
Toward a Trustable, Self-Hosting Computer System

Gabriel L. Somlo
CERT – SEI

Carnegie Mellon University

Pittsburgh, PA 15213

Email: glsomlo@cert.org

Abstract—Due to the extremely rapid growth of the
computing and IT technology market, commercial hard-
ware made for the civilian, consumer sector is increasingly
(and inevitably) deployed in security-sensitive environ-
ments. With the growing threat of hardware Trojans and
backdoors, an adversary could perpetrate a full system
compromise, or privilege escalation attack, even if the
software is presumed to be perfectly secure. We propose a
method of field stripping a computer system by empirically
proving an equivalence between the trustability of the
fielded system on one hand, and its comprehensive set
of sources (including those of all toolchains used in its
construction) on the other. In the long run, we hope
to facilitate comprehensive verification and validation of
fielded computer systems from fully self-contained hard-
ware+software sources, as a way of mitigating against
the lack of control over (and visibility into) the hardware
supply chain.

I. Introduction

Hardware vulnerabilities have presented an increas-

ingly dire security threat across the entire user popu-

lation for the last several decades [1]. The gravity of

the problem is compounded by the constantly growing

length of microchip design, development, and fabrication

supply chains, including outsourcing, the multinational

nature of major chipmakers, and the global and highly

mobile nature of the workforce they employ. Due to the

extremely rapid growth of the microchip market over the

last several decades, customers with enhanced security

sensitivity (e.g., governments, militaries, and security

agencies) are increasingly forced to use chips targeted

at the civilian consumer market, and individually no

longer have the market size that would put them in

a position to demand adequate supply chain security

assurances from their vendors [2]. As evidenced by

both academic research and practical industry experience

[3], [4], [5], [6], [7], [8], carefully planted hardware

Trojans or backdoors may allow malicious attackers to

completely take over a victim computer system, even if

the software could, in theory, be presumed to be perfectly

secure and free of bugs.

We propose to build trustable computer systems on

top of Field Programmable Gate Arrays (FPGA), which,

due to their generic nature, make it qualitatively harder

to conceal intentional backdoors implemented in silicon.

From there, we leverage the transparency and auditability

of Free and Open Source (FOSS) hardware, software,

and compiler toolchains to configure FPGAs to act

as Linux-capable Systems-on-Chip (SoC) that are as

trustworthy as the comprehensive sources used in both

their specification and construction.

The remainder of this paper is laid out as follows:

Section II presents a brief overview of the hardware

development lifecycle, pointing out similarities and con-

trasts to software development. Section III examines

hardware backdoor classification criteria relevant to the

solution proposed in Section IV. A proof of concept

implementation of our proposed solution, currently still

undergoing development, is outlined in Section V. Con-

siderations regarding the performance of our prototype

are presented in Section VI. Finally, conclusions and

plans for future work are discussed in Section VII.

II. Hardware vs. Software Development

Modern hardware is developed in a way that shares

many similarities with software [9]. After an architec-

tural design step, the desired behavior is expressed in

a source hardware description language (HDL). HDLs

(e.g., Verilog and VHDL) tend to be languages with

strong functional and declarative characteristics. Source

“code” is then compiled, resulting in either photolito-

graphic masks for dedicated application-specific inte-

grated circuits (ASICs), or configuration data (bitstream)

for field-programmable gate arrays (FPGAs). Debugging

and documentation are also stages shared with software

development, as well as iterating through all stages mul-

tiple times until the desired behavior is accomplished.

136

2020 Symposium on Security and Privacy Workshops (SPW)

© 2020, Gabriel L. Somlo. Under license to IEEE.
DOI 10.1109/SPW50608.2020.00039



a) b) c)

d1) d2)

Fig. 1. Hardware Compilation Pipeline.

The main stages of a hardware compilation pipeline

are shown in Fig. 1. First, the HDL source code (Fig. 1a)

is passed through an elaboration stage that builds a graph

of standard blocks (Fig. 1b) representing the specified

design. Next, logic synthesis and optimization converts

high-level blocks into an optimized graph consisting of

basic logic gates (Fig. 1c).

