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Abstract—Many works have demonstrated that neural net-
works are vulnerable to adversarial examples. We examine the
adversarial sticker attack, where the attacker places a sticker
somewhere on an image to induce it to be misclassified. We
take a first step towards defending against such attacks using
clipped BagNet, which bounds the influence that any limited-
size sticker can have on the final classification. We evaluate our
scheme on ImageNet and show that it provides strong security
against targeted PGD attacks and gradient-free attacks, and
yields certified security for a 95% of images against a targeted
20× 20 pixel attack.

Index Terms—adversarial examples, adversarial machine learn-
ing, adversarial robustness

I . I N TRODUCT I ON

Despite achieving superhuman performance on various

computer vision, natural language processing, and game playing

tasks, deep learning has been shown to be vulnerable to

adversarial examples, which are inputs designed by adversaries

to produce erroneous predictions by the model [1]. Previous

work has mostly focused on a threat model where the attacker

is allowed to perturb all pixels of the input, so long as the

Lp norm of the perturbation does not exceed some threshold.

However, it is not clear that this corresponds to any physically

realizable attack [2].

In this paper we tackle adversarial sticker attacks [3], in

which an attacker is restricted to placing a sticker somewhere

in the image. These attacks correspond to a realistic threat:

attackers could plausibly place a small sticker on a stop sign or

hold it in a scene. Researchers have shown that these attacks

fool existing classifiers, and can be mounted in the physical

world despite viewpoint and brightness variation [4]. It is

currently not known how to build classifiers that are robust

against sticker attacks.

We develop a scheme, Clipped BagNet (CBN), that is robust

by design against sticker attacks, and we show that it achieves

close to state-of-the-art performance on ImageNet. We build

on the BagNet-33 classifier, recently introduced by Brendel et

al. [5]. BagNet shows that one can achieve approximately state-

of-the-art accuracy on ImageNet with a classifier artificially

restricted to a 33× 33 receptive field. BagNet examines each

33× 33 patch of the image separately. For each patch it makes

a prediction for the class of the image based solely on that

patch. It then aggregates these votes to make a final prediction.

In Clipped BagNet, we modify the aggregation step to limit

the influence of any one patch on the final prediction. This

allows us to bound the effect of a sticker and provide certified

security guarantees for many images.

We evaluate the security of CBN using both a white-box

attack (PGD) and a black-box attack (SPSA). CBN achieves

83.6% top-5 clean accuracy on ImageNet (compare to ResNet-

50: 93.4% top-5 accuracy). In our experiments, CBN achieves

65.2% robust top-5 accuracy against untargeted PGD attack

with a 20×20 sticker (ResNet-50: 30.8% robust top-5 accuracy)

and 99.8% robust top-1 accuracy against targeted PGD attack

with a 20×20 sticker (ResNet-50: 53% robust top-1 accuracy).

Due to the design of CBN, we can derive certified security

results: 95.0% of images are certified secure against targeted

attack with a 20 × 20 sticker, and 20.4% against untargeted

attack. As far as we are aware, these are the strongest security

against sticker attacks on an ImageNet-scale dataset to date.

I I . BACKGROUND

A. Adversarial Sticker Attack

The adversarial sticker attack allows the attacker to choose

a region of their choice in the image and replace that portion

of the image with any content of their choice. Brown et al. [3]

introduced adversarial stickers by demonstrating a universal,

robust, targeted physical adversarial sticker capable of fooling

image classifiers when added to a real-world scene. Their work

launched a line of research exploring these attacks. Researchers

have demonstrated that a malicious sticker on a stop sign could

cause it to be mis-classified as a 45 mph speed sign [4], printing

a malicious image around the frames of eyeglasses or placing

a malicious sticker on one’s hat can fool face recognition [6],

[7], holding a print-out of a malicious image can fool person

detection by surveillance camera [8], and wearing an adversarial

T-shirt can evade a real-time person detection system [9]. These

highlight the need for effective safeguards against such attacks.

B. The BagNet Classifier

We build on the Bagnet classifier, which has been shown

to achieve close to state-of-the-art accuracy on ImageNet [5].

BagNet breaks the image into overlapping patches (BagNet-9

uses 9 × 9 patches, BagNet-33 uses 33 × 33 patches). For

each patch, it feeds the patch into a ResNet-based classifier

that outputs a 1000-dimensional vector of logits, which we

can think of as inducing a probability distribution on the 1000

ImageNet classes. We obtain a 1000-dimension vector of logits

for each patch; BagNet then averages these vectors to obtain

a global vector of logits, which are fed to softmax to obtain
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final class probabilities for the input image. Figure 1 provides

a high-level overview of BagNet.

