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Abstract—Visual adversarial attacks inspired by Carlini-
Wagner targeted audiovisual attacks can fool the state-of-the-art
Google DeepMind LipNet model to subtitle anything with over
99% similarity. We explore several methods of visual adversarial
attacks, including the vanilla fast gradient sign method (FGSM),
the L∞ iterative fast gradient sign method, and the L2 modified
Carlini-Wagner attacks. The feasibility of these attacks raise
privacy and false information threats, as video transcriptions
are used to recommend and inform people worldwide and on
social media.

Index Terms—Carlini-Wagner attacks, fast gradient sign
method, LipNet.

I. INTRODUCTION

THE purely visual sibling to the Carlini-Wagner audio-

visual attacks, the attacks explored against LipNet in-

tend to prove the threat of subtitle manipulation and video

transcriptions. Using the deep learning subtasks of subtitling

(discussed here) and video description (soon to be discussed),

social media and advertising companies rely on computer

interpretability of exabytes of video data that crosses their

platforms every day. Adversarial attacks intended to fool

computer interpretability can spread misinformation and tar-

get vulnerable audiences. Since Carlini-Wagner audiovisual

attacks exploit audio-dependent classifiers, this project focuses

on attacks exploiting video-to-text classifiers.

There are numerous examples where fooling state-of-the-

art captioning programs reliant on visual observation can go

wrong. For example, take a video of a presidential candidate

speaking. An opponent can intentionally edit the video to

misquote or decontextualize the candidate’s original words,

and then target voter subpopulations by targeting subtitles and

filling them with keywords. In another case, videos commonly

muted (as they are by default on Facebook) rely on captioning

to attract user attention. Upon automating captioning, minimal

perturbations to original content can render dangerous cap-

tions. A presidential campaign ad that opens with ’My dear

fellow citizens...’ can be captioned to anything the attacker

chooses.

Lipreading is an essential speech-related deep learning prob-

lem, as it aims to gather an understanding of facial movement

and its relation to human speech. Human ability to lipread

is tough to accomplish, as already observed in psychological

study. Its application to bettering the lives of individuals

hard of hearing, no matter the scale of hearing loss, became

the source of inspiration for the project [9]. As mentioned

in the original LipNet paper [1], automating lipreading has

applications in improving hearing aids, silent dictation in

noisy places, biometric identification, and caption processing.

Adversarial attacks and their respective defenses are critical

problems to raise as lipreading technology advances, and as

adversarial machine learning learns alongside their defenses.

II. BACKGROUND

A. Related Work

Previous work surrounding adversarial attacks on deep

neural networks has largely focused on the image domain.

Many different adversarial attack methods have been shown

to be tremendously effective on common image prediction

datasets such as CIFAR-10, MNIST and ImageNet [6].

Video-specific adversarial attacks include ”A Surprising

Density of Illusionable Natural Speech” [20]; ”Adversarial

perturbations against real-time video classification systems”

[21]; ”Targeted nonlinear adversarial perturbations in images

and videos” [22]; ”Black-box Adversarial Attacks on Video

Recognition Models” [23]; and ”Stealthy Adversarial Pertur-

bations Against Real-Time Video Classification Systems” [24].

All pieces were helpful in wrestling the temporal and spectral

dynamics of adversarial video attacks, which differ from less

complex image adversarial attacks.

As opposed to image data, video inputs include a temporal

component in conjunction with spatial components, which

increases the complexity of the problem. In this paper, we

aim to show that the attack methods that have been shown

to be successful in the image domain can be equally effective

when applied to videos. However, as far as we know, there are

few documented examples of white-box adversarial attacks on

end-to-end video data and none relating to the problem of

lipreading for captioning purposes.

