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Abstract—The size and complexity of the software ecosystem is 
a major challenge for vendors, asset owners and cybersecurity 
professionals who need to understand the security posture of these 
systems. Annotated and Translated Disassembled Code is a graph 
based datastore designed to organize firmware and software 
analysis data across builds, packages and systems, providing a 
highly scalable platform enabling automated binary software 
analysis tasks including corpora construction and storage for 
machine learning. This paper describes an approach for the 
identification of ubiquitous third-party libraries in firmware and 
software using Annotated and Translated Disassembled Code and 
supervised machine learning.  Annotated and Translated 
Disassembled Code provide matched libraries, function names 
and addresses of previously unidentified code in software as it is 
being automatically analyzed. This data can be ingested by other 
software analysis tools to improve accuracy and save time. 
Defenders can add the identified libraries to their vulnerability 
searches and add effective detection and mitigation into their 
operating environment.
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I. INTRODUCTION

Modern open source and proprietary software rarely consist 
of applications built from scratch, the developers instead reuse 
third-party libraries to speed up development time and minimize 
effort by removing the need to rebuild existing software. When 
a developer uses devices or firmware from a vendor or open 
source, one might think they are secure, but this isn’t always the 
case. According to a 2012 Forrester survey, out of the 336 
software companies surveyed, nearly all work with third-party 
libraries and less than 50% of them test third-party libraries for 
security [15], [23]. A 2018 survey from CrowdStrike covering 
1,300 IT professionals, found 66% have experienced a software 
supply chain attack, and 79% believe software supply chain 
attacks will be the largest cyber threat to their organization 

within the next three years [10]. The current state of automated 
reverse engineering does not have adequate security solutions 
due to a lack of software and firmware auditing capabilities. 
Identifying common patterns or vulnerabilities between a 
firmware is difficult due to differences in the underlying 
processor architecture and compilation methods [2]. Prior 
attempts to use machine learning to automate common reverse 
engineering tasks have not been accurate enough to merit 
production use, and often require source code or the software to 
be compiled in a specific way. These requirements cannot be 
practically met.

This paper describes a novel approach for the identification 
of ubiquitous third-party libraries using Annotated and 
Translated Disassembled Code (@DisCo) and supervised 
machine learning. Our research developed a cross architecture 
feature set which can be extracted from compiled software using 
the angr disassembler [19], [24], [25]. These engineered feature 
sets are then used with supervised machine learning to correctly 
identify the name and origin of third-party functions in firmware

II. USE CASES

A. Augmented Reverse Engineering
Static reverse engineering software at the assembly level is 

a tedious task where any additional information potentially 
decreases the time and cost of the outcome. In most cases where 
a reverse engineer’s time is required, the binary has been 
stripped of all function names. If this same binary contains 
statically linked libraries, then third-party functions are 
indistinguishable from program specific functions. The ability 
to correctly and timely identify these third-party functions 
within disassemblers like IDA Pro, Binary Ninja and Ghidra, is 
extremely valuable. The application of @DisCo and a trained 
model to this unknown binary, will output the address of the 
unknown function and the matched function name of the 
identifiable third-party libraries which can then be ingested by 
one’s preferred disassembler for more sophisticated reversing. 

B. Supply Chain Modification
One of the greatest threats facing computer systems today

is supply chain attacks. As cyber security enhances, it becomesDepartment of Energy–Cybersecurity Energy Systems & Emergency 
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harder for attackers to gain a foothold, and the effort of attack
changes focus to upstream from the product [3]. For the sake of
this paper, an attacker then maliciously affects a third-party
library or application the product trusts and uses. A well-known
case of a supply chain attack is NotPetya, where a nation state
hijacked Linkos Group’s computer update server by exploiting
a vulnerability in the content management system. This resulted
in a hidden back door which propagated to thousands of
computers, and was eventually used to introduced NotPetya, the
malicious software which shut down a fifth of the world’s
shipping capacity [4]. Another example is XcodeGhost, when a
backdoored version of Xcode, the IDE used for Apple
application development, was posted as a download across
popular Chinese forums [2]. This backdoored version of Xcode
compiled in an information gathering command and control
server within the mobile applications. At the time of discovery,
over 4,000 apps within the App Store were infected with this
malicious software [2].

