malware, phishing, or benign. We
applied behavioral analysis to a daily feed of suspicious URLSs
visited by Palo Alto Networks customers (i.e., URLs without
available malicious or benign verdict). In addition, every day
we crawled Alexa’s top one million websites, as well as a feed
of newly registered domains.

The crawler infrastructure we use is based on the headless
Chrome browser. Our crawler is capable of collecting global
variables, intercepting JavaScript alerts, and recording Web-
Socket handshakes and messages. For each test, we explicitly
wait for additional 3 seconds after page load in order to
capture potentially delayed on-page behavior. With such short
yet effective delay, our crawler infrastructure can process over
10 million URLs per day.

Overall, we used more than 250 unique signatures for
detection, based on global variables, JavaScript alerts, Web-
Socket URLs and messages. While this set of behavioral
signatures is far from being exhaustive (as well as must be
updated regularly), our results show a lower bound on the
possible detection rate. This set of signatures was retrieved
automatically by collecting dynamic artifacts from malicious
websites already known to VirusTotal, and ignoring ones that
were also found on Alexa’s top 100K websites to remove false
positives. Then the set was checked and confirmed manually.

Finally, our passive DNS database used in Section IV-C
consists partially of our customer’s DNS resolution as well as
passive DNS data provided by Farsight Security.

IV. ANALYSIS OF RESULTS

During a month of crawling, the proposed approach detected
9,104 coin-mining scripts (among 8,712 distinct URLs), and
4,788 malicious JavaScripts (among 4,633 distinct URLSs).
The impact of these malicious campaigns on real web users

220

1500

1000 4

URLs

500

NO\II 05 NO\; 12 N0\I/ 19

Date

OctI 22 OctI 29

-~-New URLs--Overall URLs

Fig. 2. Daily Detection Rate of Coin-mining URLs.

\

Coinhive

Unidentified Stratum
JSE-Coin

Crypto-Loot

Coinlmp

Webminerpool (Monerise)
Other 10+ miners
NeroHut

|

Fig. 3. Top Recently Observed Coin Miners.

is extensive, as according to the company’s telemetry data,
customers have attempted to make over 1 million HTTP(S)
requests towards the detected coin-mining websites. As for
scams/scareware/phishing pages, there were over 243 thousand
requests made. We present the details of our discoveries based
on the collected detections in this section.

A. Coin-mining Scripts

By using behavioral JavaScript analysis alone, we detected
1,097 coin-mining URLs per day on average, including over
180, previously unseen, malicious URLs per day. Figure 2
shows the daily detection rates. As we can see, despite
periodical bumps, the number of new detected URLs remains
rather stable. Orthogonally, the fact that we keep detecting
the same coin miners from day to day highlights that 1)
coin-mining websites are longer living in comparison to other
detected types of malicious JavaScript; 2) web users tend to
visit those sites frequently due to their popularity.

Figure 3 illustrates the distribution of popular families of
coin miners among 9,104 scripts detected during the month.
As we see, Coinhive is leading with 46.8% of the share, and
followed by 12.6% of anonymous Stratum Protocol commu-
nications, as well as other coin-mining libraries, such as JSE-
Coin (10.9%) and Crypto-Loot (10%). More than 10 other
coin-mining libraries, which include CoinNebula, BatMine,
DeepMiner, CryptoNoter, Minr and others, together contribute
to only 5% of all the detected scripts.

221

NO\I/ 05 NO\I/ 12 NO\I/ 19

Date

OctI 22 OctI 29

~New URLs--Overall URLs

Fig. 4. Daily Detection Rate of Scam URLSs.

Technical Support Scam
Fake Flash Update Scam
Phishing Kits

Other Scam Kits
Clickjacking Kits

Fake Reward Scam

JS Redirectors

Fig. 5. Top Recently Observed Non-Mining Malicious JS Scripts.