B. Data

The LipNet model is trained on the standardized GRID

corpus dataset, which is the state-of-the-art public dataset for

lipreading. The corpus also provides audio data, alongside

varying video quality for 34 speakers. Each speaker says every

set of predefined sentences. Similar lipreading approaches

include audio input, but the LipNet model focuses on the

visual-only task. This creates room for future audio- and

visual-based adversarial attacks. The GRID corpus follows a

highly-specific sentence structure, sticking to similar sentences

with 4-6 words. The GRID corpus is available through the

University of Sheffield Research Fund [10].
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Fig. 1: An example of a LipNet video.

Fig. 2: The LipNet architecture

C. LipNet

The LipNet model receives video of various individuals

speaking (Figure 1), and attempts to identify the English

phoneme spoken. LipNet presents a uniquely interesting prob-

lem to attack as it supports end-to-end prediction, meaning that

it analyzes across the entire input video at once instead of

going frame-by-frame. The design of the model is as follows:

a three second video is encoded a 75 (# of frames) x 100

(width) x 50 (height) x 3 (# of channels) array which is initially

passed through a spatiotemporal CNN. The features extracted

from the pass are then input to a bidirectional gated recurrent

units (GRUs), whose output is fed through a linear layer and

a softmax layer. Finally, Connectionist temporal classification

(CTC) loss is used to find the most likely alignment from the

output of the model [2]. The model complexity allows LipNet

to achieve much higher prediction accuracy when compared

to other non-end-to-end lipreading models.

The attacks we present focus on the gradient computation

of the loss function. The gradient with respect to the loss is

taken at this final layer. The fast gradient sign method (FGSM)

attacks make special use of the computed gradient.

Third-party implementations of LipNet, unaffiliated with

Google DeepMind’s approach, are available online. The best

implemented model is done in Keras/Tensorflow [11].

D. CTC Loss

Due to the sequential nature of the input data, the choice

of loss function must be carefully considered. In order to deal

with the fact that the phrases in the videos have no particular

temporal alignment and are variable in length, the LipNet

model employs the CTC (Connectionist Temporal Classifica-

tion) loss function which handles both these problems.

For a sequence of frames, the CTC loss procures an align-

ment between the input and an output by estimating viseme1

class probabilities at each time-step. A sequence π is generated

from taking the probability of each viseme at every frame

f(xi)
j is the probability of viseme j at time frame xi. Each

character in π is either a valid viseme, a space, or a special

token ε, where ε is used to represent a break from one viseme

to the next. For a label l, there are many sequences that

reduce to l where a reduction involves removing duplicate

visemes and special tokens. As an example using the English

alphabet, the sequence h h e ε l ε l l ε o reduces to hello.

A valid alignment for a label l with respect to an output y
is a sequence π that is the same length as y and reduces to

l. Then, the probability of an alignment π given the softmax

output f(x) = y is:

Pr(π|y) =
∏

yiπi

The probability of a label l with respect to an output y is

the sum of the probability of alignment π given y across all

valid alignments, which can be written as:

Pr(l|y) =
∑∏

yiπi

Finally, the negative log-likelihood of the target label is used

to train the loss function for the model:

CTC − loss(f(x), l) = −logPr(f(x)|l)
Since the CTC loss function has a well-defined gradient,

it allows us to explore gradient-based adversarial attacks on

sequential classification tasks. A more detailed explanation of

CTC loss and phrase recovery can be found at [19].

III. THREAT MODEL

Given an input video sample x, our end goal is to generate

an adversarial example x′ such that the output of the network

F (x′) matches some target label t that is distinct from the

original true label l. At the same time, we attempt to minimize

the size of the perturbation necessary to reach x′, so that

the constructed adversarial example x′ is indistinguishable

from the original sample x to the human eye. We primarily

focus on white-box attacks, where the adversary has access

to the model parameters. Specifically, we use a set of pre-

trained weights that are included with the LipNet model

implementation [11]. We explore two avenues of generating

our adversarial examples. Firstly, we examine the applicability

of existing software on the model, and secondly, we turn

to custom attack generation, loosely following the methods

outlined by Carlini and Wagner [6].