From there, technology mapping, placement, and rout-
ing generate either a set of optimized masks, to be

etched into dedicated silicon ASICs using an expensive

and labor-intensive photolitography process (Fig. 1d1),

or bitstream to instruct an FPGA’s configurable logic

blocks (CLBs) and programmable interconnect elements

on how to wire themselves together in order to “act out”

the required design (Fig. 1d2). When multiple authors’

designs are linked together, they are referred to as

either Hard (ASIC masks) or Soft (FPGA bitstream)

intellectual property (IP) cores.

While both traditional CPUs and FPGAs are “pro-

grammable”, the crucial difference is that the former exe-

cute a sequential stream of instruction opcodes read from

RAM, while the latter receive their entire configuration at

once. While a CPU’s opcode sequence tells it what to do,

the bitstream tells an FPGA what to be. FPGA bitstream

resides in a special memory that is written once during

configuration, and remains unmodified for as long as the

configured device is in operation.

FPGAs are frequently used to debug, test, and val-

idate a hardware design before making the very large

financial and time commitments required to fabricate

dedicated ASICs at high volume. FPGAs also offer

good value when the projected production volume is not

expected to cover the sunk costs of ASIC fabrication.

Generally, hardware designs deployed on FPGAs are

larger, slower, and more power-hungry than equivalent

optimized ASICs. However, in Section IV we argue that

FPGAs also offer valuable additional security assurance

opportunities.

III. Overview of Hardware Vulnerabilities

News outlets and IT trade publications often refer

to malicious firmware [10], [11] as “hardware” attacks,

primarily due to where they are stored (typically, flash on

a computer’s motherboard), and to their persistent nature

(capability to survive a hard disk wipe and OS reinstall).

To be precise, from this paper’s perspective, those would

be considered software attacks, as the malicious behavior

is still codified in the form of CPU instructions. The

hardware vulnerabilities discussed below manifest in the

behavior of the CPU (and associated chip set) itself, and

occur at or below the CPU’s instruction set architecture

(ISA) in terms of the abstraction layers affected.

Several classification criteria for hardware vulnerabili-

ties have emerged from industry and academic hardware

security research [12], [13], [14], [15], [16]. Without loss

of generality, we find the following simplified breakdown

relevant:

• Insertion Method: Development stage (see Fig. 1)

where the vulnerability is introduced:

– Design, Implementation: Vulnerabilities present

in source code, introduced accidentally or ma-

liciously; e.g., Spectre [7] and Meltdown [8].

– Toolchain: A compromised HDL compiler

toolchain may generate maliciously misbehav-

ing ASIC masks or FPGA bitstream from per-

fectly clean and innocent sources [5].

– Fabrication: Malicious ASIC fabrication plants

may reverse engineer a customer’s masks, and

carefully alter them to insert backdoors or

Trojans into the microchips being produced.

Examples include subtly altering a random

number generator to weaken encryption [3], or

allowing a CPU’s privilege mode flag to be

flipped during the execution of a prearranged

sequence of unprivileged instructions [6].

• Severity: Level of damage incurred by the system’s

owner during an attack:

– Denial of Service (DoS): An attacker can de-

stroy the system, or otherwise degrade its per-

137



formance, making it unavailable to its owner;

e.g., a “self-destruct” switch or timer.

– Privilege Escalation: Any method facilitating

an attacker’s unauthorized access to a system or

its data; includes everything from side channels

for data exfiltration to a remote take-over.

First, we observe that ASIC fabrication attacks (ca-

pable of inserting both DoS and privilege escalation

backdoors) can not be prevented without ownership and

control of the chip foundry, an increasingly difficult

and unlikely proposition. Proposed mitigation attempts

include: visually inspecting a microscopic die-shot of

the silicon [17], obfuscating the chip’s interaction with

the external world [18], implementing “voting” across

multiple redundant chips exposing the same interface

[19], and split manufacturing of different layers on the

die [20]. However, most of these techniques have met

with limited success, due to factors of cost, reliability,

and the ease of hiding the small number of components

required by modern exploits (as low as 20) among the

billions of components contained in modern microchips.