Overall, 6,026 out of 8,712 URLs with coin miners, or
69.1%, perform “unauthorized” coin mining. In other words,
they start mining immediately after visiting the page without
user’s consent. The most popular choice among coin-mining
libraries to perform unauthorized mining were Coinlmp (in
100% cases over 612 scripts), Crypto-Loot (in 86% cases over
906), Coinhive (in 77.7% cases over 3,312), and other 1,143
scripts generating unidentified stratum traffic.

In addition, we observe that many coin mining campaigns
deploy techniques to remain stealthy, which mostly includes
static obfuscation and packing of their JavaScript. For exam-
ple, at least 1,414 out of 4,264 Coinhive scripts, or 33.2%,
were detected only because we were using dynamic analysis
with behavioral signatures, as other methods, such as hash
or JavaScript AST (abstract syntax tree) matching could not
detect the obfuscation. At the same time, we detected many
cases when the same web page rotates coin miners from visit
to visit, or even hosts several different coin-mining libraries at
the same time. For examples, such pairs as Coinhive and JSE-
Coin, or Crypto-Loot and NeroHut. Because of this fact, the
overall number of detected mining scripts (9,104) was greater
than the overall number of unique URLs (8,712).

B. Other malicious scripts

Apart from coin miners, we were able to detect on aver-
age 184 additional malicious URLs per day, including 143
previously unseen URLs. Figure 4 shows the daily detection

"WARNING! Your official Adobe Flash Player version is out
of date. Please install latest software update to
continue. Please click \"Update\" to continue."

Listing 6: Frequently observed fake Flash scam alert.

rates. As we see, lines for the overall detected URLs and
newly discovered URLs are much closer to each other than on
Figure 2 for coin miners. This can be explained by the fact that
URLSs hosting scam-related and other malicious JavaScript live
shorter and are less likely to be observed for many days in a
row. This may be expected since coin miners are often injected
into popular but compromised websites, whereas phishing
or scam pages are dedicated URLs specifically created for
malicious purposes and rotate quickly due to frequent blacklist
updates by security vendors.

Figure 5 presents the distribution of various types of ma-
licious JavaScripts over 4,788 discovered samples. Technical
support scams and fake Flash update scams were the most
prevalent malicious campaigns, and others include campaigns
like phishing Kkits, clickjacking kits, and fake reward.

Technical support scam pages trick users into calling and
paying scammers, or installing unwanted programs [7]. After
inspecting such pages in our detections, we suspect that most
of them likely belong to a single massive campaign operated
by the same malicious actor. We observed that 1,668 out of the
1,989 URLs that lead to technical support scam have the same
screenshot; recent landing pages of these URLs were hosted
on domains that followed the same pattern (for example,
gaf9342[.]space, gba9462[.]site and gbc2851[.]Jonline); those
pages were showing JavaScript popup with the same text, such
as on Listing 6. On the other hand, fake flash update scam was
more diverse, showing different content in cases of Google
Chrome vs. Internet Explorer, MS Windows vs. Mac OS.

It is important to emphasize that exact string match of such
alerts would result in a limited number of detections - instead
we build our signatures based on the most significant terms
indicating scam. To this end, we took into account different
text randomization and obfuscation tricks that attackers may
apply, such as multiple spaces between keywords as with
“Flash Player”, injected invisible characters and new lines,
and messages in other languages.

C. Analysis of malicious domains

Overall, the 8,712 coin-mining URLs we detected resolve to
7,654 distinct domains, and 4,633 URLs with other malicious
scripts resolve to 2,666 domains. We looked up both sets of
domains in our passive DNS (pDNS) database, which gave us
ability to estimate both their life span and popularity from
a broader view than limiting to customers alone. Figure 6
presents a scatter plot showing for each domain how many
days it was active vs. how many times it was resolved (which
denotes its popularity).

