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Abstract—This paper proposes a system capable of branding
digital device components based on the EM signals typically
emitted during their normal operational cycles. Such signals
contain digital artifacts that are unique, which may act as an
identifier of a particular device component e.g., its CPU, or the
entire device if one chooses to take into account a combination
of multiple such components. In real-life scenarios, this “bio-
metrical” fingerprinting of hardware has to be conducted only
once, possibly as part of an initial device configuration process
with minimum additional maintenance time and cost, by the
network administrators. At a subsequent stage, devices can get
“authenticated” by comparing their newly emitted signals against
the preexisting database during routine checks. The experimental
results attest that the proposed approach can effectively protect a
network against unrecognized potentially rogue devices posing as
benign or malicious substitutions of hardware components at the
chip level with near-perfect accuracy. One may view the proposed
system as a technical solution to verify the trustworthiness of
digital parts as well as the actors involved in certain stages of
the supply chain.

I. INTRODUCTION

Modern corporate, government, military, and critical in-

frastructure networks consist of a myriad of digital devices

typically purchased from well-trusted domestic manufacturers.

Nevertheless, in practice, each one of these devices is nothing

but a mere host of countless microscopic digital components

produced by potentially untrusted vendors from all over the

world. From an adversarial point of view, the jungle of supply

chain relationships and interactions is a fertile ground of

opportunities for an attacker to corrupt a system and alter its

intended operations. Indeed, an attacker may operate at the

design, manufacturing, distribution, or maintenance stages of a

device’s lifecycle. Attacks materialized by taking advantage of

the complex supply chain dynamics typically aim at the addi-

tion or substitution of digital components of a device, e.g., the

CPU, memory chips, or capacitors. Typically such attacks aim

in (a) leakage of sensitive information, (b) persistent system

access, or (c) total system failure under certain conditions.

Supply chain attacks are much more effective than tradi-

tional software-based malware because they mainly operate at

the lowest level of a system, i.e., the hardware. At that level,

a simple patch or a software update will not necessarily solve

the problem, and complete substitution of entire product lines

may be the only practical solution. Moreover, such attacks

are much more stealthy because the hardware typically enjoys

the complete trust of the user with even downright malicious

operations often being perceived as “strange but normal”. This

problem is rooted deep even into the research community.

Considering the example of industrial settings, existing re-

silience Operation Technology (OT) notional benchmarks [30]

fail because they usually consider an adversary as external (or

internal) entity that actively tries to undermine normal system

behavior and reduce its resilience. It is apparent, that today

such notions need to be updated to include the cases in which

a critical component of the system lacks inherent resilience

due to supply-chain compromises.

This work focuses primarily on the maintenance stages

of the supply chain lifecycle. More specifically, we attempt

to deal with unauthorized substitutions of entire devices

with their malicious “clones” or replacements of on-board

components. Such actions may be carried out by malicious

insiders or members of an outsourced IT-support team, for

example. We propose a set of methods, tools, and a system

for providing authentication (and identification) for digital

devices. The proposed approach capitalizes on the analog

signals and, more specifically, the Electromagnetic (EM) sig-

nals that get naturally and involuntarily emitted by digital

components during their usual operational cycles, e.g., network

modules, CPUs, or other chips. Relevant works [5], [6],

[9], [36], [37] have identified that such signals carry unique

characteristics due to the subtle variations of the corresponding

hardware components. This is the result of the minimally

imprecise manufacturing processes even among products of

the same production line. The system compares these analog

emissions obtained at runtime with an “analog-profile”, which

is collected/constructed apriori during an off-line step using

a two-phase Machine Learning (ML) driven process. In this

way, it becomes possible to distinguish and identify each one

and then technically enforce authentication and access control.

Typically, in managed networks, any device has to pass from

a thorough configuration step before it is allowed to join a

network for the first time. The profile construction phase can

be defined as an additional subprocess of the configuration

step. In this way, the expected overhead is minimal. This
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approach could be implemented as a portable hand-held reader,

which can interrogate the authenticity of devices inside the

network during random or routine security checks.

At the lowest level, the proposed system can distinguish

between various benign devices inside the protected network

towards providing device-level authentication and access con-

trol. This is an often overlooked function as most modern

authentication/access control methods focus on the human ele-

ment of the network and neglect the device element. Secondly,

it can be used to identify and reject “malicious clones” of

devices, i.e., devices that look identical to benign but perform

some additional operations at the hardware level under certain

conditions (but not always). Finally, it can detect fine-grained

unauthorized hardware alterations of a benign device, e.g., the

substitution of a chip such as the CPU that could potentially

perform additional operations.