A second observation is that privilege escalation vul-

nerabilities are qualitatively more severe than DoS at-

tacks. Having one’s computer die during a DoS attack

may range from inconvenient to dangerous; however, a

privilege escalation attack will silently make a system

turn on its owner, betraying them to the adversary while

appearing to operate correctly!

IV. Improving Hardware Assurance for Sensitive

Applications

To work around the lack of control over chip

foundries, we propose that security sensitive hardware

deployments be limited to FPGA-based soft IP cores.

Since doing so limits a foundry’s role to fabricating

FPGAs, it removes the attacker’s ability to derive useful

details about the final design, which would be necessary

to mount a successful privilege escalation hardware

attack [21]. The malicious foundry would have no way

of predicting e.g., where a soft-IP CPU’s privilege mode

flag would be laid out on an FPGA, and would be

relegated to at worst inserting DoS hardware attacks.

Since the FPGA consists of a regular grid of identical

CLBs, even the components of a DoS attack would be

much easier to detect visually using imaging techniques

[17], compared to the much more diverse and irregular

structure of ASICs.

By way of analogy, if the 20-some transistors and one

capacitor used to implement a privilege escalation attack

against an ASIC CPU such as the A2 Trojan [6] can

CV

CV

Build Tool

Fielded
System

System
Sources

(blueprint,
design, etc.)

Builder
Sources

C
Compiler

Fig. 2. Trust Anchor for Fielded Computer Systems.

be compared to a “needle in a haystack”, perpetrating

a similar attack against an FPGA-based soft-IP CPU

would require many needles to be scattered throughout

the entire (FPGA) haystack just in case, and would thus

be much harder to successfully conceal.

Having thus mitigated against malicious foundry at-

tacks, the actual degree to which we can trust a fielded

computing system depends not only on the trustability

of the cumulative source code to all its hardware and

software, but also on the trustability of the toolchains

used to compile and build those sources. A tool’s degree

of trustability depends on its own sources and build

environment – a recursive process illustrated in Fig. 2,

which terminates with the question of whether we can

trust our C compiler (Ken Thompson’s “Trusting Trust”

thought experiment [22]).

Diverse double compilation (DDC) [23] has been

proposed as a method to detect whether a C compiler

may have been subjected to a malicious “Trusting Trust”

compromise. The method uses a second, independent C

compiler that is unlikely to have been compromised by

the same type of attack. The suspect compiler’s sources

are repeatedly built using both its own binary, and the

second, independent compiler’s binary, until a bit-by-

bit comparison of the resulting outputs can be used to

ascertain the absence of malicious compromise, with a

fairly high degree of confidence. From here, we can

bootstrap a trustable system via the following steps:

1) On a host system, using DDC, build clean C

[cross]-compilers for both the host and target en-

vironments

2) [Cross-]compile the HDL toolchain for both host

and target systems

3) Build target system hardware as FPGA bitstream

(soft IP cores)

4) Cross-compile OS (kernel, system libraries and

utilities) for target system

5) Boot target OS on FPGA configured with the

generated bitstream

138



CPU
(Rocket Chip)

Peripheral Bus (MMIO)

UART μSDEth.

Memory
(DRAM)

Controller

LiteX

Fig. 3. Trustable Computer with LiteX and Rocket Chip

Once the target system is booted up, it can operate

as a self-hosting “clean room” environment, capable

of rebuilding and supporting further development of

any of its hardware or software components, without

relying on external tools, services, or infrastructure. The

system is as trustable as the cumulative sources to the

C compiler, HDL toolchain, and target OS components

(kernel, system libraries, and utilities).

V. Proof of Concept: Bootstrapping a Free,

Self-Hosting Linux Computer

A combination of FPGA based soft-IP hardware and

fully buildable sources to everything (i.e., hardware,

software, and toolchains) should be a key addition

to customers’ IT acquisition requirements for security

sensitive applications. First, however, we demonstrate

the feasibility of this approach by building a usable

self-hosting, cleanroom prototype system from scratch,

relying exclusively on Free and Open Source (FOSS)

components:

• For the system’s CPU, we selected the open RISC-V

architecture [24], [25]. Since our ultimate goal is

to build a fully Linux-capable computer, and since

most Linux distributions (e.g., Fedora [26], Debian

[27]) have standardized on the 64-bit “rv64gc”

feature set, we ended up using Rocket Chip [28],

an open source, reference implementation of the

RISC-V specification.

