
Learning from Context: A Multi-View Deep
Learning Architecture for Malware Detection

Adarsh Kyadige∗, Ethan M. Rudd † and Konstantin Berlin‡
Sophos AI

Reston, Virginia

Email: ∗adarsh.kyadige@sophos.com, †ethan.rudd@fireeye.com, ‡konstantin.berlin@sophos.com

Abstract—Machine learning (ML) classifiers used for malware
detection typically employ numerical representations of the con-
tent of each file when making malicious/benign determinations.
However, there is also relevant information that can be gleaned
from the context in which the file was seen which is often ignored.
One source of contextual information is the file’s location on
disk. For example, a malicious file masquerading as a known
benign file (e.g., a Windows system DLL) is more likely to appear
suspicious if the detector can intelligibly utilize information
about the path at which it resides. Knowledge of the file path
information could also make it easier to detect files which try to
evade disk scans by placing themselves in specific locations. File
paths are also available with little overhead and can seamlessly
be integrated into a multi-view static ML detector, potentially
yielding higher detection rates at very high throughput and
minimal infrastructural changes.

In this work, we propose a multi-view deep neural network
architecture, which takes feature vectors from the PE file content
as well as corresponding file paths as inputs and outputs a
detection score. We perform an evaluation on a commercial-scale
dataset of approximately 10 million samples – files and file paths
from user endpoints serviced by an actual security vendor. We
then conduct an interpretability analysis via LIME modeling to
ensure that our classifier has learned a sensible representation
and examine how the file path contributes to change in the
classifier’s score in different cases. We find that our model learns
useful aspects of the file path for classification, resulting in a
26.6% improvement in the true positive rate at a 0.001 false
positive rate (FPR) and a 64.6% improvement at 0.0001 FPR,
compared to a model that operates on PE file content only.

Index Terms—Static PE Detection, File Path, Deep Learning,
Multi-View Learning, Model Interpretation

I. INTRODUCTION

Commercial Portable Executable (PE) malware detectors

consist of a hybrid of static and dynamic analysis engines.

Static detection – which is fast and effective at detecting

a large fraction of malware – is usually first employed to

flag suspicious samples. It involves analyzing the raw PE

image on disk and can be performed very quickly, but it is

vulnerable to code obfuscation techniques, e.g., compression

and polymorphic/metamorphic transformation [1].

Dynamic detection, by contrast, requires running the PE

in an emulator and analyzing behavior at run time [2]. When

dynamic analysis works, it is less susceptible to code obfusca-

tion, but takes substantially greater computational capacity and

† Work for this paper was performed while at Sophos.
A. Kyadige∗ and E. M. Rudd† contributed equally to this work

time to execute than static methods. Moreover, some files are

difficult to execute in an emulated environment, but can still

be statically analyzed. Consequently, static detection methods

are typically the most critical part of an endpoint’s malware

prevention (blocking malware before it executes) pipeline.

Static detection methods have seen performance advance-

ments recently, thanks to the adoption of machine learning [3],

where highly expressive classifiers, e.g., deep neural networks,

are fit on labeled data sets of millions of files. When these

classifiers are trained, they use the static file content as input

but no auxiliary data. We note, however, that dynamic analysis

works well precisely because of auxiliary data – e.g., network

traffic, system calls, etc.

In this work, we seek to use file paths as orthogonal input

information to augment static ML detectors. File paths are

available statically, without any additional instrumentation of

the OS. By including the file path as an auxiliary input, we

expect to be able to combine information about the file with

information about how likely it is to see such a file in that

specific location, and identify common directory hierarchies

and naming patterns associated with known malware and

benign files.

We focus our analysis on three models:

• The baseline file content only (PE) model, which takes

only the PE features as input and outputs a malware

confidence score.

• Another baseline file path content only (FP) model,

which takes only the file’s file paths as input and outputs

a malware confidence score.

• Our proposed multi-view PE file content + contextual

file path (PE+FP) model, which takes in both the PE

file content features and file paths, and also outputs a

malware confidence scores.

