
Adversarial Machine Learning - Industry
Perspectives

Ram Shankar Siva Kumar∗, Magnus Nyström†, John Lambert‡, Andrew Marshall§, Mario Goertzel¶
, Andi Comissoneru‖, Matt Swann∗∗ and Sharon Xia††

Microsoft
Redmond,USA

Email: ∗Ram.Shankar@microsoft.com, †mnystrom@microsoft.com, ‡johnla@microsoft.com, §amarshal@microsoft.com
¶mariogo@microsoft.com, ‖andic@microsoft.com, ∗∗mswann@microsoft.com,

††shxia@microsoft.com

Abstract—Based on interviews with 28 organizations, we found
that industry practitioners are not equipped with tactical and
strategic tools to protect, detect and respond to attacks on their
Machine Learning (ML) systems. We leverage the insights from
the interviews and enumerate the gaps in securing machine learn-
ing systems when viewed in the context of traditional software
security development. We write this paper from the perspective
of two personas: developers/ML engineers and security incident
responders. The goal of this paper is to layout the research agenda
to amend the Security Development Lifecycle for industrial-grade
software in the adversarial ML era.

Index Terms—adversarial machine learning, software security,
engineering

I. INTRODUCTION

Adversarial Machine Learning is now having a moment in

the software industry - For instance, Google [1], Microsoft [2]

and IBM [3] have signaled, separate from their commitment to

securing their traditional software systems, initiatives to secure

ML systems. In Feb 2019, Gartner, the leading industry market

research firm, published its first report on adversarial machine

learning [4] advising that “Application leaders must anticipate
and prepare to mitigate potential risks of data corruption,
model theft, and adversarial samples.” The motivation for this

paper is to understand the extent to which organizations across

different industries are protecting their ML systems from

attacks, detecting adversarial manipulation and to responding

to attacks on their ML systems.

There are many reasons why organizations may already be

ahead of the curve in systematically securing their ML assets.

Firstly, in the last three years, companies heavily investing in

machine learning themselves - Google , Amazon , Microsoft

, Tesla – faced some degree of adversarial attacks [5]–[8];

a bellwether of the rise of adversarial machine learning.

Secondly, standards organizations like ISO [9] are forming

certification rubrics to assess security of ML systems and

whose endorsements have been historically sought after in

the industry [10]. Also, governments are showing signs that

industry will have to build ML systems securely, with the

European Union even releasing a complete checklist to assess

trustworthiness of ML systems [11] Finally, ML is rapidly

becoming core to organizations’ value proposition (with a

projected Annual Growth Rate of 39% for machine learning

investments in 2020 [12]) and it is only natural that organiza-

tions invest in protecting their “crown jewels”.

We make two contributions in this paper:

1) Despite the compelling reasons to secure ML systems,

over a survey spanning 28 different organizations, we

found that most industry practitioners are yet to come

to terms with adversarial machine learning. 25 out of

the 28 organizations indicated that they don’t have the

right tools in place to secure their ML systems and are

explicitly looking for guidance.

2) We enumerate the security engineering aspects of build-

ing ML systems using Security development Lifecycle

(SDL) frame work, the de facto software building pro-

cess in industry.

This paper is a compendium of pain points and gaps in

securing machine learning systems as encountered by typical

software organizations. We hope to appeal to the research

community to help solve the problem faced by two personas

- software developers/ML engineers and security incident

responders - when securing machine learning systems. The

goal of this paper is to engage ML researchers to revise and

amend Security Development Lifecycle for industrial-grade

software in the adversarial ML era.

The paper is organized thus: the first part outlines the survey

methodology and findings. The second part comprises gaps in

securing machine learning in three phases: when ML systems

are designed and developed; when the said system is prepped

for deployment and it is under attack.

II. INDUSTRY SURVEY ABOUT ADVERSARIAL ML

We interviewed 28 organizations spanning Fortune 500,

small-and-medium businesses, non-profits, and government

organizations to understand how they secure their machine

learning systems from adversarial attacks (See Table I and

Table II).

22 out of the 28, were in “security sensitive” fields such

as finance, consulting, cybersecurity, healthcare, government.

The other 6 organizations represented social media analytics,

publishing, agriculture, urban planning, food processing and

translation services (See Table II for distribution).