A scalable method for storing program binaries in a
database and the ability to recognize vulnerable or changed
third-party libraries over time, aids in identifying system
modification, early detection, and supply chain management.
@DisCo hashes and disassembles each binary it ingests,
allowing for a specific and simple way to see changes in a
binary over time. @DisCo analysis identifies ubiquitous
libraries to enable the defenders to add these libraries to their
vulnerability searches and work to detect when the
vulnerabilities are exploited or include less vulnerable libraries
or functions into their operating environment.

C. Software Assurance
Older legacy computer systems often do not take cyber 

security into consideration, as computer crime was rare during 
their development and many developers failed to anticipate a 
future where the internet would be pervasive. While many of 
these systems have retired, the term legacy system still refers to 
any outdated system still in use [1]. When it comes to securing 
a legacy system, the first step is to know what the legacy 
system’s software contains. Often this is impossible as the 
original developers are no longer available, the system came 
from a third-party vendor, or the documentation is lacking. A 
straightforward method for identifying third-party libraries 
within the software is an invaluable starting point. If the legacy 
system is without updates to necessary components, there will 
inevitably be vulnerabilities which must be either mitigated or 
hardened against. Timely identification of vulnerabilities within 
critical legacy systems is key.

III. @DISCO

A. Graph Database
Current tools for binary analysis and reverse engineering 

have no consistency, no way to capture, preserve, and share 
information, and are not scalable solutions. @DisCo is an 
answer to this problem. @DisCo captures the hashes of each 
binary and then begins disassembling, and breaking the binary 
down into functions, blocks, and feature sets. It stores data about 
each of these components in an OrientDB graph database [20].  
@DisCo then finds each edge, and edge type between these 
components, finally storing them to create a complete and 

queryable control flow graph. This graph database can then be 
used to capture additional information about a binary, preserve 
the state of the binary at specific times, and is easily shared.

B. Breaking Down a Binary
The initial disassembly of the binary is done by the open 

source tool, angr [19], [24], [25]. angr’s graph analysis plugin,
CFGFast, creates a knowledge base containing control flow 
graphs, call graphs, and other valuable information.

To begin, @DisCo creates a base library vertex storing the 
hash, architecture, base path and version of the binary.  Next, it 
stores every function identified by angr. Each function vertex 
will consist of the library record id (rid) it belongs to, the 
function address, function name. Each function vertex is linked 
to its library by an edge. As each function is processed, the 
function’s blocks will be iteratively processed.  The block vertex 
contains the library rid and function rid it belongs to, the starting 
address, and label or name for the block and a representation of 
the block’s instructions. This same block vertex also contains 
the block’s instructions in PyVex [25], angr’s low-level 
intermediate language. Each block contains call edges to any 
functions called from the block, feature edges to feature vertices 
contain features related to the block, and various types of jump 
edges which indicate how control flow may move beyond the 
block.

Fig. 1 contains the source code of a simplistic hello world 
program. For this example, this program is compiled using GNU 
Compiler Collection (GCC) with no extra flags. This binary is 
processed by @DisCo and entered into the OrientDB database. 
Fig. 2 shows the CFG created by a simple query within 
OrientDB to display the function main. Fig. 2 begins with the 
base vertex for the binary labeled with record identifier #170:0, 
and then #229:0 is the function object for main. The main 
function consists of a singular block, #164:0, which has a feature 
set. This same block makes one call to printf, #217:0. This call 
consists of a singular block and feature set.
 