A schematic of the three models is shown in Figure 1.

We conduct our analysis on a time-split dataset collected

from a large anti-malware vendor’s telemetry, and find that

our classifier trained on both file content and the contextual

file path yields statistically significantly better results across

the ROC curve and particularly in low false positive rate (FPR)

regions.

The contributions of this paper are as follows:

1) We obtain a realistic carefully curated data set of files

and file paths from a security vendor’s customer end-

1

2020 Symposium on Security and Privacy Workshops (SPW)

© 2020, Ethan Rudd. Under license to IEEE.
DOI 10.1109/SPW50608.2020.00018



(a) Content only (PE) model

(b) File path only (FP) model

(c) Multi-view (PE + FP) model

Fig. 1: Schematic of the three approaches that we compare in

this paper. (a) A baseline conventional deep learning model

for PE malware detection makes malicious/benign determi-

nation using a numeric summary of file content as input.

(b) A contextual baseline which utilizes convolutions over

just the file path at which the PE resides. (c) Our novel

multi-view architecture, which fuses representations derived

from both a content input and a contextual input to make its

malicious/benign determination.

points (rather than a malware / vendor label aggregation

service).

2) We demonstrate that our multi-view PE+FP malware

classifier performs substantially better on our dataset

than a model that uses the file contents alone.

3) We extend Local Interpretable Model Agnostic Ex-

planations (LIME) [4] to our PE+FP model, and use

it to analyze how file paths contribute to a model’s

malware/benign decision.

The remainder of this manuscript is structured as follows:

Section II covers important background concepts and related

work. Section III discusses data set collection and model

formulation. Section IV presents an evaluation comparing our

novel multi-view approach to a baseline content-only model of

similar topology and an interpretability analysis of our model.

Section V concludes.

II. BACKGROUND AND RELATED WORK

In this section, we describe how machine learning is com-

monly applied to static PE detection and how our approach

differs, in a high level sense, by providing contextual infor-

mation as an auxiliary input. We then present related work in

other machine learning domains.

A. Static ML Malware Detection

Machine learning has been applied in the computer security

domain for many years now [5], but disruptive performance

breakthroughs in static PE models using ML at the commercial

scale are a more recent phenomenon. Commercial models

typically rely on deep neural networks [6] or boosted decision

tree ensembles [7] and have been extended to other static file

types as well, including web content [8], [9], office documents

[10], and archives [10].

Most static ML for information security (ML-Sec) classi-

fiers operate on learned embeddings over portions of files (e.g.,

headers) [11], learned embeddings over the full file [12], or

most commonly, on pre-engineered numerical feature vectors
designed to summarize the content from each file [6], [13]–

[19]. Pre-engineered feature vector representations tend to be

more scalable, and quickly distill content from each file while

preserving useful information. There are a number of ways

to craft feature vectors, including tracking per-byte statistics

over sliding windows [6], [18], byte histograms [7], [18],

ngram histograms [13], treating bytes as pixel values in an

image (a visualization of the file content) [13], [18], opcode

and function call graph statistics [18], symbol statistics [18],

hashed/numerical metadata values [6], [7], [18] – e.g., entry-

point as a fraction of the file, or hashed imports and exports,

– and hashes of delimited tokens [10], [19]. In practical

applications, several different types of feature vectors extracted

from file content are often concatenated together to achieve

superior performance.

B. Learning from Multiple Sources

Related research in static ML malware detection using

deep neural networks has examined learning from multiple

sources of information but the approaches are fundamentally

different from ours: Huang et al. [20] and Rudd et al. [21]

use multi-objective learning [22], [23] over multiple auxiliary

loss functions which they found increased performance on

the main malware detection task. Both of these works use

metadata as auxiliary target labels during training to provide

additional information to the model, and use a single input

when deployed to make the classification decision.

Our approach utilizes multiple input types/modalities – one

which describes the content of the malicious sample, in the

form of a PE feature vector similar to [6], and another which

feeds the raw string of characters to a to a character embedding

layer (similar to [8]) which provides information on where

that sample was seen. This technique is a type of multi-view
learning [24]. As the name might suggest, the majority of

applications of multi-view learning are in computer vision,

where the multiple views literally consist of views from

different input cameras/sensors or different views from the

same camera/sensor at different times.