Fig. 1. BagNet extracts features from small image patches which are fed into
a linear classifier yielding one logit heatmap per class. These heatmaps are
spatially averaged and passed through a softmax layer to get the final class
probabilities.

We can build a heatmap for each class, which represents the

locations in the image that voted for that class. Each cell in the

heatmap corresponds to a particular patch in the image, and its

color reflects the logit for that class produced by the classifier.

In Figure 2 we show one image and the heatmaps produced by

BagNet-9 for 6 classes. The heatmaps show which regions in

the image vote most strongly for that class. The model’s top

prediction is “broccoli”, since it has the largest average. We can

also see that BagNet-9 is slightly confused between bird and

greens in this case, perhaps because the image contains two

distinct objects. Consequently, as is standard in the literature,

we measure top-5 accuracy where possible: when measuring

accuracy, we credit the model as correct if the true label appears

anywhere among the top 5 classes predicted by the model.

Figure 3 illustrates how BagNet is vulnerable to attack. It

shows an image with an untargeted adversarial sticker in the

upper-right and the heat maps BagNet produces. The true class

is “monitor”, but the sticker pushes this out of the top 5. We

can see from the heatmaps that the sticker fools the model by

assigning small negative scores to the true class (blue), and

by assigning very large positive scores to the next 5 classes

(bright red). Even though the sticker affects only 9 values

in the heatmap, changing those to have very large positive

scores drives up the average for those 5 classes by a significant

amount. In effect, the problem with the average is that it is

not robust to large changes to a few values.

BagNet is not robust against sticker attacks, but provides a

starting point for our defense. In the rest of the paper we show

how addressing this problem makes the resulting classifier

more robust to sticker attacks.

Fig. 2. An image from ImageNet and the corresponding heatmaps produced
by BagNet-9. The first heatmap corresponds to the true label (“water_ouzel”)
while the rest are for the top 5 predictions generated from BagNet-9.

I I I . P ROBLEM AND AP PROACH

We study how to make object classification robust against

sticker attacks in the digital domain. Thus, the attacker may

choose a square region (of fixed size) in the image and control

the exact value of all pixels within that region. This gives the

attacker more power; there is no need to construct an attack

that will be robust to variation in pose, viewpoint, brightness,

or camera distortion. A defense that is robust against digital

attacks will also necessarily be robust against physical attacks,

making our results all the more meaningful.

A. Threat Model

We allow the attacker to freely choose the location where

the digital sticker will be placed and replace the contents of

that region with any valid values. In other words, given the

initial image x0 and a sticker size s× s, the attacker constructs

a location (i, j) in the image and a new image x′ that agrees
with x0 everywhere except for locations (i, j), . . . , (i + s −
1, j + s− 1).

We evaluate security against white-box attacks, meaning that

the adversary knows the model being used, its architecture,

its weights, and the image being attacked. Then, guided by

[10], we evaluate our CBN against black-box attack, where

adversary has no access to the model and its parameters, but

is still able to access to the image being attacked. We use the
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Fig. 3. An image from ImageNet with an adversarial sticker, and the heatmaps
produced by BagNet-9. In this case the attack is successful: the true class is
not among the top 5 predictions.

term “sticker” for the attack, as “patch” has a special meaning

in the BagNet architecture [5].

In most of our experiments, we focus on a sticker with size

of 20× 20. We limit the sticker size to 20× 20 as there are

images from the ImageNet dataset that have objects which are

smaller than that. We do not think it is reasonable to expect

the classifier to accurately predict the class of an image when

a well-placed sticker can completely occlude the true object.

B. Evaluation

We evaluate the security of a model in two ways.

First, we evaluate its security against standard algorithms for

generating adversarial examples. We try to construct adversarial

stickers, and report how often we are able to do so. If the

adversary can construct an adversarial sticker for even a single

location, we consider the attack to have succeeded against

that image, and we count the fraction of images that remain

correctly classified despite these attacks.

Second, our scheme provides certified security: for some

images, we can prove that no sticker (no matter where placed,

and no matter its contents) of a certain size will be able to

change the classification. We report the fraction of images that

can be certified safe in this way.