69

2020 Symposium on Security and Privacy Workshops (SPW)

© 2020, Ram Shankar Siva Kumar. Under license to IEEE.
DOI 10.1109/SPW50608.2020.00028



TABLE I
ORGANIZATION SIZE

Organization size Count
Large Organizations (> 1000 employees) 18

Small-and-Medium Size Businesses 10

TABLE II
ORGANIZATION TYPES

Organization Count
Cybersecurity 10

Healthcare 5
Government 4
Consulting 2

Banking 2
Social Media Analytics 1

Publishing 1
Agriculture 1

Urban Planning 1
Food Processing 1

Translation 1

At each organization, we interviewed two personas: the

developer in charge of building machine models in the or-

ganization, and the security personnel who was on point for

securing the organization’s infrastructure. Depending on the

size of the organization, these two personas were either in

different teams, the same team or even the same person. All

organizations we spoke to were familiar with the Security

Development Lifecycle as pertaining to traditional software

engineering, though the degree to which they executed varied

– larger corporations that had a more formal, documented

process than small and medium sized corporations. We also

limited to organizations had relatively mature machine learn-

ing investments, with a few of them centering their business

around “AI”.

These organizations executed on their ML strategy in a

variety of ways: most of them used ML toolkits such a

Keras, TensorFlow or PyTorch to build ML models; 10 or-

ganizations relied on Machine Learning as a Service such as

Microsoft’s Cognitive API [13], Amazon AI Services [14],

Google CloudAI [15]; Only 2 organizations built ML systems

from scratch and not relying on either existing toolkits/ML

platforms (See Table III)

TABLE III
ML STRATEGY

How do you build ML Systems Count
Using ML Frameworks 16
Using ML as a Service 10

Building ML Systems from scratch 2

Limitations of Study: Our sample size of 28 may not

represent the entire population industries employing machine

learning. For instance, the study does not include startups and

has a pre-ponderance of security-sensitive organizations. We

also do not account for geographic distribution – most of

the organizations operate and head quartered in the United

States or Europe. We limited ourselves to failures that are

caused by a malicious attacker in the system and did not

investigate broader safety failures such as common corruption

[16], reward hacking [17], distributional shifts [18] or naturally

occurring adversarial examples [19].

A. Findings:

1) Though, all 28 organizations indicated that security of

AI system is important to their business productivity, the

emphasis is still on traditional security. As one security

analyst put it, “Our top threat vector is spearphishing
and malware on the box. This [adversarial ML] looks
futuristic”. While there is great interest in adversarial

machine learning, only 6 organizations (all of whom are

large organizations or government) are ready to assign

head-count to solve the problem

2) Lack of adversarial ML know-how: Organizations seem

lack the tactical knowledge to secure machine learning

systems in production. As one of them put it, “Tradi-
tional software attacks are a known unknown. Attacks on
our ML models are unknown unknown”. 22 out of the 25

(3 government organizations abstained from answering

this question satisfactorily) organizations said that they

don’t have the right tools in place to secure their ML

systems and are explicitly looking for guidance. Also,

security engineers mostly do not have the ability to

detect and respond to attacks on ML systems (See Table

IV)

TABLE IV
STATE OF ADVERSARIAL ML

Do you secure your ML systems today Count
Yes 3
No 22

3) We walked through the list of attacks as outlined in [20]

and asked them to pick the top attack that would affect

their businesses(See Table V). Note: respondents were

allowed to pick only one threat as opposed to stack rank

them all. The result were as follows:

TABLE V
TOP ATTACK

Which attack would affect your org the most? Distribution
Poisoning (e.g: [21]) 10

Model Stealing (e.g: [22]) 6
Model Inversion (e.g: [23]) 4
Backdoored ML (e.g: [24]) 4

Membership Inference (e.g: [25]) 3
Adversarial Examples (e.g: [26]) 2

Reprogramming ML System (e.g: [27]) 0
Adversarial Example in Physical Domain (e.g: [5]) 0

Malicious ML provider recovering training data (e.g: [28]) 0
Attacking the ML supply chain (e.g: [24]) 0
Exploit Software Dependencies (e.g: [29]) 0