• For the chipset surrounding the CPU, and providing

essential functionality such as a system bus, mem-

ory controller, and peripheral interfaces (serial con-

sole or UART, Ethernet, and μSDcard), we selected

the LiteX SoC builder [29], [30]. We made signifi-

cant upstream changes adding Rocket Chip support,

to the point where a LiteX+Rocket computer (see

Fig. 3) can boot a standard, unmodified upstream

Linux kernel all the way into a fully functional user

shell provided by the BusyBox [31] utility.

• To build the HDL sources of the combined

LiteX+Rocket system into functional FPGA bit-

stream, we use the FOSS Yosys/Nextpnr toolchain

[32], [33], [34], [35].

• At the time of this writing, the only FPGAs large

enough to fit a Litex+Rocket bitstream supported

by the open source toolchain are Lattice’s ECP5

series, although a project is underway [36] (and

has made significant progress) toward adding open

source toolchain support to Xilinx’s Artix7 series

FPGAs.

• The majority of commercially available FPGA de-

velopment boards built around Lattice ECP5 (or

Xilinx Artix7) chips include under 512MB of RAM

(the typical amount of RAM included tends to be

128MB). While sufficient for booting Linux into

a BusyBox shell, experiments conducted on the

x86 64 host development platform suggest that, to

build Litex+Rocket HDL into FPGA bitstream, the

toolchain processes will utilize a resident memory

footprint in the range of 1.3GB. Currently we use

a custom-designed, open source development board

designed around the largest available Lattice ECP5

FPGA [37], which comes equipped with 1GB of

RAM memory. Optimization efforts are currently

underway to reduce the run-time memory require-

ments of Yosys [33], which will eventually allow a

LiteX+Rocket HDL-to-bitstream build to fit into a

sub-1GB resident memory footprint.

Once built [38], the system described above runs

at a clock cycle of up to 65MHz, and is capable of

reliably booting a standard, 64-bit RISC-V Linux kernel.

Terminal I/O is available over the serial UART, and, from

the BusyBox userspace shell, we are able to bring up

the included Ethernet interface, ssh into and out of the

system, and mount a remote NFS filesystem. Complete

and up-to-date build instructions for the system are

available online at http://www.contrib.andrew.cmu.edu/
∼somlo/BTCP.

While the Rocket Chip offers the option of a hardware

floting-point unit (FPU), the largest Lattice ECP5 FPGA

does not have enough capacity to accomodate it. There-

fore, floating-point opcodes unsupported by the available

CPU configuration will trap, and are subsequently han-

dled by a software FPU emulator provided by the BBL

machine-mode hypervisor module [39].

139



CPU MHz CoreMark Linpack nbench Notes

(KFLOPS) P5-90 K6-223

Single Double Int Float Mem Int Float

1. P5 90 - - - 1.00 1.00 - - - nbench calibration, P5-90

2. K6 233 - - - - - 1.00 1.00 1.00 nbench calibration, K6-233

3. Xeon 2400 12489.07 1679090 1618198 109.59 112.60 34.36 23.05 62.46 native 2.4GHz Xeon E5645

4. rv64gc - 1468.86 21520 20964 13.38 1.67 2.80 3.81 0.93 Qemu 2.4GHz Xeon E5645

5. P5 133 282.63 13227 8923 1.77 0.90 0.35 0.53 0.50 Dell Dimension GsMT5133

6. Rocket 65 47.45 48 31 0.31 .003 .077 .079 .001 LiteX+Rocket (no FPU)

7. Rocket 60 103.89 84 79 0.47 .003 0.11 0.12 .001 LiteX+Rocket (FPU)

8. Rocket 50 103.58 5709 4492 0.92 0.67 0.19 0.26 0.37 lowRISC (FPU, max.cache)

TABLE I
Benchmarking the LiteX+Rocket soft-IP computer.