In the ML-Sec space, we could find only two approaches

which specifically reference themselves as multi-view: namely

[25], in which Narayanan et al. applied multiple kernel learn-

ing over dependency graphs for Android malware classifica-

tion and [26], in which Bai et al. used multi-view ensembles

for PE malware detection. While these approaches are in some

ways similar to ours, we are the first, to our knowledge,

to perform multi-view modeling for malware detection at a

2



commercial scale using exogenous contextual fed to a deep

neural network in conjunction with file content features.

III. IMPLEMENTATION DETAILS

In this section we present implementation details of our ap-

proach, including the data collection process for obtaining PE

files and file paths from customer endpoints, our featurization

strategy, and the architectures of our multi-view deep neural

network and comparison baselines.

A. Dataset

For our experiments, we collected three distinct datasets

from the telemetry of a prominent anti-malware vendor: A

training set, a validation set and a test set. The training

set comprised of 9,148,143 samples which were first seen

between June 1 and November 15 2018, out of which 693,272

samples were labeled malicious. The validation set consisted

of 2,225,094 distinct samples seen between November 16

and December 1 2018, out of which 85,041 were labeled as

malicious. Finally, the test set had 249,783 total samples, seen

between Jan 1 to Jan 30 2019, out of which 38,767 were

labeled as malicious.

Malicious/benign labels for these files were computed using

a criterion similar to [6], [8], but combined with additional

proprietary information to generate more accurate labeling.

B. Feature Engineering

In order to use file paths as input to a neural network model,

we first convert the variable length strings into numeric vectors

of fixed length. We accomplished this using a vectorization

scheme similar to [8], by creating a lookup table keyed on

each character with a numeric value (between 0 and the

character set size) representing each character. In practice,

we implemented this table as a Python dictionary. Guided by

statistics from our telemetry and early experimentation, we

trimmed file paths to the last 100 characters. Features for file

paths shorter than 100 characters were padded with zeroes. For

the character set, we consider the entire Unicode character set,

but limit the vocabulary to the 150 most frequent characters.

See Appendix ?? for further discussion.

As features for the content of the PE files, we used floating

point 1024-dimensional feature vectors consisting of four

distinct feature types, similar to [6].

In total, we represent each sample as two feature vectors: a

PE content feature vector of 1024 dimensions and a contextual

file path feature vector of 100 dimensions.

C. Network Architectures

Our multi-view architecture is shown in Figure 2. The

model has two inputs, the 1024 element PE content feature

vector, xPE , and the 100 element file path integer vector,

xFP , as described in Section III-B. Each distinct input is

passed through a series of layers with their own parameters,

θPE and θFP , for PE features and FP for filepath features

respectively, and are jointly optimized during training. The

outputs of these layers are then joined (concatenated) and

Fig. 2: The neural network model we use in our experiments.

Each of the unlabeled blocks contains a fully connected layer,

followed by Layer Normalization and a Dropout Layer. In

experiments where we train the file paths and PE features

individually, the respective input and associated input branch

is used and the other branch is removed from the model

definition.

passed through a series of final hidden layers – a joint output

path with parameters θO. The final output of the network

consists of a dense layer followed by a sigmoid activation.

The PE input arm θPE passes xPE through a series of

blocks consisting of four layers each: a Fully Connected layer,

a Layer Normalization layer implemented using the technique

described in [27], a Dropout layer with a dropout probability of

0.05, and an Rectified Linear Unit (ReLU) activation. Five of

these blocks are connected in sequence with dense layer sizes

1024, 768, 512, 512 and 512 nodes respectively in order.