IV. GRADIENT BASED ATTACKS

Szegedy et al. [3] show that the problem of generating a

minimally perturbed adversarial example can be distilled down

to a relatively simple optimization problem:

1A viseme is a generic facial image that can be used to describe a particular
sound.
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Fig. 3: Vanilla Fast Gradient Sign Method example.

min
δ
‖δ‖ps.t. F (x+ δ) = tx+ δ ∈ [0, 1]n (1)

where δ represents our perturbation, t is our target label,

x+ δ = x′ is our adversarial example, and ‖δ‖p is our choice

of distance metric. This minimization problem solves for a

perturbation δ that generates an adversarial example that is as

close to the original input as possible subject to the constraints

that the networks prediction of the adversarial example x+ δ
is the target label and is a feasible example (pixel values are

mapped between 0 and 1). Carlini and Wagner [6] show that

with a few small tweaks to this problem formulation, a good

local solution can be found by using standard optimization

algorithms (stochastic gradient descent, RMSProp, Adam, etc.)

The choice of distance metric is flexible and should be taken

into consideration by a potential adversary. In this paper we

will investigate the L∞ norm and the L2 norm as distance

metrics and outline the pros and cons of each choice.

A. Fast Gradient Sign Method

Before attempting a targeted attack, we first demonstrate

that it is possible to generate untargeted adversarial exam-

ples with minimal perturbation using a gradient-based at-

tack. Goodfellow et al. [8] shows that the Fast Gradient

Sign Method is essentially a one-step linear approximation

to maximizing the loss with respect to the true label by

adding a clipped gradient of the loss to the original input.

To implement this attack on the LipNet model, we use Keras

backend functions to extract the gradient of the CTC loss with

respect to the sample input video x and apply the one-step

attack below to generate our adversarial example x′:

x′ = x+ ε ∗ sign[∇xL(x, ytrue)] (2)

where L is the CTC loss function and ytrue is the true

label. Using an ε value of .025, we are able to successfully

perturb the sample input – which LipNet accurately predicts as

saying ’set white with p two soon’ to generate an adversarial

input that LipNet now predicts to say ’set red with x seven

now’. Limiting the perturbation of each pixel to ε is equivalent

to using the L∞ norm as the distance metric for our attack.

Thus, the per pixel difference between the original video and

our adversarial example is at most 2.5%. We have extracted

a random frame from the original video and the adversarial

video to show the difference between the two in Figure 3.

The benefit of using Fast Gradient Sign Method is that it

is able to quickly generate an adversarial attack that results

in an output that is relatively distinct from the original label

while being almost undetectable to the human eye. However,

the limitations on FGSM are clear when we try to generate

targeted attacks, which almost always fail with small ε. Al-

though it has been shown that single step FGSM can generate

targeted attacks in the image domain, its ineffectiveness on

video input suggests that the LipNet model does not share the

property of being locally linear, perhaps due to the use of CTC

loss for sequential data.

B. L∞ Attack: Iterative FGSM

While generating fast, untargeted attacks can be useful for

certain objectives, an adversary would optimally like to trick

a deep network into predicting a certain target phrase. For

example, in a criminal case where a neural net for lipreading

is used as evidence, an adversary may want to undermine

the authority of the network by predicting a phrase that may

exonerate the convict in question.

In order to create targeted attacks on LipNet, we move away

from one-step attacks to iterative methods. Luckily, our FGSM

attack from before can easily be adapted to an iterative attack

[12]. We now focus on solving the minimization problem

from above using the L∞ norm as our distance metric.

Since it is difficult to take the gradient of the L∞ norm,

we approximate the solution with iterative FGSM. At each

iteration, we perform FGSM from before with two changes.

First, instead of adding the gradient with respect to the true

label, we subtract the gradient with respect to our target label.