One may notice that coin-mining domains are significantly
more popular and longer-living, whereas other malicious do-
mains are usually alive for less than 100 days and receive less

1000 A
2
©
QO 100+
[}
E
o
5
10+ - - .
Malicious JavaScript:
Coin Miners
Non-mining (Scam)
1e+02 1e+05 1e+08
Popularity, DNS queries
Fig. 6. Lifetime vs. Popularity of Malicious URLs.
250
[HlUnauthorized coin miners
200+ [Other coin miners
2
‘T 150+
§
QO 100+
H*®
50
0-

Ranks range

Fig. 7. Rank Distribution of Coin-mining Domains in Alexa’s Top Million.

than 10,000 DNS resolutions (lower cluster of blue dots). It
can be explained by the fact that scam and phishing campaigns
get quickly discovered and blocked by security vendors, and
thus have to rotate their domains. Contrastingly, coin miners
usually fall into gray zone, being malicious enough that some
users want to block the mining, while others may be fine with
it as long as web content is served correctly. Among Alexa top
websites we have seen many reputable ones that deliberately
incorporate coin miners, forcing their visitors to accept that in
exchange for “free” content access.

Figure 6 shows that many coin-mining domains are ex-
tremely popular, receiving more than tens of millions DNS
resolutions and are alive for more than 4 years. These exam-
ples include domains directly related to mining (such as, coin-
hive[.Jcom, or moonbit[.]co[.]in), and various websites with
popular or high-demand content (such as, xxgasm[.Jcom and
seriesfree|.]to). Interestingly, we also see domains with many
DNS requests, but with shorter lifetime. Those include tempo-
rary replicas of popular websites that serve online movies, but
have to rotate their domains, such as indoxxi[.]cool, which had
63,694 resolutions in pDNS but was only alive for 14 days.

Examples of non-mining malicious JavaScript were usually
hosted on dedicated domains, for example, win32-0x2ndt-

222

TABLE 1
Top 5 TLDS SERVING COIN MINERS AND OTHER MALICIOUS JAVASCRIPT

Coin-mining websites | Non-mining malicious websites
TLD # Domains TLD # Domains
com 3,487 icu 1,299
ir 394 com 409
net 337 club 290
ru 319 Xyz 83
org 285 tk 61

firewall-error[.]Jgq or www2[.]betterdealupgradeaflash[.]icu,
and in general on less popular websites. One may notice
that on Figure 6 there are also rare cases of highly popular
and long-living non-mining domains. For example, these are
domains of URL shorteners (e.g., ow[.]ly), gateway domains
serving ads (e.g., elitedollars[.Jcom) or websites displaying
ads (e.g., mytorrents[.Jorg), and thus possibly affected by
malvertising.

After analyzing Alexa rankings for second-level domains
with detected coin miners, we were surprised to find that
66.9% of them were in Alexa’s top million at least for one
day during the month of measurements. Moreover, 1,295 of
coin-mining domains remained in the top million, including
37 domains in the first 10K. On one hand, these results show
that when reputable websites begin to adopt mining, they are
likely to drop out from the top popular websites. On the other
hand, we are still alarmed by the high number of unauthorized
coin miners among top million websites. Figure 7 shows the
distribution of 1,295 coin-mining domains across rank ranges,
and we clearly see that unauthorized miners dominate even in
the top 100K. In contrast, only 71 from non-mining malicious
JavaScript domains were found in Alexa’s top million, includ-
ing 7 in top 10K. One of the most popular examples for both
mining and non-mining categories of malicious JavaScripts
were websites hosted on blogspot[.Jcom (and having own
distinct subdomains).

Finally, Table I lists the most popular TLDs which serve
coin miners and other malicious scripts. As we see, .icu
TLD was abused the most to distribute different kinds of
scam. As for coin-mining domains, most of them reside on
presumably more expensive .com TLD, which matches our
previous finding that miners present on more popular and long
living websites (such as blogs, video downloads, torrents).

V. RELATED WORK

To the best of our knowledge, we report the first case
study on detecting malicious JavaScript with light-weight yet
straightforward dynamic signatures, such as global variables.
A variety of previous research works classify malicious scripts
solely based on static features of their source code [6], [12],
focus only on drive-by-download exploits [4], or develop
complex behavioral models [10], [13], which require more
instrumentation and resources. Other works develop fine-
grained classification of malicious scripts [11], but do not
consider newer campaigns, such as in-browser coin miners.