70



• Data poisoning has caught the attention of enter-

prises, perhaps because of the cultural significance

of Tay. A medium sized financial tech put it thus,

“We use ML systems to suggest tips and financial
products for our users. The integrity of our ML
system matters a lot. Worried about inappropriate
recommendation like attack on Tay”

• Organizations care most about attacks that can lead

to potential breach of privacy. As one of the banks

put it, “Want to protect client info, employee info
used in ML models but we don’t know have a plan
in place”

• Model Stealing that can lead to loss of Intellectual

property is another concern. A large retail organiza-

tion said, “We run a proprietary algorithm to solve
our problem and it would be worrisome if someone
can reverse engineer it”

• Adversarial Examples in the physical domain, res-

onated with the respondents, but did not rank high

on the list. One reason may be that the organizations

we spoke to did not have physical component like

cars or drones.

4) For security analysts, there is a mismatch between ex-

pectations and reality when it comes to adversarial ML.

Many security analysts expect that algorithms available

in platforms such as Keras, TensorFlow or PyTorch

are inherently secure against adversarial manipulations

and have already been battle tested against adversarial

ML attacks. This is perhaps, because security analysts

who have mostly been exposed to traditional software,

assume that libraries put out by large organizations

such as Facebook or Google would have been already

been security stress tested. Similarly, organizations seem

to push the security responsibility upstream to service

providers as one of the respondents said, “We use
Machine Learning as a Service and expect them to
provide these robust algorithms and platforms”

5) Finally, security analysts and developers do not know

what to expect when systems get attacked. As one of

the ML engineers put it, “I don’t expect any system to
be immune from spoofing, but I need to know confidence
levels and expected performance; as well as potential
failure modes. If system is spoofed, what is the worst
possible outcome?”

In the following sections of the paper, summarized in Fig.1

, we elaborate the gaps in current SDL process when building

ML systems, as they are prepped for deployment and when the

ML system is under attack. For each gap, we outline existing

methods in traditional software development and sketch future

research agenda.

III. ABOUT SDL

In July 2001, Microsoft was affected by CodeRed, a com-

puter worm that affected Internet Information Server (IIS) 4.0

and 5.0 [30]. This happened because of a single line error in

code running by default in IIS4 and IIS5 systems, enabling a

buffer overflow attack. In Jan 2002, Microsoft halted develop-

ing any new software for 2 months to fix all known security

bugs in its system, pairing security experts with developers.

Out of this close interaction, a systematic process of providing

security guidance evolved, helping engineers look for software

defects and implementation flaws. This set of practices has

now come to be called the Secure Development Lifecycle

(SDL). While SDL does not eliminate all software bugs, they

do help to catch software vulnerabilities that could later be

exploited, before it reaches the hands of a customer. For

instance, after SDL was introduced in Microsoft, the number

of reported vulnerabilities between Windows XP and Windows

Vista, reduced by 45%, and number of vulnerabilities between

SQL Server 2000 and SQL Server 2005, reduced by 91% [31].

Currently SDL, in some form, is a de-facto process in industry-

grade software development adopted by 122 organizations

[32], including Google [33], IBM [34], Facebook [35] and

Netflix [36].

The primary inquiry is amending and revising the SDL

process used in securing traditional software, to secure ML

systems against adversarial attacks.

IV. GAPS DURING DEVELOPMENT OF ML SOLUTION

A. Curated repository of attacks

In traditional software security, attacks are decomposed

into shareable “tactics and procedures” and are collectively

organized in the MITRE ATT&CK framework [37]. This

provides a search-able attack repository comprising, attacks

by researchers as well as nation state attackers. For every

attack, there is a description of the technique, which advanced

persistent threat is known to use it, detection ideas as well as

reference to publications with further context.

In adversarial ML, the scholarship is booming [38] but the

awareness is low among developers and security analysts –

only 5 out of 28 organizations stated that they had working

knowledge of adversarial ML. We propose that a similar cu-

rated repository of attacks be created, preferably by extending

the widely used existing MITRE Framework. For instance,

when adversarial ML researchers publish a new type of attack,

we ask them to register their attacks in the MITRE framework,

so that security analysts have a unified view of traditional and

adversarial ML attacks.

B. Adversarial ML specific secure coding practices:

In traditional software setting, secure coding practice en-

ables engineers to reduce exploitable vulnerabilities in their

programs and enables auditing of source code by other en-

gineers. For instance Python [39], Java, C and C++ [40]

have well defined secure coding practice against traditional

software bugs like memory corruption. In machine learning

setting, adversarial ML specific security guidance is sparse.