ImageNet models are normally evaluated using top-5 ac-

curacy, i.e., the fraction of images for which the true label

appears as one of the top 5 labels predicted by the model.

Accordingly, for untargeted attacks, we consider the attacker to

succeed if they successfully remove the true label from the top

5 predictions. (Thus, a clean image where the true label does

not appear among the top 5 predictions already counts as a

success for the attacker, with no sticker needed.) In contrast, it is

unclear what the right notion of security for targeted attacks is,

in a top-5 setting1. Therefore, for targeted attacks, we evaluate

using top-1 accuracy and consider the attack a success if the

attacker causes the target label to be the model’s top prediction.

C. Generating Adversarial Stickers

One can search for an adversarial sticker by exhaustively

trying all possible locations for a 20× 20 sticker, and for each

location, search for contents of the sticker that change the

classification. However, searching all possible locations is very

expensive, as there are 2052 ≈ 42, 000 possible locations, and

each location would require tens or hundreds of evaluations

of the model. For efficiency we test locations with a stride of

20, so we only need to search 112 = 121 locations. At each

location, we search for an adversarial example with unbounded

perturbation within the region. In practice, we iterate the

location with stride of 20 from left to right, top to bottom, and

we terminate the search as soon as we find a single location

where the attack succeeds.

D. Attack Algorithms

We use several methods to construct the contents of the

sticker.

1) Untargeted Attacks: To evaluate security against untar-

geted attacks, we use Projected Gradient Descent (PGD), an

iterative white-box attack that uses gradient information from

the model to search for contents of the sticker that will maximize

the loss of the model:

xt+1 = Π
(
xt + α sgn

(∇xL(θ, x
t, y)

))
,

where xt denotes the image after t iterations, y the true class,

θ the weights of the network, L the cross-entropy loss, and Π a

projection to the space of valid images. Mądry et. al [11] show

empirically and motivate theoretically that PGD is a universal

first-order adversary, the strongest attack among those that use

the local gradients.

2) Targeted Attacks: We evaluate security against targeted

attacks using PGD with a different objective function [12]:

Φ(x′) = Z(x′)y0
−max

j �=y0

Z(x′)j ,

where Z(x′) denotes the logits of the network on image x′

and y0 the target label. We then use PGD to maximize Φ(x′).
In our experiments, we choose a target label y0 uniformly at

random from among the labels other than true label.

1We could count the attack a success if the target label appears among the
top 5 predictions; or alternatively, we could count it a success if the target
label appears among the top 5 predictions and the true label is not among the
top 5 predictions. It is not clear which definition is more appropriate; which
is more suitable may depend on the application and how the model is used in
a larger system.
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3) Gradient-free Attack: To ensure that our defense is secure

and not just masking the gradient, we also try SPSA, a black-

box gradient-free attack [13].

IV. CL I P P ED BAGNET

A. BagNet

BagNet’s structure as an average of per-patch logits forms a

foundation for our defense. This structure reduces the influence

of any single pixel, as each pixel can only influence the few

patches that surround it, unlike a traditional feed forward neural

network where a single pixel can have unlimited influence on

the entire network. However, this alone is not enough for

robustness against adversarial stickers, as a sticker can drive

a single patch’s logit arbitrarily high or low, thus making an

unbounded change to the global average and potentially causing

mispredictions. Indeed, we show later that unmodified BagNet

is not robust against adversarial stickers.

B. Clipping Functions

The primary weakness of BagNet arises because the average

of unbounded values is not robust: a large change to a single

value can cause an unbounded change to the global average.

To address this, we artificially clip the per-patch logits before

averaging them, thereby limiting the extent to which our CBN

can be influenced by an adversarial sticker. We experimented

with multiple clipping functions, including sigmoid, tanh, and

binarization, and found that tanh seemed to perform at least as

well as any of the others. After a grid search, we selected the

clipping function f(x) = tanh(ax+ b) with hyperparameters

set to a = 0.05 and b = −1. 2

Mathematically, CBN works as follows. Let Z(x) denote

the vector of the global logits for input image x (so that Z(x)c
denotes the global logit for class c), Zp(x) the vector of logits

for patch p on image x, P the set of all patch locations, and

f the clipping function. Then CBN calculates

Z(x) =
1

|P|
∑

p∈P
f(Zp(x)).