The file path input arm θFP , passes xFP – a vector of length

100 – into an Embedding layer that converts each character of

the filepath into a 32 dimensional vector, resulting in a 100x32

embedding tensor for the entire filepath. This embedding is

then fed into 4 separate convolution blocks, that contain a 1D

convolution layer with 128 filters, a layer normalization layer

and a 1D sum layer to flatten the output to a vector. The 4

convolution blocks contain convolution layers with filters of

size 2, 3, 4 and 5 respectively that process 2, 3 4 and 5-

grams of the input file path. The flattened outputs of these

convolution blocks are then concatenated and serve as input

to two dense blocks of size 1024 and 512 neurons (same form

as in the PE input arm).

The outputs from the fully connected blocks from the PE

arm and the file path arm are then concatenated and passed

into the joint output path, parameterized by θO. This path

consists of dense connected blocks (same form as in the PE

input arm) of layer sizes 512, 256 and 128. The 128D output

of these blocks is then fed to a dense layer which projects the

output to 1D, followed by a sigmoid activation that provides

the final output of the model.

The PE only model is just the PE+FP model but without the

FP arm, taking input xPE and fitting θPE and θO parameters.

Similarly, the FP model is the PE+FP model but without the

3



TABLE I: Mean and standard deviation true positive rates

(TPRs) on the test set for false positive rates (FPRs) of interest.

Results were aggregated over five training runs with different

weight initializations and minibatch orderings. Best results,

shown in bold, consistently occurred when using both feature

vectors from the file and contextual file path as inputs.

PE+FP PE FP

TPR

10−5 FPR 0.398 ± 0.083 0.208 ± 0.086 0.02 ± 0.022
10−4 FPR 0.558 ± 0.009 0.339 ± 0.059 0.233 ± 0.04
10−3 FPR 0.693 ± 0.005 0.547 ± 0.007 0.522 ± 0.003
10−2 FPR 0.922 ± 0.006 0.889 ± 0.008 0.711 ± 0.003
10−1 FPR 0.978 ± 0.005 0.972 ± 0.007 0.927 ± 0.003

Overall AUC 0.992 ± 0.001 0.990± 0.002 0.968± 0.003

PE arm, taking input xFP fitting θFP and θO paramters. The

first layer of the output subnetwork is adjusted appropriately

to match the output from the previous layer.

We fit all models using a binary cross entropy loss function.

Given the output of our deep learning model f(x; θ) for input

x with label y ∈ {0, 1}, and model parameters θ the loss is:

L(x, y; θ) = −y log(f(x; θ)) + (1− y) log(1− f(x; θ)). (1)

Via an optimizer, we solve for θ̂ the optimal set of param-

eters that minimize the combined loss over the dataset:

θ̂ = argmin
θ

M∑

i=1

L(x(i),y(i); θ), (2)

where M is the number of samples in our dataset, and y(i)

and x(i) are the label and the feature vector of the ith training

sample respectively.

We built and trained our models with the Keras framework

[28], using the Adam optimizer with Keras’s default param-

eters and 1024 sized minibatches. Each model is trained for

15 epochs, which we determined was enough for the results

to converge.

IV. EXPERIMENTS AND ANALYSIS

In our experiments, we trained three different types of

models: two baseline models (PE and FP) and one multi-view

model (PE+FP). To get a statistical view of model perfor-

mance, we trained five models of each type, with different

weight initialization per model, different minibatch ordering,

and different seeds for dropout. This allows us to assess

not only relative performance comparisons across individual

models (as is standard practice), but also mean performance

and uncertainty across model types. Training multiple models

also tells us important information about the stability of each

model type under different initialization.

A. Performance Evaluation

Results for the three model types, evaluated on the test set

– PE+FP, PE, and FP – are shown in Figure 3 as ROC curves

and are also summarized in tabular form in in Table I. Recall

that these results (mean and standard deviation) were assessed

over five runs.

Fig. 3: Mean ROC curves and standard deviations for our

PE+FP model (red solid line), a PE model (blue dashed line),

and an FP model (green dotted line).

We see that the multi-view (PE+FP) model substantially

outperforms the content-only model in terms of net AUC and

across the vast majority of the ROC curve, dipping slightly

below the PE baseline between 10−2 and 10−3 FPR, an effect

which could potentially be alleviated with a larger training

set. At lower FPRs, the performance improvements from

the PE+FP model compared to both baselines is substantial.