Most toolkits provide best practices (TensorFlow [41] , Pytorch

[42], Keras [43]) but TensorFlow is the only framework that

provides consolidated guidance around traditional software

attacks [44] and links to tools for testing against adversarial

attacks [45].

71



Fig. 1. Security Engineering aspects of Machine Learning

We think future work in adversarial ML should focus

on providing best practices to eliminate undefined program

behaviors and exploitable vulnerabilities. We acknowledge it

is difficult to provide concrete guidance because the field is

protean [46]. Perhaps one direction, would be to enumer-

ate guidance based on “security consequence”. Viewing the

world through SDL allows for imperfect solutions to exist.

For instance, in traditional software security, the outdated

cryptgenradnom [47] function should not be used to generate

random seeds for secret sharing protocols which are of higher

security consequence), but can be used to generate process

IDs in an operating system (which is of lower security

consequence). Instead of thinking of secure coding practice as

underwriting a strong security guarantee, a good start would be

to provide examples of security-compliant and non-compliant

code examples.

C. Static Analysis and Dynamic Analysis of ML Systems

In traditional software security, static analysis tools help

detect potential bugs in the code without the need for execution

and to detect violations in coding practices. The source code

is generally converted into an abstract syntax tree, which is

then used to create a control flow graph. Coding practices

and checks, which are turned into logic, are searched over the

control flow graph, and are raised as errors when inconsitent

with logic. In traditional software for instance, in Python tools

like Pyt [48] detect traditional software security vulnerabilities.

Dynamic analysis, on the other hand, involves searching for

vulnerabilities on executing a certain code path.

On the ML front, tools like cleverhans [45], secml [49],

and the adversarial robustness toolkit [50] providing a certain

degree of white-box style and blackbox style dynamic testing.

A future area of research is how to extend the analysis to

model stealing, model inversion and membership inference

style attacks. Out of the box static analysis for adversarial

ML is less explored. One promising angle is work like

Code2graph [51] that generates call graphs in ML platform

and in conjunction with symbolic execution may provide the

first step towards a static analysis tool. We hope that the static

analysis tools ultimately integrate with IDE (integrated de-

velopment environment) to provide analytical insight into the

syntax, semantics, so as to prevent the introduction of security

vulnerabilities before the application code is committed to the

code repository.

D. Auditing and Logging in ML Systems

To use a traditional software example, important security

events in the operating system like process creation are logged

in the host, which is then forwarded to Security Information

and Event Management (SIEM) systems. This later enables,

security responders to run anomaly detection [52], [53] to

detect if an anomalous process (which is an indication of

malware) was executed on the machine.

Auditing in ML systems was initially pointed by Papernot

[54] with solution sketches to instrument ML environments

to capture telemetry. As done in traditional software security,

we recommend that developers of ML systems, identify “high

impact activities” in their system. We recommend executing

the list of attacks that are considered harmful to the organiza-

tion and ensuring that the events manifesting in the telemetry

can be traced back to the attack. Finally, these events must

be exportable to traditional Security Information and Event

72



Management systems, so that analysts can keep an audit trail

for future investigations.

E. Detection and Monitoring of ML systems

Currently, ML environments are illegible to security analysts

as they have no operational insights. There has been insightful

working pointing to the brittleness of current adversarial de-

tection mechanisms [46] and how to make them better [19]. In

addition, we propose that detection methods are written so that

they are easily shared among security analysts. For instance,

in traditional software security, detection logic is written in

a common format, the most popular of which is Sigma [55].

Where MITRE ATT&CK provides a great repository of insight

in techniques used by adversaries, Sigma can turn one analyst’s

insights into defensive action for many, by providing a way

to self-documented concrete logic for detecting an attacker’s

techniques.

V. GAPS WHEN PREPARING FOR DEPLOYMENT OF ML

SYSTEM

A. Automating Tools in Deployment Pipeline

In a typical traditional software setting, after a developer

as the developer completes small chunks of the assigned

task, the following sequence of steps generally follow: first,

the code is committed to source control and Continuous

Integration triggers application build and unit tests; once these

are passed, Continuous Deployment triggers an automated

deployment into testing and then production wherein it reaches

the customer. At each step of the “build”, security tools are

integrated.