We added the clipping function to a pre-trained BagNet model.3

C. Certified Security

Next, we show how CBN can be used to obtain certified

security for some images. In particular, for some images, we can

prove that no sticker would change the model’s classification.

This analysis relies on the fact that the output of tanh of

clipping is in the range [−1,+1]. We use this to derive a lower

and upper bound on the values of all global logits, if a sticker

is applied at a particular location to the image. Instead of using

the method described in section §III-C to search for sticker

2We used the same clipping function and parameters for every patch. In
future work it might be interesting to try different parameters for each patch.
Other tools from robust statistics, such as differential privacy, may also be
relevant.

3BagNet was trained without clipping. It is plausible that re-training the
model end-to-end with clipping present might yield better results than we
report in this paper.

locations, we iterate through each possible location for a sticker

and check whether any location could change the classification.

For untargeted attacks, if the lower bound for the true label’s

logit is greater than the 5th largest of the logit upper bounds

(other than the true label), then we can conclude that no sticker

at that location could push the true label out of the top 5. If

this holds at all sticker positions, then we certify the image as

safe against untargeted sticker attacks. For targeted attacks, if

the largest of the logit lower bounds is greater than the upper

bound for the target label, then we certify the image as safe

against targeted sticker attacks.

Our bounds use the following results. In the following, let s
denote the position of a sticker, define Ps as the set of patch

locations p that overlap with s, and define Ps̄ = P \Ps as the

patch locations that do not overlap with s.

Lemma 1. Let x, x′ be two images that differ only by a sticker
in position s. Then α(x, s) ≤ Z(x′) ≤ β(x, s) where

α(x, s) =
1

|P|
∑

p∈Ps̄

f(Zp(x))− |Ps|
|P|

β(x, s) =
1

|P|
∑

p∈Ps̄

f(Zp(x)) +
|Ps|
|P| .

Proof. If p does not overlap with s, then Zp(x) = Zp(x
′), so

Z(x′) =
1

|P|
∑

p∈Ps̄

f(Zp(x
′)) +

1

|P|
∑

p∈Ps

f(Zp(x
′))

=
1

|P|
∑

p∈Ps̄

f(Zp(x)) +
1

|P|
∑

p∈Ps

f(Zp(x
′))

≤ 1

|P|
∑

p∈Ps̄

f(Zp(x)) +
1

|P|
∑

p∈Ps

1

= β(x, s).

The lower bound can be derived using similar reasoning.

Theorem 1. If for every sticker position s there exists a class
c with c �= t and α(x, s)c > β(x, s)t, then x can be certified
safe against a targeted attack to class t: no image x′ obtained
by placing a sticker somewhere will be classified by CBN as
class t.

Proof. The conditions imply that, no matter where the sticker is

placed, the largest logit is never class t. The softmax preserves

the relative order of the classes, so the classifier’s top prediction

will never be class t.

Theorem 2. If for all sticker positions s, α(x, s)y is greater
than the 5th largest value in {β(x, s)c : c �= y}, then x can be
certified safe against untargeted attacks: CBN’s classification
of every image x′ obtained by placing a sticker somewhere
will have y among the top 5 classes.

Proof. The conditions imply that, no matter where the sticker

is placed, y will always be among the 5 largest logits. Softmax

preserves the order of the classes, so y will always be among

the classifier’s top 5 predictions.
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Fig. 4. Computing upper and lower bounds on logits, for certified security.

V. EX P ER IMENT S

To evaluate CBN’s robustness, we test it against what we

believe are the strongest existing attacks, including adaptive

attacks tailored to CBN. We only consider square stickers, but

our analysis can be generalized to any other shape, since a

sticker can only affect those patches that cover it. In other

words, the square sticker in the Figure 4 could be replaced

with any other shape as long as its affected patches remain the

same. We evaluate against white-box untargeted attack (§V-A1),

black-box untargeted attack (§V-A2), white-box targeted attack

(§V-B), and report certified security (§V-C).

Guided by recommendations on defense evaluation in [10],

we evaluate CBN against several state-of-the-art attacks: pro-

jected gradient descent (PGD), a white-box attack where the

adversary has access to the model’s parameters and thus its

gradient, and SPSA [14], a black-box attack that does not

require access to the gradients. The purpose of SPSA is to test

whether the tanh clipping function introduces masked gradients

[13] that prevent PGD from finding adversarial examples.