The evaluation of the proposed approach was conducted

upon test subjects with constrained resources in terms of

processing power and memory, namely, a set of Internet-of-

Things (IoT) devices. This decision was made because (a)

the security of such systems is often overlooked; (b) they are

more simple and as such they can be studied more easily; (c)

devices of similar characteristics are Operations Technology

(OT) systems and Industrial Control Systems (ICS), which are

building blocks of most mission-critical networks. While we

aspire that this work will set the foundations towards high-end

(servers, personal computers, and smartphones) device authen-

tication, the proposed system is immediately applicable to a

large number of devices residing in industrial environments,

hospitals, or the power grid.

The next section presents relevant work in the field. In

section III, we present the overall system architecture and

explain its advantages, limitations, and design assumptions

that were made. Section IV analyzes the experimental results

obtained by a proof-of-concept (PoC) implementation of the

system. Section V concludes and outlines the plans for future

improvements.

II. PREVIOUS WORK

The side-channels formed during the normal operation of

digital devices have been abused for adversarial purposes, such

as to achieve leakage of private information [11], [24], the

inference of cryptographic keys [10], [12], the tracking of

users [7] or the unleashing surgical attacks [17], [18].

A more recent stream of research leverages on the descrip-

tive power of these analog signals for protective purposes

instead. The majority of such works are oriented towards

achieving anomaly detection or verifying the control flow in-

tegrity at the software level. In this context, several alternative

modalities have been considered, e.g., (a) the analysis of power

consumption of the device [13], [14], [28], [29] or (b) the

analysis of radiant EM [1], [4], [15], [19], [34] signals. Each

of the approaches has its advantages, with the former being

able to profile the behavior of the device as a whole and the

latter being capable of providing a higher level of granularity

to individual components of the device.

Side-channel analysis based approaches have also been

used for identification and authentication purposes. Traditional

means of device authentication in computer networks take

place primarily in the link and application layers of the OSI

stack. Such mechanisms are not appropriate for device, let

alone component-level based authentication because they are

tightly coupled with a particular user. For example, a device’s

MAC address is typically used in combination with a shared

secret known by humans to derive authentication keys in layer-

2 protocols such as 802.11 (WiFi) [23]. Nonetheless, shared

secrets can always leak. Tag-based identification (bar code and

RFID) are not effective because they are detached from the

benign product, replaced or fabricated to identify a malicious.

A series of works [5], [6], [9], [36] seeks to identify

immutable characteristics of devices to provide authentication.

Towards this end, the authors rely on the same theoretical

foundations like the ones used in this work but restrict their

analysis in signals that are part of the standard wireless

communication channels, e.g., WiFi. An obvious problem

associated with these approaches is that they only take into

account the active communication channels. In other words,

authentication is conducted upon the signals produced volun-

tarily by the device and only when it attempts to communicate

thus, making it less flexible and dynamic. Moreover, one may

argue that this authentication is focused only on the Network

Interface Card (NIC) component rather than the entire device.

In [37], researchers relied on a near field probe to capture

the low-frequency emanations of various digital devices. They

employed cosine distance to rank the dissimilarity of the

corresponding vectors and subsequently distinguish between

alternative devices with accuracy that ranged from 100% to

72% depending on the device type. Nevertheless, the particular

work focuses primarily on providing device identification as an

alternative to RFID technology. The potential of this method

as a means for delivering device authentication, as well as

its robustness against possible adversarial efforts was not

explored.

A recent work [3] introduced a request-response-driven de-

vice fingerprinting technique that relies on magnetic induction

(MI) signals emitted by the CPU of devices. The results

indicate that the proposed system, namely DeMiCPU can

achieve near-perfect (99.1% precision and recall on average),

with a fingerprinting time of just 0.6 seconds. An obvious

shortcoming of the particular system is that it is stimulus-

based, i.e., it fingerprints the behavior of the CPU when

interrogated in a specific way. This is an active way of

fingerprinting the device that assumes collaboration of the

subject.

Works [5], [6], [9], [36], [37] provide proof that subtle

hardware differences due to the manufacturing process are

carried over to the EM domain and can be an effective

way for device identification. Our proposed system builds

on these principles and applies sophisticated ML techniques

upon EM side-channel artifacts emitted by device components

of interest. This allows us to extend the concept above for

purposes of authentication (not just identification), in a passive
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and external way, with minimum false positives.