We hope that dynamic analysis tools built for adversarial

ML are integrated into the continuous integration / continuous

delivery pipeline. Automating the adversarial ML testing,

will help fix issues and without overloading engineers with

too many tools or alien processes outside of their everyday

engineering experience.

B. Red Teaming ML Systems

Informally, the risk of an attack to an organization depends

on two factors: the impact it has on the business and the

likelihood of the attack occurring. Threat modeling of ML

Systems [56], performed by the ML developers, address the

impact factor. Red teaming, the deliberate process of exploiting

the system through any means possible conducted by an inde-

pendent security team, helps to assess the likelihood factor. For

critical security applications, red teaming is industry standard

and a requirement for providing software to US governments

[57]. With Facebook being the first industry to start an AI Red

Team [58] and is unexplored area in the adversarial ML field

for others.

C. Transparency Centers

In traditional security, large organizations such as Kaspersky

[59], Huawei [60] have provided “transparency centers” where

participants visit a secure facility to conduct deep levels

of source code inspection and analysis. Participants would

have access to source code and an environment for in-depth

inspection with diagnostic tools to verify the security aspects

of different products such as SSL and TCP/IP implementation

or pseudorandom number generators.

In adversarial ML context, future transparency centers may

need to attest over 3 modalities: that the ML platform is

implemented in a secure fashion; that the MLaaS is imple-

mented meeting basic security objectives and finally, that the

ML model embedded in an edge device (such as models on

mobile phones, for instance) meets basic security objectives.

An interesting direction for future research is to providing

tools/test harnesses to advance security assurance of products

building on top of formal verification such as [61], [62] to

extend to large scale ML models used in industry.

VI. GAPS WHEN AN ML SYSTEM IS UNDER ATTACK

A. Tracking and Scoring ML Vulnerabilities

In traditional software security, when a researcher finds a

vulnerability in a system, it is first assigned a unique identi-

fication number and registered in a database called Common

Vulnerabilities and Exposure [63]. Accompanying these vul-

nerabilities are severity ratings calculated by using Common

Vulnerability Scoring System [64]. For instance, in the recent

zero day found against Internet Explorer that allowed for

remote code execution [65] the vulnerability was referred to

as ”CVE-2020-0674” and had assigned a base CVSS score 7.5

out of 10 [66], roughly indicating the seriousness of the bug.

This enables the entire industry to refer to the problem using

the same tongue.

In an ML context, we ask the adversarial ML research com-

munity to register vulnerabilities (especially affecting large

groups of consumers) in a trackable system like CVE to ensure

that industry manufacturers are alerted. It is not clear how

ML vulnerabilities should be scored accounting for risk and

impact. Finally, When a security analyst sees news about an

attack, the bottom line is mostly “Is my organization affected

by the attack?” and today, organizations lack the ability to

scan an ML environment for known adversarial ML specific

vulnerabilities.

B. Incident Response

When a security engineer receives a notification that an ML

system is under attack, and triages that the attack is relevant

to the business, there are two important steps – ascertaining

blast radius and preparing for containment. For instance, in

the case of ransomware, a traditional software attack, the blast

radius would be to determine other machines connected to the

infected machine, and containment would be to remove the

machines from the network for forensic analysis.

Both steps are difficult, because ML systems are highly

integrated in a production setting where a failure of one can

lead to unintended consequences [67]. One interesting line of

research is to identify whether, if it is possible to “container-

ize” ML systems so as to quarantine uncompromised ML

systems from the impact of a compromised ML system, just

as anti virus systems would quarantine an infected file.

73



C. Forensics

In traditional software security, once the machine is con-

tained, it is prepared for forensics to ascertain root cause.

There are a lot of open questions in this area so as to

meaningfully interrogate ML systems under attack to ascertain

the root cause of failure:

1) What are the artifacts that should be analyzed for every

ML attack? Model file? The queries that were scored?

Training data? Architecture? Telemetry? Hardware? All

the software applications running on the attacked sys-

tem? How can we leverage work data provenance and

model provenance for forensics?