VI. Performance Assessment

As a soft-IP FPGA implementation, we expected our

computer to have relatively low performance. A 65MHz

Linux-capable CPU inevitably invokes memories of mid-

1990s Intel 486 and first-generation Pentium processors.

While it is well understood that benchmarks are at best

an imprecise way of measuring a system’s performance,

we decided to use a set of popular benchmarks to mea-

sure and compare the performance of our Litex+Rocket

computer (row #6 in Table I) against a list of reference

machines:

• Contemporary hardware (2.4GHz Xeon E5645) run-

ning natively (row #3), and also emulating a 64bit

RISC-V machine with QEMU (row #4),

• Pentium machine (Dell Dimension GsMT5133)

from the mid-1990s, running at 133MHz (row #5),

• Rocket+LiteX computer with hardware FPU, com-

piled for a Xilinx Artix-7 FPGA on a Nexys 4 DDR

board, using proprietary vendor tools (row #7),

• Rocket Chip with FPU and maximized L1 cache

(using up all available spare capacity of the Artix-7

FPGA) as part of the lowRISC SoC project [40],

[41] (row #8).

The following list of benchmarks was used:

• CoreMark [42], [43], a test designed to measure

the perfomance of a processor’s core features. The

test produces a single numerical result intended to

facilitate comparison between CPU cores.

• Linpack [44], a test designed to measure a CPU’s

floating point performance. The test uses matrix

multiplication, and produces Floating Point Oper-

ations per Second (FLOPS) measurements for both

Single and Double precision multiplications. When

used on a FPU-less CPU core, these tests are an

indirect measure of integer arithmetic performance,

as the FPU is emulated in software.

• nbench (née BYTEMark) [45], designed to measure

a CPU core’s integer, floating point, and memory

access performance. Results are presented as the

ratio of the tested CPU’s performance to that of a

reference CPU (either a 90MHz original Pentium,

or a 233MHz AMD K6). This is illustrated by the

“calibration” rows (#1, #2) in Table I, where the

hypothetical P5-90 and K6-233 CPUs would obtain

result values of 1.0 in their respective columns.

As expected, our LiteX+Rocket system built with

the FOSS Yosys/nextpnr toolchain for the ECP5-based

TrellisBoard (row #6) obtained the lowest performance.

The primary explanation is the lack of an FPU, and the

default L1 cache size included with the Rocket Chip.

Even the largest ECP5 FPGA is a relatively small chip,

and does not have enough spare capacity for a Rocket

Chip configured to include a “hardware” FPU, or enough

spare Block RAM (BRAM) elements to significantly

increase the default Rocket L1 cache.

We also built Litex+Rocket for a Xilinx Artix-7 FPGA

(on a Nexys 4 DDR development board, using the

vendor’s proprietary HDL-to-bitstream toolchain), which

does have the spare capacity to support the inclusion

of Rocket’s built-in FPU. Without an FPU, the ECP5

and Artix-7 builds exhibited no significant differences in

benchmark results. Adding the FPU (row #7), we observe

that CoreMark and Linpack values are roughly double

those in row #6. Results for nbench are inconclusive,

140



due to the noisiness of the “ratio” method of reporting

in extreme low performance conditions, compounded by

the narrower DRAM memory bus width available on the

Nexys board.

We also tested lowRISC [40], [41] (row #8), an

alternative SoC built around the Rocket Chip, specifically

targeted at the Artix-7 FPGA on a Nexys 4 DDR board.

The project activates the Rocket Chip’s FPU option,

and also utilizes all available BRAM elements on the

FPGA to maximize the L1 cache available to the Rocket

CPU core. On the downside, lowRISC relies exclusively

on the proprietary vendor toolchain, and on some of

the included proprietary soft-IP library blocks (e.g., the

“mig7series” DRAM controller). The benchmark results

are within range of those of an original Pentium chip

running at 133MHz (row #5), which is encouraging:

with the projected availability of Yosys/nextpnr support

for Artix-7 FPGAs, we should soon be able to build

trustable, self-hosting versions of LiteX+Rocket with

hardware FPU and a large L1 cache, with performance

similar to that of lowRISC and the original Intel Pentium.