#include “stdio.h” 
 
int main(){ 
 printf(“hello world”); 
 return 0; 
} 
 
Fig. 1. Source code of hello word program

Fig. 2. CFG of hello word program

C. Feature Sets
Each block object stores the low-level intermediate language 

of the instructions. This language is an abstraction from the 
assembly level and the high-level languages, such as source 
code. The use of a low-level language is important as it differs 
from assembly by not being architecture dependent. This aspect 
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allows for function identification to be compilation and 
architecture independent. Fig. 3 is the x86 assembly of the main 
program from Fig. 1. Fig. 4 displays PyVex’s [25] low-level 
interpretation of the same block of code. It is this low-level 
language that the feature set is extracted from. PyVex is 
fundamentally built from statements which are made up of 
expressions. These statements and expressions can be tokenized 
into 37 distinct token types.  @DisCo tokenizes each block’s
PyVex interpretation and counts how many times each distinct 
token is used. Fig. 5 demonstrates a subset of the feature set of 
the block instructions shown in Fig. 4. This feature set has 
omitted the tokens which do not appear within the block for 
brevity.

 
main: 
nop edx, edi 
push ebp 
mov ebp, esp 
lea edi,[0x0040115d] {“hello world”} 
mov eax, 0x0 
call  printf 
mov eax, 0x0 
pop ebp 
retn 
 
Fig. 3. X86 disassembly of hello world program

 
---- IMark(0x401149, 4, 0) ---- 
---- IMark(0x40114d, 1, 0) ---- 
t0 = GET:I64(offset=56) 
t1 = GET:I64(offset=48) 
t2 = Sub64(t1,0x00000008) 
PUT(offset=48) = t2" 
STle(t2) = t 
---- IMark(0x40114e, 3, 0) ---- 
PUT(offset=56) = t2 
---- IMark(0x401151, 7, 0) ---- 
PUT(offset=72) = 0x00402004 
---- IMark(0x401158, 5, 0) ---- 
PUT(offset=16) = 0x00000000 
PUT(offset=184) = 0x0040115d 
---- IMark(0x40115d, 5, 0) ---- 
t3 = Sub64(t2,0x000000008) 
PUT(offset=48) = t3 
STle(t3) = 0x00401162 
t4 = Sub64(t3,0x00000080) 
==== AbiHint(0xt4, 128, 0x00401050) ==== 
 
Fig. 4. PyVex interpretation of main block

 
Ist_imark 6 
Ist_abihint 1 
Ist_rdtmp 9 
Ist_wrtmp 5 
Ist_store 2 
Ist_put  6 
Iex_get  2 
Iex_const 7 
Iex_binop 3 
 
Fig. 5. Feature set of main block

IV. SUPERVISED MACHINE LEARNING

@DisCo can produce different types of corpora for machine 
learning tasks which are valuable in supply chain management 
such as identification of software components and libraries 
included in firmware, change detection and forensics. We focus 
here on some common machine learning techniques which can 
be useful when analyzing software.

The data set used in this section was created by choosing 
seven programs which each use a small set of external libraries: 
libc, libpthread, libdl, libkdump and ld-linux. These programs 
were statically compiled using GCC 7.4.0 and Clang 6.0.0 with 
four levels of optimization flags on Ubuntu 18.04 Linux system. 
This procedure resulted in 56 binaries, eight for each program.

@DisCo was then used to analyze the 56 binaries along with 
the dynamic versions of the five shared libraries, for a total of 
61 binaries loaded into @DisCo’s graph database. Since each of 
the 56 binaries use the same five shared libraries and have been 
statically linked, each contains copies of all the exported 
functions of the five libraries, meaning 57 copies of each shared 
library function will be represented in @DisCo.  There is some 
duplication of functions across these five libraries, resulting in 
as many as 61 representations of some functions. For the 
purpose of the following experiments we selected all functions 
consisting of three or more blocks, resulting in a corpus of 
59,543 function representations.

A. Clustering
The function features discussed in Feature Sets can be 

examined by the use of clustering algorithms to gain insight into 
how well the feature sets may work for classification and 
regression machine learning.  Ideally the function features can 
be made to cluster into distinct clusters representing each 
function.