2) How should these artifacts be collected? For instance, for

ML models developed on the end point or Internet of

Things vs. organizations using ML as a Service, the arti-

facts available for analysis and acquisition methodology

will be different. We posit that ML forensics method-

ology is dependent on ML frameworks (like PyTorch

vs. TensorFlow), ML paradigms (e.g: reinforcement

learning vs. supervised learning) and ML environment

(running on host vs cloud vs edge).

3) An orthogonal step that may be carried out is cyberthreat

attribution, wherein the security analyst is able to deter-

mine the actor responsible for the attack. In traditional

software, this is done by analyzing the forensic evidence

such as infrastructure used to mount the attack, threat

intelligence and ascertaining the attacker’s tools, tactics

and procedures using established rubrics called analytic

trade craft [68]. It is unclear how this would be amended

in the adversarial ML age.

D. Remediation

In traditional software security. Tuesday is often synony-

mous with “Patch Tuesday”. This is when companies like

Microsoft, SAS, and Adobe release patches for vulnerabili-

ties in their software, which are then installed based on an

organization’s patching policy.

In an ML context, when Tay was compromised because of

poisoning attack, it was suspended by Microsoft. This may not

be possible for all ML systems, especially those that have been

deployed on the edge. It is not clear what the guidelines are for

patching a system, that is vulnerable to model . On the same

lines, it is not clear how one would validate if the “patched”

ML model will perform as well as the previous one, but not

be subject to the same vulnerabilities based on Papernot et.

al’s [69] transferability result.

VII. CONCLUSION

In a keynote in 2019, Nicholas Carlini [70] likened the

adversarial ML field to “crypto pre-Shannon” based on the

ease with which defenses are broken. We extend Carlini’s

metaphor beyond just attacks and defenses: through interviews

spanning 28 organizations, we found that most ML engineers

and incident responders are unequipped to secure industry-

grade ML systems against adversarial attacks. We also enumer-

ate how researchers can contribute to Security Development

Lifecyle (SDL), the de facto process for building reliable

software, in the era of adversarial ML. We conclude that if

ML is Software 2.0 [71], it also needs to follow fundamental

security rigor from traditional “software 1.0” development

process.

VIII. ACKNOWLEDGEMENT

We would like to thank the following Microsoft engineers

for their support: Hyrum Anderson, Steve Dispensa, Avi Ben-

Menahem, Seetharaman Harikrishnan, Anil Thomas, Efim

Hudis, Jarek Stanley, Jeffrey Snover, Cristin Goodwin, Kevin

Scott, Kymberlee Price, Mark Russinovich, Faraz Fadavi,

Walner Dort, Steve Mott, Krishna Sagar B V and members of

the AETHER Security Engineering group. We also would like

to thank Nicolas Papernot (Google Brain) and Justin Gilmer

(Google Brain), Miles Brundage (OpenAI), Ivan Evtimov

(University of Washington), Frank Nagle (Harvard University);

Kendra Albert (Harvard Law), Jonathon W. Penney (Citizen

Lab) and Bruce Schneier (Harvard Kennedy School), Steve

Lipner (SAFECode.org), Gary McGraw (BIML), Fernando

Montenegro and members of AI Safety and Security Working

Group at Berkman Klein Center for Internet and Society for

the fruitful discussions. We would also like to thank ML

engineers and security analysts from 28 organizations for their

time and insights.

REFERENCES

[1] “Responsible AI Practices.” [Online]. Avail-
able: https://ai.google/responsibilities/responsible-ai-
practices/?category=security

[2] “Securing the Future of AI and ML at Microsoft.” [Online].
Available: https://docs.microsoft.com/en-us/security/securing-artificial-
intelligence-machine-learning

[3] “Adversarial Machine Learning,” Jul 2016. [Online]. Available:
https://ibm.co/36fhajg

[4] S. A. Gartner Inc, “Anticipate Data Manipulation Security Risks to AI
Pipelines.” [Online]. Available: https://www.gartner.com/doc/3899783

[5] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust
adversarial examples,” arXiv preprint arXiv:1707.07397, 2017.

[6] J. Li, S. Qu, X. Li, J. Szurley, J. Z. Kolter, and F. Metze, “Adversarial
Music: Real World Audio Adversary Against Wake-word Detection
System,” in Advances in Neural Information Processing Systems, 2019,
pp. 11 908–11 918.