III. PROPOSED APPROACH

The proposed system takes advantage of the fact that

during a device’s normal operation, its digital components emit

analog signals continuously and involuntarily [13]. Different

instructions/operations at the machine level draw different

amounts of current when being executed, which in turn results

in the formation of EM signals with observable characteristics.

As a matter of fact, these artifacts are so descriptive that

researchers [8], [26], [35] have taken advantage of them to

create external, instruction-level disassemblers. Interestingly,

these signals bear subtle differences even if they get emanated

by components of the same manufacturer, model, product line,

and run the same software [37]. The discrepancies noticed in

the EM spectra is the natural outcome of random hardware

variations caused by imperfections of the manufacturing pro-

cess. These unique variations end up distinctly modulating the

signals. Therefore, in theory, it may be possible to capture

and analyze EM signals with the purpose of (a) distinguishing

between different devices on the network, (b) detecting mod-

ifications applied at the hardware profile of a machine. The

latter might be an occurrence of malicious activity performed

at the maintenance stages of the supply chain lifecycle, i.e.,

after the deployment of that device in the protected network.

Applying this approach in the realm of high-end computer

systems may be a rather challenging task due to the level

of architectural complexity. Indeed, it is hard to fingerprint a

process of interest in servers, desktops, and laptops because

the amount of random artifacts generated by all interfering

processes running in parallel is expected to be high. Neverthe-

less, the case of IoT devices is of particular interest since they

typically adopt a much simpler design. Moreover, a typical

execution cycle of IoT devices happens repetitively and is

comprised of a limited number of branches. Thus, exhaus-

tively fingerprinting an operation/process in such systems is

a comparatively more straightforward task. For these reasons,

we have chosen to focus our efforts on the IoT device domain

for providing a PoC implementation.

The system aims to capture multiple samples of signals

corresponding to normal execution cycles to statistically con-

struct a baseline/model of normal modes of operation. Any

deviation from the baseline can be seen as an anomaly, which

in this context translates to unknown device/component (or

even unseen operation). Thus, the system effectively provides

hardware-level device/component authentication. This type of

EM-based branding draws inspiration from and resembles the

biometrical authentication techniques that have been applied

to humans because they are both based on immutable, inherent

characteristics of their subjects.

A. System Architecture

From a 1000 foot view, the proposed system is comprised

of (a) an EM sensor for capturing continuous signals from the

signal source, (b) an oscilloscope for storing discrete samples

of the signals in a database, and (c) an analysis engine that

performs ML-based analysis upon the stored signals. Notice

that the entire system is completely external to the subject

device and does not assume any software being installed in it.

The component of particular interest is the analysis engine.

It employs a combination of both supervised and unsupervised

ML techniques operating in two layers to (a) create a model

of benign devices performing legal operations, (b) to raise an

alert for unrecognized devices.

At the first layer of analysis and during the system’s training

phase, the baseline of all normal devices and normal operations

per device is created using the Local Outlier Factor (LOF)

algorithm [2]. LOF is an unsupervised ML method. Unlike

clustering methods, LOF attempts to discover outliers in a

given set of data. According to Hawkins [16] an outlier is

an observation that deviates so much from other observations

as to arouse suspicion that a different mechanism generated it.

LOF assigns an outlier score to each observation in the dataset.

The score depends on how isolated the object is concerning

the surrounding neighborhood. During the deployment phase,

signals corresponding to malicious devices will be flagged as

outliers and may be discarded/dropped by the administrators.

The rest will be treated as normal observations, but at that

point, no further details will be known concerning the identity

of the device.

Therefore, full authentication, including the device identifi-

cation step cannot be applied at the first stage. A second layer

of analysis aims to solve this problem by incorporating super-

vised ML methods. More specifically, by taking advantage of

a model trained independently by the K-Nearest Neighbors

(KNN) algorithm [27], the system is able to classify new

observations into one of the existing devices effectively.

At this point, we should make clear that we have assumed

that initial fingerprints of the protected device do not contain

any malicious components by default. This is a strong assump-

tion. For further details regarding this assumption, the reader

should refer to subsection III-C).

A high-level overview of the described system is given in

Figure 1.