In general, in-browser coin-mining was described in [9], and
methods to identify coin miners, including through WebSocket

traffic, were described in [5]. In current paper, we present up-
to-date statistics on coin-mining websites visited by millions of
real-users, and detected by combination of methods. Similarly,
technical support scam was previously studied in [7], and
social engineering download attacks were measured in [8].

VI. CONCLUSION

In this paper, we presented several examples of lightweight
dynamic techniques to detect obfuscated malicious JavaScript.
Behavioral signatures based on global variables, alert texts,
and WebSocket messages were shown to be effective in de-
tecting modern scam campaigns and unauthorized coin miners.
With such behavioral analysis we can also separate intrusive
unauthorized coin-mining from consented coin-mining by de-
tecting the actual mining traffic, thus making a stronger case
to blacklist or block such malicious websites.

We publish the discovered URLSs that lead to coin miners [1]
and scam JavaScript [2] and are currently released to malicious
category (note, some URLs are malicious gateways that may
lead to different landing pages).

REFERENCES

[1] “List of the discovered coin-mining urls,” https://github.com/pan-
unit42/iocs/blob/master/6908_of_8712_coin_mining_urls_in_pandb.txt.

[2] “List of the discovered scam-related urls,” https:/github.com/pan-
unit42/iocs/blob/master/4457_of_4633_scam_js_urls_in_pandb.txt.

[3] “Stratum mining protocol,” https://slushpool.com/help/manual/stratum-
protocol.

[4] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-
by-download attacks and malicious javascript code,” in Proceedings of
the 19th International Conference on World Wide Web, ser. WWW *10.
New York, NY, USA: ACM, 2010, pp. 281-290.

[5] R. K. Konoth, E. Vineti, V. Moonsamy, M. Lindorfer, C. Kruegel,
H. Bos, and G. Vigna, “Minesweeper: An in-depth look into drive-
by cryptocurrency mining and its defense,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS "18. New York, NY, USA: ACM, 2018, pp. 1714-1730.

[6] P.Likarish, E. Jung, and I. Jo, “Obfuscated malicious javascript detection
using classification techniques,” in Malicious and Unwanted Software
(MALWARE), 2009 4th International Conference on, oct. 2009.

[7]1 N. Miramirkhani, O. Starov, and N. Nikiforakis, “Dial one for scam: A
large-scale analysis of technical support scams,” in NDSS, 2017.

[8] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad, “Towards
measuring and mitigating social engineering software download attacks,”
in 25th USENIX Security Symposium (USENIX Security 16). Austin,
TX: USENIX Association, 2016, pp. 773-789.

[9] J. Riith, T. Zimmermann, K. Wolsing, and O. Hohlfeld, “Digging into

browser-based crypto mining,” in Proceedings of the Internet Measure-

ment Conference 2018, ser. IMC "18. New York, NY, USA: ACM,

2018, pp. 70-76.

K. Schiitt, M. Kloft, A. Bikadorov, and K. Rieck, “Early detection of

malicious behavior in javascript code,” in Proceedings of the 5th ACM

Workshop on Security and Artificial Intelligence, ser. AlSec "12. New

York, NY, USA: ACM, 2012, pp. 15-24.

J. Wang, Y. Xue, Y. Liu, and T. H. Tan, “Jsdc: A hybrid approach for

javascript malware detection and classification,” in Proceedings of the

10th ACM Symposium on Information, Computer and Communications

Security, ser. ASIA CCS ’15. New York, NY, USA: ACM, 2015, pp.

109-120.

Y. Wang, W.-d. Cai, and P.-c. Wei, “A deep learning approach for detect-

ing malicious javascript code,” Security and Communication Networks,

vol. 9, pp. n/a-n/a, 02 2016.

Y. Xue, J. Wang, Y. Liu, H. Xiao, J. Sun, and M. Chandramohan,

“Detection and classification of malicious javascript via attack behavior

modelling,” in Proceedings of the 2015 International Symposium on

Software Testing and Analysis, ser. ISSTA 2015. New York, NY, USA:

ACM, 2015, pp. 48-59.

[10]

[11]

[12]

[13]

223