VII. Conclusions and FutureWork

We have demonstrated the feasibility of building a

soft-IP, FPGA-based computer system that mitigates

against hardware privilege escalation exploits. The sys-

tem is currently capable of running an unmodified up-

stream 64-bit RISC-V Linux kernel at a clock frequency

of 65MHz, on a development board equipped with a

Lattice ECP5 FPGA and 1GB of RAM. The system’s

current performance, as measured by a set of popular

benchmarks, is within less than an order of magnitude of

the original Intel Pentium CPU running at approximately

the same clock frequency.

While these results are highly encouraging, much

work still remains. Currently in progress is an effort

to integrate LiteX’s μSDcard support into our system,

which would enable it to boot a full-fledged existing

Linux distribution (e.g., Fedora or Debian). With a “real”

Linux distro, we gain the availability of native builds of

the Yosys/nextpnr toolchain, and the system could then

be used to rebuild its own FPGA bitstream, achieving

our ultimate goal of self-hosting.

Next, there is still the “big picture” problem of em-

pirically proving equivalence of trustability between the

collected sources to the system and its build tools on one

hand, and the actual fielded system on the other, starting

with DDC. This problem is further complicated by the

fact that the HDL sources to Litex and the Rocket Chip

are not actually written in Verilog, ready to be digested

by the Yosys compiler. Instead, Rocket is written in

Chisel, which in turn depends on Scala (and ultimately

Java), while LiteX is written in Migen, which is in turn

written in Python. Fortunately, the complexity this adds

to the problem is only quantitative (more sources to build

on top of each other), rather than qualitative (everything

ultimately still boils down to having a clean C compiler).

Our proposed method of building trustable comput-

ing systems prevents insertion of hardware privilege

escalation exploits, and facilitates detection of hardware

DoS vulnerabilities. Once widely adopted, this method

will make it easier to build systems with increased

security assurance levels, for both large, “state actor”

organizations and for private individuals concerned about

retaining control over their computing devices.

Since our method is predicated on the use of soft-IP

FPGA based hardware, the resulting computer systems

will have relatively low performance compared to high-

end systems built with optimized ASICs. In other words,

the workloads for which our trustable computers will be

suited tend toward embedded systems, communications,

industrial control, and lightweight personal computing –

as opposed to HPC or datacenter deployments.

Finally, the availability of a fully self-hosting FOSS

hardware+software computer system will hopefully spur

further efforts and developments in formal verification

and validation of the entire system as a cohesive unit.

Sources can be studied and analyzed (manually, but

more likely using automated tools), knowing there is a

guarantee that trustability of the analyzed sources will be

fully equivalent to the trustability of the system deployed

in the field.

Acknowledgments
Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under
Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should
not be construed as an official Government position, policy, or decision, unless designated by other
documentation.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEER-
ING INSTITUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF
THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this
material for internal use is granted, provided the copyright and “No Warranty” statements are included
with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is required for
any other external and /or commercial use. Requests for permission should be directed to the Software
Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM20-0254

141



References

[1] S. Adee, “The hunt for the kill switch,” IEEE Spectrum,
vol. 45, no. 5, pp. 34–39, May 2008. [Online]. Available:
http://dx.doi.org/10.1109/MSPEC.2008.4505310

[2] D. Chesebrough, “Trusted microelectronics: A critical
defense need,” National Defense: NDIA’s Business
& Technology Magazine, Oct 2017. [Online]. Avail-
able: http://www.nationaldefensemagazine.org/articles/2017/10/
31/trusted-microelectronics-a-critical-defense-need

[3] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson,
“Stealthy dopant-level hardware trojans,” in Proceedings of the
15th International Conference on Cryptographic Hardware and
Embedded Systems, ser. CHES’13. Springer-Verlag, 2013, pp.
197–214.