B. Threat Model

We assume that the attacker has physical access to a

device and can (a) either completely replace the equipment

with one that resembles the original but performs malicious

software or hardware-based operations, or (b) physically alter

individual hardware modules of it. While these two activities

require physical access to the device, we also assume a third

alternative scenario in which the attacker can modify processes

running on the device stealthily and remotely to include

malicious operations, say by taking advantage of software

vulnerabilities (e.g., a buffer overflow) or network protocols.

The latter case has been explored in our previous work [22].

C. Assumptions

The underlying assumption is that during their fingerprinting

phase, devices are completely benign, i.e., they do not execute

any malicious software, and the hardware modules of the
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Fig. 1: System Architecture

devices are free of any malicious circuitry. This is a strong

assumption because, in real-life situations, the attacker has

multiple opportunities to pollute the hardware with malicious

components, in the early stages of the supply chain lifecycle.

Nevertheless, in this work, we focus on the maintenance stages

during which a malicious insider may tamper with a device

during its scheduled maintenance, and hardware compromises

at earlier stages of the supply chain lifecycles will be the topic

of the future research.

Another assumption is that the fingerprinting must be

complete, i.e., all alternative execution paths of the device

must be fingerprinted to be recognized as benign. For this

reason, the experiments are restricted to a more straightforward

use-case, i.e., the domain of limited-computational-resources

smart-devices.

Finally, all the experiments have been conducted upon

devices whose similarities are extensive, i.e., (a) devices of the

same model/type manufactured by different vendors, and (b)

devices of the same model/type from the same manufacturer.

While the test subjects did not contain any malicious hardware

components, we assume that if the system is capable of

recognizing differences at that level, then it will also be

capable of identifying the less subtle modifications required

to achieve the malicious functionality.

D. Advantages

There are several advantages to the proposed approach:

• It can provide identification, i.e., it is capable of distin-

guishing between different devices as long as a fingerprint

of such devices exists in the database. It can do so,

even if the devices are of the same model of the same

manufacturer.

• It can provide authentication, i.e., distinguish between

benign devices from those that pose as such.

TABLE I: Main components of the PoC implementation of the

system

Component Purpose
Beehive’s 100A EMC Probe EM probe
Picoscope 3205a Oscilloscope
Beehive 150A EMC Probe amplifier Signal Amplifier
Apple MacBook Pro Analysis Device

Fig. 2: Experimental setup

• The detection of unauthorized substitutions is performed

externally, does not require the installation of any soft-

ware in the CPU of devices, and does not interfere with

its normal operation in any way.

• In contrast to a series of works relevant to side-channel

based anomaly detection [20], [21], [25], [32], [33] the

proposed system is not only capable of detecting software

modifications, but it is also capable of tracking down

hardware-based differences. This can be achieved using

the same equipment and by applying minor tweaking

to the algorithm parameters. The former case was the

focus of our earlier works [22], while the latter is the

main objective of this work. In comparison, this case is

theoretically more challenging in terms of detection, as

the differences in the signal morphology are much more

subtle.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

For a PoC implementation of the proposed system, we relied

on inexpensive off-the-shelf components. For the capturing

equipment, we used a Beehive 100A EMC magnetic field

probe, which was placed directly on top of the CPU while

it performed normal operations. For storing samples of the

signals, we relied on a Picoscope 3205a oscilloscope. The eval-

uation was completed on an Apple MacBook Pro laptop (CPU

2.5 GHz, RAM 16 GB). All experiments were implemented as

Python v3.6.1 scripts. The experimental setup can be seen in

Figure 2, while a full list of the system components, including

connectors and additional devices, is given in Table I.

All test subjects during the experiments were devices of

a well-known prototyping IoT platform, namely, Arduino
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Fig. 3: Alternative devices used as test subjects

TABLE II: Technical characteristics of the chosen platform

Characteristic Value
Operating Voltage 5V
Input Voltage 7-12V
Flash Memory 256KB
SRAM 8KB
EEPROM 4KB
Clock Speed 16Mhz

Mega 2560. The particular model is equipped with an 8-bit

Atmel ATmega 2560 processor clocked in 16Mhz. The full

technical characteristics of the platform are given in Table II.

Depending on the experiment, devices from the original or

third party manufacturers (i.e., Sunfounder, Elegoo, HiLetGo,

Keyestudio) were used. All the alternative devices used as

test subjects during the data-gathering phase are presented in

Figure 3.