We examined clustering using t-distributed Stochastic 
Neighbor Embedding (TSNE) [16], Agglomerative Clustering 
with ward  and average linkage [14], DBScan [17], and K-
Means [8]. We applied scikit-learn’s StandardScaler [11] to 
normalize the data, followed by Principle Component Analysis 
(PCA) [13]. Fig. 6 shows a scatter plot of 50 randomly sampled 
classes from the corpora, consisting of 2970 functions. The 
function representations cluster naturally, the scatter plot does 
not appear to show nearly 3000 points since many of them stack 
upon one another. Fig 7 shows the results of agglomerative 
clustering with ward linkage on the same data. In this plot each 
data point of the functions is represented by a number from 1 to 
50, indicating which function class the point belongs to. Fig. 8
shows a TSNE plot of all functions which shows there is a
definite structure to the function representations.

B. Classification
To investigate the possibility of using @Disco function 

representations to identify the components in software, we 
explored several different methods of training a classifier to
recognize individual functions. We separated the corpora into 
train and test sets as 80/20 split by random selection.
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Fig. 6. Random sample of 50 classes with 2970 total samples

Fig. 7. Agglomerative clustering with ward linkage

Fig. 8. TSNE Plot of all functions

1) Scikit-learn: First, we compared eight classifiers from 
scikit-learn using their default parameters.  The classifiers were 
K-Neighbors [9], Linear Support Vector Machine (SVM) [7],
Radial Basis Function (RBF) SVM [7], Decision Trees [22],

Random Forest [5], Neural Net, AdaBoost [21], and Naïve 
Bayes [18]. We randomly selected 11,482 functions 
representing 200 functions for training data, and each classifier
was scored using 5-fold cross validated F1. We noticed the F1 
scores varying by a large amount across different random 
selections of data, when we tried this test with the full dataset 
about half the classifiers would fail to complete. Tuning of each 
classifier’s parameters and batching of data would be required.
Table I shows each classifier’s F1 score.

TABLE I. Convolutional Classifier Output

Classifier Cross Value F1
K-Neighbors 0.94 (+/- 0.01)
Linear SVM 0.72 (+/- 0.02)
RBF SVM 0.51 (+/- 0.05)
Decision Trees 0.94 (+/- 0.01)
Random Forest 0.94 (+/- 0.01)
Neural Net 0.94 (+/- 0.01)
AdaBoost 0.04 (+/- 0.02)
Naïve Bayes 0.94 (+/- 0.01)

The second experiment was to tune parameters for Support 
Vector Machines. We chose to use GridSearchCV and support 
vector classifier (SVC) from sci-kit learn [11]. GridSearchCV 
runs several trial runs with a classifier, with varying parameters.  
When the search is complete, the best combination of 
parameters is selected. The best parameters were RBF kernel, 
regularization parameter C=1000.0 and kernel coefficient 
gamma=0.0001. With these parameters SVM yielded a 
precision score of 0.90, recall 0.92, accuracy and F1 of 0.90 
across the full data set, demonstrating that choosing good 
parameters is a critical aspect. Fig. 9 outlines the SVM 
classification boundaries.

Fig. 9. SVM classification boundaries

2) PyTorch: Looking for better performance we 
implemented a neural network classifier in PyTorch [6].  The 
sizes of the encoding linear layers were 834x640, 640x512, 
512x256, each layer connected by batch normalization, a 
rectified linear unit activation function (ReLU) [3] and 20% 
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dropout, then a final classifier linear layer of size 256x834 with 
Softmax [12] to choose the final class. All applied sequentially. 
We used the Adam optimizer with a learning rate of 0.001 and 
used cross entropy loss. Loss was backpropagated after each 
batch. This process is demonstrated in Fig. 10.

Fig. 10. Neural Network and CNN Models

The network was trained on a Nvidia Titan RTX with a 
batch size of 40,000 for 2,000 epochs. Training took an 
average of one minute and 53 seconds. The final results of 
training were precision 0.93, recall 0.95, F1 0.94 and accuracy 
0.95.