Hyperparameters for the attacks are selected to generate the

strongest attacks possible given our computational capacity. We

verify the convergence of attack algorithms by doubling the

number of iterations; the attack success rate was not appreciably

affected. We evaluate on ImageNet and compare our CBN

defense against three baseline neural networks: ResNet-50,

ResNet-101, and DenseNet, which were the most robust of the

conventional models that we have tested.

Table I summarizes the results of our experiments. CBN has

reduced clean accuracy but approximately double robustness

to attack. For efficiency, all evaluations are done on the same

500 randomly sampled images from ImageNet dataset. Under

untargeted PGD attack, we record the top-5 accuracy after

applying the adversarial sticker. Under targeted PGD attack,

we record the percentage of images where the attack fails (i.e.,

is unable to cause the model to output the target class as its top-

1 prediction). The latter number can be larger than the accuracy

of the model, as misclassifying the image to something other

than the target label is still counted as a failure of the attack.

A. Untargeted Attack

1) White Box Attack: PGD: We use a white-box PGD attack,

restricted to a 20×20 sticker and with ε = 1, so that there are no

limits on how much each pixel within the sticker can be changed.

TABLE I
CLEAN ACCURACY AND ROBUS TNE S S AGA I N S T 20× 20 S T I CKER

O F T E S T ED ARCH I T EC TURE S

Clean Accuracy Attack Robustness
Scheme Top-1 Top-5 Targeted Untargeted

ResNet-50 78.6% 93.4% 53.0% 30.8%
ResNet-101 79.4% 94.2% 43.8% 28.2%
DenseNet 79.4% 94.8% 38.6% 18.2%
BagNet-33 69.0% 87.2% 54.2% 18.8%
CBN (Ours) 62.0% 83.6% 99.8% 65.2%

We found that the Adam optimizer with learning rate 0.1, β1 =
0.9, and β2 = 0.999 performed better than vanilla gradient

descent. We report results for 80 iterations; we observed a

similar success rate against CBN with 40 iterations, suggesting

the attack has converged. Overall, CBN is significantly more

robust against this attack than the other undefended models we

evaluated.

2) Black Box Attack: SPSA: The tanh clipping function

saturates at very large and very small values. It is conceivable

that this could cause gradient to vanish, creating challenges for

gradient-based attacks [13]. Therefore, we evaluate our scheme

using a non-gradient based black-box attack as well, to verify

that our defense is not merely masking the gradient. Three

state-of-the-art black-box attacks in the literature are SPSA,

NES [15] and boundary attack [16]. We chose SPSA because

it achieves state-of-the-art results competitive with NES, and

because the boundary attack is not applicable in our threat

model.4 We compare the effectiveness of PGD vs SPSA at

driving the true label out of the top-5.

The original SPSA paper [14] introduces a black-box

untargeted attack using the objective

minx Z(x)y0
−maxj �=y0

Z(x)j
s.t. ‖x− x0‖∞ < ε

Here, ε is the maximal perturbation on a pixel, x0 is the original

image, y0 is the ground true class of x0, Z(x)y0
is the logit

assigned to the true class, and Z(x)j is the logit for class j.
SPSA uses the Adam optimizer to minimize this loss.

We adapt the SPSA attack to our setting of adversarial

sticker. In particular, we seek an adversarial sticker where the

attacker is limited to the sticker region with no limit on the

size of the perturbation (as long as perturbed pixels remain

valid), in contrast to the original paper which considered a

small perturbation to the entire image. Also, we focus on top-5

accuracy rather than top-1 accuracy. Accordingly, we use an

objective function that minimizes the true class’s logit and

maximizes the 5th largest of the other logits:

minx Z(x)y0 − sort{Z(x)j | j �= y0}[5]
To find an optimal hyperparameter combination of SPSA and

get a sense on how SPSA performs within our threat model,

we apply SPSA on two sets of images, vulnerable images (10

4The boundary attack must be initialized with a sticker that causes the image
to be misclassified, which is exactly the goal of the attack in the first place.
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randomly selected images that were successfully attacked by

PGD) and robust images (10 randomly selected images that

survived PGD). With the best combination of hyperparameters

(500 iterations, step size of 0.1, and randomly initializing

stickers), 10 out of 10 vulnerable images and 1 out of 10 robust

images are successfully attacked by SPSA. This suggests that

SPSA is not significantly more powerful than PGD and is not

suffering from masked gradients.