B. Dataset Description

We collected two sets of data. Dataset A contains signals

from five Arduino devices of the same model (Mega 2560),

but alternative manufacturers running the same code. Dataset B

contains signals from four Arduino devices of the same model,

i.e., Mega 2560 and of the same manufacturer. The source

code of the software running on the test subjects during the

data gathering is given in Listing 1. Both the datasets contain

10,000 distinct signals per device. Thus, each dataset contains

40,000, unique signals. Each one of these signals is comprised

of 12,500 samples (features/dimensions). Examples of signals

of four alternative devices contained in datasets A and B are

provided in Figure 4 and 5, respectively.

C. Evaluation Method

We conducted experiments from subsets obtained by the

two datasets. For each dataset, ten splits of 4,000 signals

were used (remember each dataset contains 40,000 unique

signals in total). All signals in each split were randomly

selected with the non-replacement method. Three (out of four)

devices were considered benign clients of the network during

the training phase. Instances of the fourth device were not

TABLE III: Confusion Matrix and basic metrics corresponding

to the LOF evaluation on Dataset A

Predicted
Type Unknown Device Benign Device

Actual Unknown Device 980 0
Benign Device 63 2877

ACC 0.983
F1 0.979
AUC 1.0
Duration 3.93 sec

included in the training set; thus, these instances were treated

as malicious/outliers.

We evaluated the results of the first round in terms of

accuracy (ACC) and F1 score and area under the curve (AUC)

score and the results of the second round in terms of ACC and

F1 score only.

A ROC curve is a graph of the true-positive rate (TPR)

against the false positive rate (FPR) for all possible thresholds

returned by the algorithm. Since two ROC may have non-

standard shapes that make their comparison hard, the most

common metric of comparing two ROC curves is the area

under the curve (AUC). An AUC score of 1 is the optimal

value, and it implies that the system yields TPR = 1 for any

threshold chosen, while the FPR ranges from 0 to 1, depending

on the threshold. Accuracy is defined as:

ACC =
TP + TN

TP + TN + FP + FN
(1)

F1 score is defined as the harmonic mean of precision (PPV)

and sensitivity (TPR) as:

F1 = 2 ∗ PPV ∗ TPR

PPV + TPR
(2)

where PPV is defined as PPV = TP
TP+FP and TPR =

TP
TP+FN

We extensively experimented with the two most sensitive

parameters, namely, the number of training instances as well

as the number of neighbors considered by the two algorithms.

By relying on merely 20 signals from each device for training

purposes (creation of the baseline and training the classifier),

the system yields steadily near-perfect accuracy (ACC) and F1

scores, and perfect AUC scores, for any split of any of the two

datasets.

We assume that if the system can successfully discriminate

between devices of such a level of similarity, then it is valid

to expect the same or better predictive accuracy with devices

of different CPU architectures, other hardware characteristics,

or malicious modifications.

The confusion matrix (i.e., a table of TP, FP, TN, FN)

along with the ACC and F1 scores achieved for the dataset A

are given in Table III for the unsupervised step and in Table

IV for the supervised step. The same metrics for Dataset B

are presented in Tables V and VI. Notice, that all values are

averaged for the ten splits considered in these datasets.

The reader may notice that the AUC score reported for the

first phase of the analysis is perfect, while the corresponding
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(a) Original (b) Keystudio device (c) HiLetGo device (d) Elegoo device

Fig. 4: Sample signals obtained from devices of the same model but of different manufacturers. Notice, that despite an overall

similar signal phenotype, differences in the signal morphology can be observed even by the naked eye.

(a) Serial number 001 (b) Serial number 002 (c) Serial number 003 (d) Serial number 004

Fig. 5: Sample signals obtained from devices of the same model and the same manufacturer. Notice, that differences can be

observed even by the naked eye.

TABLE IV: Confusion Matrix and basic metrics corresponding

to the KNN evaluation on Dataset A. Notice that instances ob-

tained by the device from vendor Keyestudio were considered

anomalous/unknown and were successfully discarded during

the unsupervised step of the process.

Predicted
Manufacturer Original Elegoo Hiletgo Keyestudio

Actual

Original 980 0 0 N/A
Elegoo 0 980 0 N/A
Hiletgo 0 0 917 N/A
Keyestudio N/A N/A N/A N/A

ACC 1.0
F1 1.0
Duration 46.88 sec

TABLE V: Confusion Matrix and basic metrics corresponding

to the LOF evaluation on Dataset B.