Finally, we implemented a convolutional neural network 
consisting of two convolution networks with kernel size 3, a 
ReLU activation function, then a maxpool to coalesce the 
convolutions. The pooled convolutions go into a fully 
connected network of size 128x256, a dropout of 0.25, a fully 
connected network of size 256x834, a ReLu and a dropout of 
0.5. Softmax used to produce the final classification.

The convolutional network was trained in the same fashion 
as the neural network. Training time averaged 4 minutes 50 
seconds.  Fig. 11 shows the function output and the results were 
precision 0.93, recall 0.94, F1 0.93 and accuracy of 0.94.

Fig. 11. Convolutional Classifier Output

C. Analysis
After reviewing these results, we determined several factors 

were limiting further improvement of the machine learning 
results. The first problem is one of labeling. All the 
classification approaches were fully supervised, the accuracy of 
the labels is reflected in the training results. When some of the 
misclassifications were examined, we found that some 
functions had different labels but identical feature sets.  Further 
analysis found 18,857 such conflicts. In the case of the 
functions register_printf_function and register_printf_specifier
the assembler is the same, as seen in Fig. 12. In other cases, the 
assembler may be different, but the instruction counts are the 
same. It is possible to automate the process of resolving some 
of these differences, but further research would be required.

Fig. 12. Visualization of two functions with the same feature vector

          register_printf_specifier        register_printf_function

BatchNorm1d +
weight 36
bias 36
running_mean 36
running_var 36
num_batches_tracked = 2000

Dropout +

Linear +
weight 834×36
bias 834

ReLU +

BatchNorm1d +
weight 834
bias 834
running_mean 834
running_var 834
num_batches_tracked = 2000

Dropout +

Linear +
weight 417×834
bias 417

ReLU +

BatchNorm1d +
weight 417
bias 417
running_mean 417
running_var 417
num_batches_tracked = 2000

Dropout +

Linear +
weight 208×417
bias 208

ReLU +

BatchNorm1d +
weight 208
bias 208
running_mean 208
running_var 208
num_batches_tracked = 2000

Dropout +

Linear +
weight 834×208
bias 834

data

layers/12

Conv2d +
weight 36×1×3×3
bias 36
kernel_size = 3, 3
padding_mode = zeros

Conv2d +
weight 128×36×3×3
bias 128
kernel_size = 3, 3
padding_mode = zeros

Dropout2d +
p = 2.6339e-319

Dropout2d +
p = 2.8363e-319

Linear +
weight 256×128
bias 256
in_features = 128
out_features = 256

Linear +
weight 834×256
bias 834
in_features = 256
out_features = 834

data

fc2
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This initial work uses recent advances in graph learning by 
developing a graph representation of each function’s control 
flow graph, with each block’s contents represented by the vex
embedding of each function graph by using adjacency matrices
for the edges concatenated with a learned embedding of the 
block features. Other approaches to this problem could consist 
of:

A richer feature set made from a different LLIL.
Create embeddings of assembler language to improve 
the representations of the disassembled code.
Use an LLIL which has been developed to work well 
in transformer and recurrent network architectures.

V. CURRENT AND FUTURE RESEARCH

The Firmware Indicator Translation (FIT) project is 
ongoing to finish the release of @DisCo and other tools.  
Ubiquitous libraries found on FIT partner provided firmware 
will be translated into Structured Threat Information 
eXpression (STIX) to enable detection and potential 
remediation if vulnerabilities exist. Results from these analyses 
in structured threats provide better contextual indicators for 
malware, sharable and actionable threat intelligence which 
enriches a test corpus another DOE project - Geo Threat 
Observables (GTO). Grid Modernization Laboratory 
Consortium (GMLC) projects focused on cyber security will 
take FIT’s machine learning concepts further in the Firmware 
Command and Control and Deep Learning Malware projects, 
moving beyond static binary analysis. Internal INL research for 
Reverse Engineering at Scale (RE@Scale) will be advanced 
with new compiler and linked library capabilities. Currently 
FIT tools are being used for forensics and supply chain analysis 
projects internally at INL and will be available soon on INL’s 
GitHub page.
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