Specifically, we see that there is a 27% increase in True

Positive rate for the PE+FP model as opposed to the PE model

at 10−3 FPR, and a 64% increase at 10−4 FPR. This increase is

also accompanied by a reduction in variance of performance,

making the PE+FP model a better choice in terms of both

stability and overall detection performance. As expected, the

filepath only (FP) model that looks only at context consistently

performs the worst, with an overall mean AUC of 0.968,

compared to a mean AUC of 0.992 for the multi-view (PE+FP)

model and a mean AUC of 0.990 for the content-only (PE)

model.

Note that the TPR/FPR metrics that we use to evaluate

detection are invariant to the ratio of malicious to benign

samples in our test set. When we deploy this model in practice,

we can use this TPR/FPR ROC curve to re-calibrate the

detector to select a threshold associated with an FPR that we

can handle (e.g., 10−3), rather than the presumed default 0.5
threshold. Hence it is encouraging that our model performs

well at low FPR regions as well. In practice, we deploy our

models at an FPR of 10−3 since that aligns with our capacity

to manually analyze and correct false positives produced by

the model.

At very low FPRs (< 10−4) the variance in the TPR

increases. This is due to inherent measurement noise at low

FPRs: an FPR of 10−5 means that 1/100, 000 benign samples

were falsely labeled as malicious, which is the same order of

magnitude as the number of benign samples in our dataset,

4



providing little support for the numerical interpolation used to

generate these ROC curves. However, the improvement of the

combined model is still substantially larger than the statistical

uncertainty for the relevant 10−3 to 10−4 FPR regions.

There are two reasons to believe that our test set is more

challenging than than real deployment distributions. The first

reason is that ML detectors are never deployed by themselves,

and are instead guard-railed by signers, prominent file hashes,

and AV signature whitelisting. Most of the prominent FP

issues can be suppressed using these whitelist approaches.

The second reason, is that we removed any previously seen

PE file from test set, even it has a new file path. In the raw

telemetry, we observed that most executed files are actually

not new. Thus, our evaluation reflects the realistic capability

of our respective classifiers to detect novel malware.

B. LIME Analysis

To ensure that our multi-view model has learned meaningful

content from PE file paths, we pick one of our trained models

and employ Local Interpretable Model-Agnostic Explanations

(LIME) [4] to samples from the test set. Using LIME, we were

able to generate weights for each token in a sample filepath,

which represented the impact that the token had on the final

classification outcome.

(a) Positive (Increase)

(b) Negative (Decrease)

Fig. 4: Example file paths from our LIME analysis with (a)

positive and (b) negative ground truth labels. The path tokens

are highlighted based on the Lasso weights, as computed by

the LIME model. The token weights can be directly inter-

preted as either making the overall malware score higher (red

weights) or lower (blue weights). Darker red and blue shades

correspond to greater magnitude weights, while lighter shades

correspond to smaller magnitudes. White color corresponds to

no impact.

We visualized these computed Lasso model weights for

several interesting examples in Figure 4, by overlaying the

computed weights on top of the file path string. In the first

positive example we can see that that the token “kmsauto”

is being identified as a maliciousness indicator by our PE+FP

model. KMS Auto is legally dubious Microsoft product ac-

tivator, and this file is identified as “PUA:Win32/AutoKMS”

by Microsoft. Similarly, in the second positive example our

PE+FP model gave high score to “pcrepairkit”. Repair

kits are often questionable software products that usually

contain spyware or malware.

On the other hand, in the several negative examples we can

see that management tools are being down-weighted by the

PE+FP model, as compared to the PE model. Management

tools are notoriously difficult to distinguish from spyware, as

their functionality is basically the same, the only difference is

the intent of the user. In this case, using filepath information

provided us more context for the detection, thus allowing

more accurate identification by the PE+FP model. We note

that these are a few interesting examples, and that the relative

contributions of tokens also have a non-linear dependence on

the file content itself. For example, when we kept the same

path for the first negative example, but replaced the file with

a randomly chosen malicious file, the importance of the token

“management” was significantly reduced.