Predicted
Type Unknown Device Benign Device

Actual Unknown Device 980 0
Benign Device 16 2924

ACC 0.995
F1 0.994
AUC 1.0
Duration 3.21 sec

ACC and F1 scores are less than perfect (i.e., 98.3% and 97.9%

for Dataset A and 99.5% and 99.4% for Dataset B). The reason

behind this ostensible discrepancy is that the ROC curve (and

as a result, the AUC score) gets calculated by considering

all possible thresholds returned by the LOF algorithm. On

TABLE VI: Confusion Matrix and basic metrics corresponding

to the KNN evaluation on Dataset B. Notice that instances of

device 004 were considered anomalous and were successfully

discarded during the unsupervised step of the process.

Predicted
Serial Number 001 002 003 004

Actual

001 964 0 0 N/A
002 0 980 0 N/A
003 0 0 980 N/A
004 N/A N/A N/A N/A

ACC 1.0
F1 1.0
Duration 47.15 sec

the other hand, both ACC and F1 scores were calculated

according to a single threshold that was chosen automatically

by the algorithm, as described in [2]. This indicates that

the particular threshold was not optimal and that at least

one threshold exists that yields a true positive rate (TPR) of

100% and a false positive rate (FPR) of 0%. Nevertheless,

to identify this threshold, one must have apriori knowledge

of the contamination degree of the dataset, which in real-life

scenarios, is not possible.

V. CONCLUSIONS & FUTURE WORK

In this paper, we presented a method and a prototype imple-

mentation of a system that can be used for the identification

and authentication of devices inside protected networks. The

system leverages the EM signals emitted by the CPU (and

potentially other hardware components) during its operation.
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void loop(){
noInterrupts();
digitalWrite(PIN13, LOW);
digitalWrite(PIN13, HIGH);
for(uint i=0; i<8; i++){

a = 0x00000000;
b = 0xffffffff;
a |= b;
b = 0x00000000;
a &= b;
b = 0xffffffff;
a = aˆb;

}
interrupts();

}

Listing 1: Source code of the programs executed in the test

subjects

It exploits the subtle differences of these signals, which

are a result of minimal hardware variations caused during

the manufacturing process. Such differences are random,

unique, immutable, and hard to counterfeit. For this reason,

we loosely describe this approach as a “device-biometrical-

authentication” method. The proposed approach can be applied

in high-value networks to protect from unauthorized substi-

tutions, or modifications of hardware components of smart-

devices by insiders or (theoretically) trusted external parties

during the post-deployment stages of the supply chain, e.g.,

the maintenance cycles.

Unlike the majority of relevant works, the system relies

solely on involuntarily emitted EM signals and does not

assume the installation of any software. Therefore it can be

applied as an external protection mechanism. Moreover, unlike

visual inspection methods [31] applied for the discovery of

hardware trojans, the system may be compiled even with

inexpensive components and commodity equipment.

The experimental results indicate that the proposed anal-

ysis method yields near-perfect scores when used for the

identification and authentication of devices. What is more,

it achieves that level of accuracy with a minimal number of

signals (20 signals per device suffices) for the construction of

the baseline. The actual authentication stage is also extremely

fast and lightweight, requiring less than a minute to evaluate

a batch of nearly 4,000 signals on a modern laptop. This is

enough to satisfy hundreds if not thousands of simultaneous

authentication attempts.

Future improvements of the system will be oriented towards:

• Assuming early-stage device compromise - perform

anomaly detection without putting trust or making any

assumptions about the security of a newly deployed

device on the network. The particular device may have

been compromised during the early stages in the supply

chain;

• Increasing the distance of the monitor - make use of

alternative off-the-shelf equipment such as directional an-

tennas that permit the capturing of signals from a greater

distance and in a non-intrusive manner, i.e., through

device enclosures;

• Platform complexity - extend the application of the same

concept to support high-end devices such as smartphones,

laptops and desktops systems;

• Integration with intrusion detection tools - integrate the

proposed system with tools that detect malicious modi-

fications at the software-level to provide holistic system

protection.

• Adversarial signal transmission - stress test the effec-

tiveness of the system under sophisticated adversarial

activity, possibly crafting and transmitting signals of

choice using defined radios (SDR).

This work aspires to be the first step towards a robust

technical means for reinforcing the trustworthiness of the

several stages and actors involved in the supply chain of digital

devices.
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