[7] P. L. Microsoft, “Learning from Tay’s introduction,” Mar 2016. [Online].
Available: https://blogs.microsoft.com/blog/2016/03/25/learning-tays-
introduction/

[8] “Experimental Security Research of Tesla Autopilot,” Tech. Rep.
[Online]. Available: https://bit.ly/37oGdla

[9] “ISO/IEC JTC 1/SC 42 – Artificial Intelligence,” Jan 2019. [Online].
Available: https://www.iso.org/committee/6794475.html

[10] R. Von Solms, “Information security management: why standards are
important,” Information Management & Computer Security, vol. 7, no. 1,
pp. 50–58, 1999.

[11] “Ethics guidelines for trustworthy ai,” Nov 2019. [Online].
Available: https://ec.europa.eu/digital-single-market/en/news/ethics-
guidelines-trustworthy-ai

[12] “2018 AI predictions 8 insights to shape business strategy,”
Tech. Rep. [Online]. Available: https://www.pwc.com/us/en/advisory-
services/assets/ai-predictions-2018-report.pdf

[13] [Online]. Available: https://azure.microsoft.com/en-
us/services/cognitive-services/

[14] [Online]. Available: https://aws.amazon.com/machine-learning/ai-
services/

[15] [Online]. Available: https://cloud.google.com/products/ai/

74



[16] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” arXiv preprint
arXiv:1903.12261, 2019.

[17] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete problems in ai safety,” arXiv preprint
arXiv:1606.06565, 2016.

[18] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq,
L. Orseau, and S. Legg, “Ai safety gridworlds,” arXiv preprint
arXiv:1711.09883, 2017.

[19] J. Gilmer, R. P. Adams, I. Goodfellow, D. Andersen, and G. E. Dahl,
“Motivating the rules of the game for adversarial example research,”
arXiv preprint arXiv:1807.06732, 2018.

[20] R. S. S. Kumar, D. O. Brien, K. Albert, S. Viljöen, and
J. Snover, “Failure modes in machine learning systems,” arXiv preprint
arXiv:1911.11034, 2019.

[21] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning,” in 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018, pp. 19–35.

[22] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016, pp. 601–618.

[23] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 1322–1333.

[24] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[25] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 3–18.

[26] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[27] G. F. Elsayed, I. Goodfellow, and J. Sohl-Dickstein, “Adversarial repro-
gramming of neural networks,” arXiv preprint arXiv:1806.11146, 2018.

[28] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Adversarial gen-
erative nets: Neural network attacks on state-of-the-art face recognition,”
arXiv preprint arXiv:1801.00349, pp. 1556–6013, 2017.

[29] Q. Xiao, K. Li, D. Zhang, and W. Xu, “Security risks in deep learning
implementations,” in 2018 IEEE Security and Privacy Workshops (SPW).
IEEE, 2018, pp. 123–128.

[30] C. C. Zou, W. Gong, and D. Towsley, “Code red worm propagation
modeling and analysis,” in Proceedings of the 9th ACM conference on
Computer and communications security. ACM, 2002, pp. 138–147.

[31] [Online]. Available: https://bit.ly/2G4NaMv
[32] [Online]. Available: https://www.bsimm.com/
[33] [Online]. Available: https://cloud.google.com/security/overview/whitepaper

[34] [Online]. Available: https://www.ibm.com/security/secure-engineering/
[35] [Online]. Available: https://about.fb.com/news/2019/01/designing-

security-for-billions/
[36] [Online]. Available: https://medium.com/@NetflixTechBlog/scaling-

appsec-at-netflix-6a13d7ab6043
[37] [Online]. Available: https://about.fb.com/news/2019/01/designing-

security-for-billions/
[38] N. Carlini. [Online]. Available:

https://nicholas.carlini.com/writing/2019/all-adversarial-example-
papers.html

[39] [Online]. Available: http://www.pythonsecurity.org/
[40] [Online]. Available: https://wiki.sei.cmu.edu/confluence/display/seccode
[41] [Online]. Available: https://bit.ly/2RDl3cm
[42] [Online]. Available: https://pytorch.org/docs/stable/notes/multiprocessing.html

[43] [Online]. Available: https://keras.io/why-use-keras/
[44] [Online]. Available: https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md

[45] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Ku-
rakin, C. Xie, Y. Sharma, T. Brown, A. Roy, A. Matyasko, V. Behzadan,
K. Hambardzumyan, Z. Zhang, Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg,
J. Uesato, W. Gierke, Y. Dong, D. Berthelot, P. Hendricks, J. Rauber,
and R. Long, “Technical report on the cleverhans v2.1.0 adversarial
examples library,” arXiv preprint arXiv:1610.00768, 2018.