Then, we further verify that PGD was not subject to gradient

masking by empirically verifying that PGD and SPSA converge

to similar values. We first randomly sampled 133 images from

the ImageNet validation set and for each image, randomly

picked a location. Then, we run both SPSA and PGD on these

sampled images at their sampled locations for 500 iterations.

Figure 5 shows a scatter plot of the loss after the 500th iterations

of PGD vs SPSA.

Fig. 5. Scatter plot of loss from PGD vs SPSA.

We can see from the scatter plot that PGD and SPSA are

of approximately equal power. The red diagonal line shows

where both attacks achieve the same loss. Points below the red

line are cases where SPSA was more effective than PGD (e.g.,

due to gradient masking). We can see that in most cases both

attacks achieve very similar results, and it is rare for SPSA

to find a significantly better attack than PGD. This provides

further evidence that PGD is an effective attack that accurately

reflects the true robustness of CBN.

B. Targeted Attack

We use a white-box PGD attack with the margin-based

loss from section §III-D2, random sticker initialization, and 80

iterations of the Adam optimizer. We pick a random target class

(excluding the true class), then attack each location with stride

20, effectively measuring the average-case security against

targeted attacks. Overall, CBN is significantly more robust

against this attack than the undefended models we studied.

C. Certified Security

Evaluating a defense against state-of-the-art attack algorithms

upper bounds the effectiveness of the defense, but leaves open

the possibility that there might be even better attacks we haven’t

found yet. Our Clipped BagNet defense also allows us to

compute a lower bound on its effectiveness. Specifically, we

evaluate on the same 500 sampled images, and count the fraction

that can be certified safe in both the untargeted and targeted

setting using the methods from section §IV-C. Table II shows

the results.

Note that all sticker sizes in the range (8k−7)× (8k−7) to

8k × 8k share the same certified security. This occurs because

patches in CBN have a stride of 8, and because our certified

safety bounds make the worst-case assumption that once a

sticker overlaps with a patch, the attacker can completely control

the logit given by that patch.

TABLE II
CERT I F I E D SECUR I TY ON VAR IOU S S I Z E S O F ST I CKER S

Sticker Size Targeted Untargeted

1× 1 ∼ 8× 8 99% 50%
9× 9 ∼ 16× 16 97% 32%
17× 17 ∼ 24× 24 95% 20%
25× 25 ∼ 32× 32 86% 10%
33× 33 ∼ 40× 40 72% 5%
41× 41 ∼ 48× 48 46% 3%
49× 49 ∼ 56× 56 30% 0%
57× 57 ∼ 64× 64 11% 0%
65× 65 ∼ 72× 72 4% 0%

V I . RE LATED WORK

Chou et al. [17] introduce SentiNet which is capable of

detecting a wide range of adversarial attacks including physical

sticker attack, data poisoning attacks, and trojaned models. For

sticker attack, SentiNet focuses on universal adversarial stickers,
such as [3] and [6], where the adversarial sticker works no

matter where it is located in the image and no matter what

image it is applied to. In classifying as an attack, they use the

ability of a salient region to influence classification when pasted

in other images. In contrast, CBN defends against adversarial

stickers regardless of them being robust or specialized to one

image. We also provide a certified robustness guarantee.

Concurrently, Wu et al. [18] also study defense against

adversarial sticker attack. They focus on are face and traffic

sign recognition, while we focus on the ImageNet dataset,

which makes our results difficult to compare directly. They use

standard adversarial training, which is expensive to apply to

ImageNet dataset; our CBN defense does not involve any form

of model retraining and can be applied to large-scale datasets

like ImageNet. Also, our approach is able to provide certified

security bounds. Chiang et al.
Chiang et al. [19] propose certified defenses for adversarial

patches, but they haven’t tested their defenses on ImageNet

dataset; they study 2× 2 and 5× 5 stickers for MNIST and

CIFAR.
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VI I . CONCLU S I ON

In this paper, we propose Clipped BagNet as our defense

against an adversarial sticker attack, and comprehensively

evaluate the defense. Compared with undefended baseline

model, our scheme significantly improve models’ robustness

against various adaptive adversarial sticker attacks (white/black-

box, and untargeted/targeted). We also are able to evaluate the

lower bound of our defense. Since BagNet only utilizes local

features, our defense may be generalizable to other local feature

extractors, or could likely be extended against other attacks

based on regional modification on images, such as backdoor

attack [20]. We have not evaluated the effectiveness of these

generalizations; we leave it to future works.
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