Finally, we performed an aggregate LIME analysis to iden-

tify prominent tokens throughout our dataset. We performed

isotonic regression to calibrate the sigmoid outputs of the PE

and the PE+FP model, and identified 200 samples which had

the highest score variation between the two models - 100

samples which saw the largest increase in score and 100

samples which saw the largest decrease in score over the

baseline. We then aggregated LIME parameter weights across

tokens and normalized by token frequency, looking at tokens

of highest and lowest weights for the selected 200 samples.

The top 10 tokens which increased and decreased response are

shown in Table II.

For malicious samples, we see that the tokens of highest

weight consisted of strings with randomized content, that were

not cryptographic digests, perhaps an attempt at obfuscation.

The remaining high-weight token, setup is perhaps indicative

of an infected installer. Tokens with large negative weights

consist of common looking benign software names, as one

might expect. Of the benign samples that we assessed, tokens

that increased response tended to have very short length,

e.g., “t”, “d”, and “z”, very high or very low entropy,

e.g., “219805786” and “xxxxx”, and have “miner” in

their names, e.g., “miner”, “mineropt” – indicating the

likely presence of a (benign) cryptocurrency miner, potentially

downloaded by the user voluntarily. It is not surprising that the

string “miner” increased response as many types of malware

and potentially unwanted benignware steal CPU cycles to mine

cryptocurrency. With respect to tokens that most attenuated the

response, they appear to be components of standard software.

Interestingly, “setup” tends to attenuate response for the

benignware that we analyzed, indicating that the behavior of

tokens depends on their contextual location within the file path.

Note that, as LIME involves fitting a classifier per sample,

this analysis is limited only to the samples that we analyzed.

However, it suggests that our neural network is learning to

extract useful contextual information from file paths; not just

mere data artifacts.

C. Practical Deployment and Adversarial Attacks

In recent years, some research on the use of Deep Learn-

ing models in Malware detection has highlighted that they

are vulnerable to adversarial attacks. Adversarial weakness

plagues all known detection models, including the original

PE content only model that we compare the PE+FP model

to in our research, as well as all signature detection methods

5



TABLE II: Tokens and corresponding weights from our LIME

analysis that most amplified and attenuated responses for

malicious and benign samples. For the malicious samples

analyzed, tokens that resulted in greatest increase and greatest

decrease in classification score are shown in (a) and (b).

Corresponding tokens for the benign samples are shown in

(c) and (d).

(a) Increase (Malicious)

Token Weight
2786 7.436
4327 5.854
8o0sdtwhrxkz 4.213
28pygyuokzwwn 3.826
wfzctyetugjwxxuy 3.736
3015798005 3.592
setup 3.313
jzljumnkfaapzpqq 3.183
whyovxk3mplt6 3.167
1467 2.219

(b) Decrease (Malicious)

Token Weight
onv2k -6.677
computerz -6.433
westlake -5.565
editor -5.13
printingtools -4.738
videodecodesdk -3.687
placar80 -3.663
movavistatistics -3.556
enterprise -3.488
jarvee -3.401

(c) Increase (Benign)

Token Weight
miner 9.369
z 8.163
2639 6.876
mineropt 6.507
2198205786 6.28
systemprofile 4.26
xxxxx 4.193
t 3.916
d 3.812
namespace 3.441

(d) Decrease (Benign)

Token Weight
msi61f0 -8.04
part -7.022
ciscosparklauncher -6.642
sesinaci -4.738
clientinst -4.445
safesenderslist -4.443
setup -4.389
sd -4.147
wim -4.06
ie8shims -3.996

commonly used by the AV industry. Thus, in this section, we

focus on the practical aspects of deploying the PE+FP model,

and acknowledge that if an attacker gains white box access to

any of our neural network models, then evading them would

be trivial at that point and defending against such an attack

would be impossible. Our goal for deploying a context model

like our PE+FP model is to detect already existing in the wild

attacks that are missed by the PE only model, rather than to

replace the PE model.