[46] N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security. ACM, 2017, pp.
3–14.

[47] [Online]. Available: hhttps://docs.microsoft.com/en-
us/windows/win32/api/wincrypt/nf-wincrypt-cryptgenrandom

[48] [Online]. Available: https://github.com/python-security/pyt
[49] M. Melis, A. Demontis, M. Pintor, A. Sotgiu, and B. Biggio, “secml: A

Python Library for Secure and Explainable Machine Learning,” arXiv
preprint arXiv:1912.10013, 2019.

[50] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba,
V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig, I. Molloy, and
B. Edwards, “Adversarial Robustness Toolbox v1.1.0,” CoRR, vol.
1807.01069, 2018. [Online]. Available: https://arxiv.org/pdf/1807.01069

[51] G. Gharibi, R. Tripathi, and Y. Lee, “Code2graph automatic genera-
tion of static call graphs for python source code,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp. 880–883.

[52] J. Twycross, U. Aickelin, and A. Whitbrook, “Detecting anomalous
process behaviour using second generation artificial immune systems,”
arXiv preprint arXiv:1006.3654, 2010.

[53] W. M. Van der Aalst and A. K. A. de Medeiros, “Process mining and
security: Detecting anomalous process executions and checking process
conformance,” Electronic Notes in Theoretical Computer Science, vol.
121, pp. 3–21, 2005.

[54] N. Papernot, “A marauder’s map of security and privacy in machine
learning,” arXiv preprint arXiv:1811.01134, 2018.

[55] F. Roth, “Sigma.” [Online]. Available:
https://github.com/Neo23x0/sigma

[56] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the
science of security and privacy in machine learning,” arXiv preprint
arXiv:1611.03814, 2016.

[57] “Nvd.” [Online]. Available: https://nvd.nist.gov/800-
53/Rev4/control/CA-8

[58] B. Dolhansky, R. Howes, B. Pflaum, N. Baram, and C. C. Ferrer, “The
deepfake detection challenge (dfdc) preview dataset,” arXiv preprint
arXiv:1910.08854, 2019.

[59] [Online]. Available: https://bit.ly/2v89frf
[60] [Online]. Available: https://www.huawei.com/en/about-huawei/trust-

center/transparency/huawei-cyber-security-transparency-centre-brochure
[61] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,

“Reluplex: An efficient Smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification. Springer,
2017, pp. 97–117.

[62] T.-W. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh, D. Boning, I. S.
Dhillon, and L. Daniel, “Towards fast computation of certified robustness
for relu networks,” arXiv preprint arXiv:1804.09699, 2018.

[63] “Common Vulnerabilities and Exposures (CVE).” [Online]. Available:
https://cve.mitre.org/

[64] “Common Vulnerability Scoring System (CVSS).” [Online]. Available:
https://www.first.org/cvss/specification-document

[65] [Online]. Available: https://portal.msrc.microsoft.com/en-us/security-
guidance/advisory/ADV200001

[66] “CVE-2020-0674.” [Online]. Available:
https://kb.cert.org/vuls/id/338824/

[67] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, and M. Young, “Machine Learning: The High interest
Credit Card of Technical Debt,” in SE4ML: Software Engineering for
Machine Learning (NIPS 2014 Workshop), 2014.

[68] “A Guide to Cyber Attribution,” 2018. [Online]. Available:
https://bit.ly/2G50UXB

[69] N. Papernot, P. McDaniel, and I. Goodfellow, “Transferability in ma-
chine learning: from phenomena to black-box attacks using adversarial
samples,” arXiv preprint arXiv:1605.07277, 2016.

[70] [Online]. Available: https://youtu.be/-p2il-V-0fk?t=1574
[71] “Software 2.0,” 2017. [Online]. Available:

https://medium.com/@karpathy/software-2-0-a64152b37c35

75