[4] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and
Y. Zhou, “Designing and implementing malicious hardware,”
in Proceedings of the 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats, ser. LEET’08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 5:1–5:8. [Online].
Available: http://dl.acm.org/citation.cfm?id=1387709.1387714

[5] C. Krieg, C. Wolf, and A. Jantsch, “Malicious LUT: A
stealthy FPGA trojan injected and triggered by the design
flow,” in Proceedings of the 35th International Conference
on Computer-Aided Design, ser. ICCAD’16. New York,
NY, USA: ACM, 2016, pp. 43:1–43:8. [Online]. Available:
http://doi.acm.org/10.1145/2966986.2967054

[6] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2:
Analog malicious hardware,” in Proceedings of the 2016 IEEE
Symposium on Security and Privacy, ser. SP’16, 2016, pp. 18–
37.

[7] P. Kocher et al., “Spectre attacks: Exploiting speculative exe-
cution,” ArXiv e-prints, Jan. 2018.

[8] M. Lipp et al., “Meltdown,” ArXiv e-prints, Jan. 2018.

[9] E. Klingman, “Fpga programming step by step,”
Embedded Systems, Mar. 2004. [Online]. Available:
https://www.embedded.com/print/4006429

[10] C. Domas, “The memory sinkhole - unleashing an x86
design flaw allowing universal privilege escalation.” Las
Vegas, NV, USA: Black Hat, 2015. [Online]. Available: https:
//www.blackhat.com/us-15/briefings.html#christopher-domas

[11] D. Oleksiuk, “Building reliable smm backdoor for
UEFI based platforms,” http://blog.cr4.sh/2015/07/
building-reliable-smm-backdoor-for-uefi.html, 2015.

[12] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware
trojan: Threats and emerging solutions,” in Proceedings of the
IEEE International High Level Design Validation and Test
Workshop, ser. HLDVT’09, Nov 2009, pp. 166–171.

[13] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor,
“Trustworthy hardware: Identifying and classifying hardware
trojans,” Computer, vol. 43, no. 10, pp. 39–46, 2010.

[14] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design Test of Computers,
vol. 27, no. 1, pp. 10–25, Jan 2010.

[15] M. Beaumont, B. Hopkins, and T. Newby, “Hardware trojans -
prevention, detection, countermeasures,” Defence Science and
Technology Organisation, Edinburgh, Australia, Tech. Rep.,
2011.

[16] S. Bhasin and F. Regazzoni, “A survey on hardware trojan
detection techniques,” in Circuits and Systems (ISCAS),
2015 IEEE International Symposium on. IEEE, 2015, pp.
2021–2024. [Online]. Available: http://ieeexplore.ieee.org/ielx7/
7152138/7168553/07169073.pdf

[17] R. Torrance and D. James, “The state-of-the-art in IC reverse
engineering,” in Proceedings of the 11th International Work-
shop on Cryptographic Hardware and Embedded Systems, ser.
CHES’09, vol. 5747. Springer-Verlag, Sep 2009, pp. 363–381.

[18] A. Waksman and S. Sethumadhavan, “Silencing hardware
backdoors,” in Proceedings of the 2011 IEEE Symposium on
Security and Privacy, ser. SP’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 49–63. [Online]. Available:
http://dx.doi.org/10.1109/SP.2011.27

[19] H. A. Amin, Y. Alkabani, and G. M. Selim, “System-level
protection and hardware trojan detection using weighted
voting,” Journal of Advanced Research, vol. 5, no. 4, pp. 499–
505, 2014, cyber Security. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S2090123213001446

[20] S. Mitra, H. S. P. Wong, and S. Wong, “The trojan-proof chip,”
IEEE Spectrum, vol. 52, no. 2, pp. 46–51, Feb 2015.

[21] S. Trimberger and J. Moore, “FPGA security: Motivations,
features, and applications,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1248–1265, 2014. [Online]. Available:
http://dx.doi.org/10.1109/JPROC.2014.2331672

[22] K. Thompson, “Reflections on trusting trust,” Commun. ACM,
vol. 27, no. 8, pp. 761–763, Aug. 1984. [Online]. Available:
http://doi.acm.org/10.1145/358198.358210

[23] D. A. Wheeler, “Fully countering trusting trust through diverse
double-compiling,” Ph.D. dissertation, George Mason Univer-
sity, Fairfax, VA, 2009.