We propose that the PE+FP model be deployed along side

the PE model (not instead of the PE model), as well as all other

currently existing layers of defense, such as static and dynamic

signature-based detection, whitelisting and blacklisting, etc.

This ensures that the model is not the only line of defense,

and reduces black box access of the model to the attacker.

As part of a layered defense, bypassing the PE+FP model

becomes more difficult. There are multiple constraints that the

attacker faces when trying to evade a deployed PE+FP model

by modifying the file paths. The attacker is often limited by

file permissions. In cases where the malicious file needs to

impersonate a benign file, modifying the file path is not even

an option. Modifying the file path may even make a malicious

file less effective, by making it less likely that a user will click

on the file, or making it more likely to be included in a disk

scan. Additionally, the attacker has to be aware not to trigger

alerts in endpoint detection systems while moving malware to

arbitrary paths in the file system. Finally, for attackers to be

able to find an evasive file path, they would need to query the

model several times with the same file and different file paths,

which would be easy to catch and block.

In order to evade detection by the PE content only model,

the only constraint the attackers have is to ensure that the PE

file compiles and is able to execute the malicious code in it.

The rest of the file is completely in the attacker’s control to

modify. However, as we demonstrated in Section IV-B, the

PE+FP model learns to dynamically attribute importance to

parts of the file path based on the content of the PE file

supplied to it, and vice versa. As a result, finding a Universal

Bypass for the combined model becomes a lot harder than

for the PE content only model, because changing just one of

inputs does not consistently change the output, and changing

both with a limited query budget to find the right joint bypass

is hard.

V. CONCLUSION

We have demonstrated that deep neural network malware

detectors can benefit from incorporating contextual informa-

tion from file paths, even when this information is not inher-

ently malicious or benign. Adding file paths to our detection

model did not require any additional endpoint instrumentation,

and provided a statistically significant improvement in the

overall ROC curve, throughout relevant FPR regions. The fact

that we measured the performance of our models directly

on a customer endpoint distribution suggests that our multi-

view model can practically be deployed to endpoints to detect

malware.

The LIME analysis that we conducted in Section IV-B

demonstrates that the multi-view model learns to distill con-

textual information suggestive of actual malicious/benign con-

cepts; not merely statistical artifacts of the dataset, though as

we observed, it can learn such artifacts as well.

In addition to endpoint deployment, another potential area

where this research can be applied is in an Endpoint De-

tection and Response (EDR) context, where the outputs of

our model can be used to rank file events on disk based on

how suspicious they seem. Interestingly, techniques like LIME

also have applications in this context. Using explanations

derived from LIME or similar approaches, analytic tools could

be created that allow users that are not malware/forensics

experts to perform some degree of threat hunting. Importance

highlighting, like we illustrated in Figure 4, is not only a useful

visualization for the user, but is also an alternative to the

nearest neighbor/similarity visualization approach that does

not reveal Potentially Identifiable information (PII) of other

users.

ACKNOWLEDGMENT

This research was funded by Sophos PLC.

REFERENCES

[1] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for mal-
ware detection,” in Twenty-Third Annual Computer Security Applications
Conference (ACSAC 2007). IEEE, 2007, pp. 421–430.

6



[2] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM computing sur-
veys (CSUR), vol. 44, no. 2, p. 6, 2012.

[3] A. Damodaran, F. Di Troia, C. A. Visaggio, T. H. Austin, and M. Stamp,
“A comparison of static, dynamic, and hybrid analysis for malware
detection,” Journal of Computer Virology and Hacking Techniques,
vol. 13, no. 1, pp. 1–12, 2017.

[4] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining. ACM, 2016, pp. 1135–1144.

[5] E. Rudd, A. Rozsa, M. Gunther, and T. Boult, “A survey of stealth
malware: Attacks, mitigation measures, and steps toward autonomous
open world solutions,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 2, pp. 1145–1172, 2017.

[6] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in Malicious and
Unwanted Software (MALWARE), 2015 10th International Conference
on. IEEE, 2015, pp. 11–20.