Second, we clip the gradient by ε
α where α is the number

of iterations. Madry et. al. [12] shows that this method is

equivalent to performing gradient descent on the objective

and projecting each intermediate step onto the L∞ norm. Our

update rule is as follows:

xk+1 = xk − ε

α
∗ sign[∇xL(x, t)] (3)

Carlini and Wagner [4] show that iterative white-box targeted

attacks are much more effective than single step attacks, which

is corroborated by our results. On top of being better at

reaching a target label, iterative FGSM does not perturb the

original video any more than one-step FGSM, as the overall

perturbation is bounded by the same ε value (.025). We are

able to successfully construct an adversarial example for any

target phrase in the GRID dataset within 30 iterations using

this method. The effectiveness of iterative FGSM at generating

targeted attacks is clear; however, this method is still an

approximate solution to our minimization problem insofar as

the examples produced are not minimally perturbed. While the

size of the perturbation can be controlled by shrinking ε, we

find that if ε is too small (below .015), iterative FGSM can

take an increasingly large number of iterations to converge to

a solution, if at all.

Thus, if our objective is to create a efficient targeted

adversarial attack with minimal perturbation, we would like to

more precisely solve the minimization problem from above.

C. L2 Attack: Modified C-W Attack

Following the work of Carlini and Wagner [6], we formulate

our minimization problem that works to find an optimal delta

using the L2 norm distance metric.
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min
δ
‖δ‖2s.t. F (x+ δ) = tx+ δ ∈ [0, 1]n (4)

There are a few nice properties of the L2 norm in the

context of our problem. Since the L2 norm is differentiable,

we can now nicely take the gradient over the entire objective

function with respect to delta. Additionally, the L2 norm

over the entire perturbation sums over all the frames, which

intuitively means that frames that are not as relevant to the

solutions will see little to no perturbation, whereas frames

that matter more to the loss function see relatively more

perturbation. As an aside, we note that this may allow for key

frame analysis to see which frames are the most important

for classification. Finally, if the goal is to prevent the human

eye from distinguishing between the original video and an

adversarial example, using the L2 norm may be advantageous

as the human eye is too slow to pick out individual frames in

a video.

Carlini and Wagner show that the minimization problem can

be recast as follows:

min
δ
‖δ‖2 + λ ∗ L(x+ δ) s.t. x+ δ ∈ [0, 1]n (5)

where we incorporate our constraint F (x+ δ) = t into our

objective function by adding the CTC loss function multiplied

by some hyperparameter λ. We can now directly run an

optimization algorithm by taking the gradient across the entire

objective function, and checking that the second constraint is

not violated (we can simply bound our adversarial example

to have values between 0 and 1). To solve this minimization

problem, we perform gradient descent on delta with our update

rule at each iteration being:

δk+1 = δk − η ∗ (λ∇̇δL(x+ δ, t) + 2δ) (6)

where we initialize δ0 to a random Gaussian centered at 0 with

a variance of 0.02.

From this update rule, we see that our hyperparameter λ
controls the relative importance of being our attack being ad-

versarial vs. being minimally perturbed. Based on our research,

we find that larger values of lambda allow us to find a solution

faster at the cost of the size of the perturbation being bigger.

After experimenting with multiple values of λ from 0.001 to

100 on a log scale, we find that λ = .1 is best for constructing

successful adversarial examples while keeping the perturbation

unnoticeable.

While running gradient descent with a learning rate η = 0.1,

we observe that our solution oscillates after 50+ iterations. To

solve this problem, we employ a learning rate decay of .1

after a every 30 iterations while simultaneously increasing λ
by a scale of 10. We find that introducing learning rate decay

helps with convergence when the loss is sufficiently small, but

oscillating. By increasing λ at the same time, we can put more

importance on minimizing the loss with respect to the target

versus keeping our perturbation small. The reason we can do

this while avoiding an increase in the size of our perturbation

is twofold. First, enough iterations of gradient descent have

Fig. 4: Side-by-side comparison of the original image and

the L2 attack.

occurred to where we have a perturbation δ with a small L2

norm that is already fairly close to a solution. Second, since

we have also lowered our learning rate, any further updates

to δ will be relatively small and will not drastically increase

the size of the perturbation. Additionally, we stop decay from

dropping our learning rate under .001.