[24] “RISC-V: The free and open RISC ISA,” http://riscv.org, The
RISC-V Foundation, accessed: 2018-05-30.

[25] K. Asanovic et al., “The rocket chip generator,”
EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17, Apr 2016. [Online].
Available: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/
EECS-2016-17.html

[26] “Fedora/RISC-V,” http://fedoraproject.org/wiki/Architectures/
RISC-V[/FPGA], Fedora Project, accessed: 2018-05-30.

[27] “Debian/RISC-V,” https://wiki.debian.org/RISC-V, Debian
Project, accessed: 2018-05-30.

[28] “Rocket chip generator,” https://github.com/chipsalliance/
rocket-chip, CHIPS Alliance, accessed: 2020-01-20.

[29] F. Kermarrec, S. Bourdeauducq, J.-C. Le Lann, and H. Badier,
“Litex: an open-source soc builder and librarybased on migen
python dsl,” in Proceedings of the 2019 Workshop on Open
Source Design Automation, ser. OSDA’19, 2019.

[30] “LiteX SoC builder,” https://github.com/enjoy-digital/litex, En-
joy Digital, accessed: 2020-01-20.

[31] “Busybox – the swiss army knife of embedded linux,” https:
//busybox.net, accessed: 2020-01-19.

[32] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist, and
M. Milanovic, “Yosys+nextpnr: an open source framework
from verilog to bitstream for commercial fpgas,” in Proceed-
ings of the 27th IEEE International Symposium on Field-
Programmable Custom Computing Machines, ser. FCCM’19.
IEEE, Apr 2019, pp. 1–4.

[33] “Yosys open synthesis suite,” https://github.com/YosysHQ/
yosys, Yosys Headquarters, accessed: 2020-01-20.

[34] “Project trellis: Documenting the lattice ecp5 bitstream,” https:
//github.com/SymbiFlow/prjtrellis, SymbiFlow, accessed: 2020-
01-20.

[35] “nextpnr: A portable fpga place and route tool,” https://github.
com/YosysHQ/nextpnr, Yosys Headquarters, accessed: 2020-
01-20.

[36] “Project x-ray: Documenting the xilinx 7-series bitstream,”

142



https://github.com/SymbiFlow/prjxray, SymbiFlow, accessed:
2020-01-20.

[37] D. Shah, “Trellisboard: Ultimate ecp5 board,” https://github.
com/daveshah1/TrellisBoard, accessed: 2020-01-20.

[38] G. L. Somlo, “A trustworthy, free/libre, linux capable, self-
hosting 64bit risc-v computer,” http://www.contrib.andrew.cmu.
edu/∼somlo/BTCP, accessed: 2020-01-20.

[39] “RISC-V proxy kernel and boot loader,” https://github.com/
riscv/riscv-pk, The RISC-V Foundation, accessed: 2020-01-20.

[40] “The lowRISC community interest company,” https://www.
lowrisc.org, lowRISC CIC, accessed: 2020-01-20.

[41] “lowRISC chip,” https://github.com/lowRISC/lowrisc-chip,
lowRISC CIC, accessed: 2020-01-20.

[42] S. Gal-On and M. Levy, “Exploring coremark – a benchmark
maximizing simplicity and efficacy,” https://www.eembc.org/
techlit/articles/coremark-whitepaper.pdf, Embedded Micropro-
cessor Benchmark Consortium, accessed: 2020-01-20.

[43] “CoreMark benchmark,” https://github.com/eembc/coremark,
EEMBC.org, accessed: 2020-01-20.

[44] “Linpack benchmark,” http://www.netlib.org/benchmark/
linpackc.new, Netlib Repository at UTK and ORNL, accessed:
2020-01-20.

[45] U. F. Mayer, “nbench linux/unix benchmark,” https://www.
math.utah.edu/∼mayer/linux/bmark.html, accessed: 2020-01-20.

143