[7] H. S. Anderson and P. Roth, “Ember: An open dataset for training static
pe malware machine learning models,” arXiv preprint arXiv:1804.04637,
2018.

[8] J. Saxe and K. Berlin, “expose: A character-level convolutional neural
network with embeddings for detecting malicious urls, file paths and
registry keys,” arXiv preprint arXiv:1702.08568, 2017.

[9] J. Saxe, R. Harang, C. Wild, and H. Sanders, “A deep learning approach
to fast, format-agnostic detection of malicious web content,” arXiv
preprint arXiv:1804.05020, 2018.

[10] E. M. Rudd, R. Harang, and J. Saxe, “Meade: Towards a malicious email
attachment detection engine,” arXiv preprint arXiv:1804.08162, 2018.

[11] E. Raff, J. Sylvester, and C. Nicholas, “Learning the pe header, malware
detection with minimal domain knowledge,” in Proceedings of the 10th
ACM Workshop on Artificial Intelligence and Security. ACM, 2017,
pp. 121–132.

[12] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware detection by eating a whole exe,” in Workshops at
the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[13] M. Mays, N. Drabinsky, and S. Brandle, “Feature selection for malware
classification.” in MAICS, 2017, pp. 165–170.

[14] M. Hassen, M. M. Carvalho, and P. K. Chan, “Malware classification
using static analysis based features,” in 2017 IEEE Symposium Series
on Computational Intelligence (SSCI). IEEE, 2017, pp. 1–7.

[15] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
“Autoencoder-based feature learning for cyber security applications,” in
2017 International joint conference on neural networks (IJCNN). IEEE,
2017, pp. 3854–3861.

[16] M. Hassen and P. K. Chan, “Scalable function call graph-based malware
classification,” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy. ACM, 2017, pp. 239–248.

[17] B. N. Narayanan, O. Djaneye-Boundjou, and T. M. Kebede, “Perfor-
mance analysis of machine learning and pattern recognition algorithms
for malware classification,” in 2016 IEEE National Aerospace and
Electronics Conference (NAECON) and Ohio Innovation Summit (OIS).
IEEE, 2016, pp. 338–342.

[18] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel feature extraction, selection and fusion for effective malware
family classification,” in Proceedings of the sixth ACM conference on
data and application security and privacy. ACM, 2016, pp. 183–194.

[19] J. Drew, T. Moore, and M. Hahsler, “Polymorphic malware detection
using sequence classification methods,” in 2016 IEEE Security and
Privacy Workshops (SPW). IEEE, 2016, pp. 81–87.

[20] W. Huang and J. W. Stokes, “Mtnet: a multi-task neural network
for dynamic malware classification,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2016, pp. 399–418.

[21] E. M. Rudd, F. N. Ducau, C. Wild, K. Berlin, and R. Harang, “Aloha:
Auxiliary loss optimization for hypothesis augmentation,” arXiv preprint
arXiv:1903.05700, 2019.

[22] R. Caruna, “Multitask learning: A knowledge-based source of inductive
bias,” in Machine Learning: Proceedings of the Tenth International
Conference, 1993, pp. 41–48.

[23] E. M. Rudd, M. Günther, and T. E. Boult, “Moon: A mixed objective op-
timization network for the recognition of facial attributes,” in European
Conference on Computer Vision. Springer, 2016, pp. 19–35.

[24] C. Xu, D. Tao, and C. Xu, “A survey on multi-view learning,” arXiv
preprint arXiv:1304.5634, 2013.

[25] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, “A multi-view
context-aware approach to android malware detection and malicious
code localization,” Empirical Software Engineering, pp. 1–53, 2018.

[26] J. Bai and J. Wang, “Improving malware detection using multi-view
ensemble learning,” Security and Communication Networks, vol. 9,
no. 17, pp. 4227–4241, 2016.

[27] J. Lei Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” arXiv
e-prints, p. arXiv:1607.06450, Jul 2016.

[28] F. Chollet et al., “Keras,” 2015.

7