Figure 4 contains a side by side comparison of two frames

extracted from the original sample and the adversarial one.

Note that they are essentially identical to the human eye.

V. RESULTS

With both our L2 and L∞ norm attacks, we are able to

successfully find an adversarial example for any target phrase

that follows the vocabulary of the GRID dataset. While this is a

rather remarkable conclusion, it is not too surprising that these

attack methods are able to transfer to the LipNet model with

high success rates. We evaluate our two attacks on two criteria:

1. The average pixel change per frame and 2. The amount

of time taken to find a solution. We measure these criteria

across 10 different target examples each attack. For our L∞
attack, we find that the smallest ε that we achieve efficient and

consistent solutions with is .025. This means that the average

perturbation per frame is bounded by a 2.5% change and in

practice is often closer to a 1% change due to the gradient

for certain pixels being 0, making our adversarial examples

at least 97.5% similar to the original video. Convergence to

a solution is relatively fast, taking at most 30 iterations and

around 30 minutes on an AWS p2.xlarge GPU instance. The

p2.xlarge GPU instance is the cheapest of GPUs available on

AWS, hence the slow convergence time.

For our L2 attack, our average pixel change per frame is

measured to be .33%, and the maximally perturbed frame

has an average pixel change of 1%, making our adversarial

examples over 99% similar to the original sample. However,

the increase in similarity comes at the cost of an increase in

the number of iterations required to find a solution. Depending

on the target phrase, convergence generally takes between 40

and 120 iterations of gradient descent.

We encourage the reader to check out the links to the

original sample video and an adversarial example that our L2

attack generates2. The original video’s true label is ’set white

with p two soon’ and the successfully attacked target label is

’lay red by q zero please’. The success of our attacks show that

the video domain is equally susceptible to adversarial attack

methods that have been explored in other domains, and we

2Original video sample: ’set white with p two soon’ and adversarial video
sample: ’lay red by q zero please’.
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hope that our work encourages building robustness to attacks

into deep neural networks.

VI. CONCLUSION

The vanilla fast gradient sign method, the L∞ iterative fast

gradient sign method, and the L2 modified Carlini-Wagner

attacks were highly effective in fooling the trained LipNet

model. Both targeted and untargeted attacks were successful,

and converged in reasonable time. The attacks bring attention

to the power of adversarial attacks against video-based neural

networks, which closely match the effectiveness of audio

attacks presented by Carlini and Wagner [4]. The LipNet

adversarial attacks presented appear to be the first of their

kind, and join the family of adversarial attacks against video-

related tasks.

VII. FUTURE CONSIDERATIONS

In this paper we have demonstrated the effectiveness of

white-box attacks on video classification problems. Previous

work has shown that an interesting property of adversarial

attacks is transferability, the idea that adversarial examples

trained on one network will work on a different network,

which is possible with black-box attacks. We believe that our

work can be used to implement black-box attacks on video

classification systems in the future.

One consideration includes reducing the perturbation δ
magnitude, which can be achieved by running more iterations

of gradient descent with a lower learning rate. Additionally,

this process could be sped up by using better optimizers or by

incorporating techniques such as momentum.

With every deep learning problem, a more general problem

scope can benefit the real-world application of the task at hand.

The sentence structures and the corpus are fixed and very

refined, rendering the LipNet model’s scope of lip reading very

limited. Adversarial attacks against LipNet can only advance

in complexity as LipNet does, so what remains are the types

and effectiveness of attacks on the state-of-the-art LipNet

models today.

Finally, in terms of model architecture, a breakdown of

phoneme vulnerability could improve the optimization task

solved by the adversarial agent. Should the agent be informed

of the original sentence and be capable of detecting each

used phoneme’s presence in the sentence, the model can use

the existing priors or the expected perturbation size given

the phoneme. Visualization methods like a confusion matrix

of phonemes, which measure the difference in perturbations

for two targeted classes, could aid adversarial creators in

designing future adversarial methods.
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