
Identifying Ubiquitious Third-Party Libraries in
Compiled Executables Using Annotated and

Translated Disassembled Code with Supervised
Machine Learning

Jedediah Haile
Idaho National Laboratory

Idaho Falls, USA
jed.haile@inl.gov

Sage Havens
Idaho National Laboratory

Idaho Falls, USA
sage.havens@inl.gov

Abstract—The size and complexity of the software ecosystem is
a major challenge for vendors, asset owners and cybersecurity
professionals who need to understand the security posture of these
systems. Annotated and Translated Disassembled Code is a graph
based datastore designed to organize firmware and software
analysis data across builds, packages and systems, providing a
highly scalable platform enabling automated binary software
analysis tasks including corpora construction and storage for
machine learning. This paper describes an approach for the
identification of ubiquitous third-party libraries in firmware and
software using Annotated and Translated Disassembled Code and
supervised machine learning. Annotated and Translated
Disassembled Code provide matched libraries, function names
and addresses of previously unidentified code in software as it is
being automatically analyzed. This data can be ingested by other
software analysis tools to improve accuracy and save time.
Defenders can add the identified libraries to their vulnerability
searches and add effective detection and mitigation into their
operating environment.

Keywords—Bayes method, classification algorithms, clustering
methods, databases, graph theory, internet, k-nearest neighbor
search, machine learning, matrices, neural network, reverse
engineering, supervised learning, supply chain management,
support vector machines, vector

I. INTRODUCTION

Modern open source and proprietary software rarely consist
of applications built from scratch, the developers instead reuse
third-party libraries to speed up development time and minimize
effort by removing the need to rebuild existing software. When
a developer uses devices or firmware from a vendor or open
source, one might think they are secure, but this isn’t always the
case. According to a 2012 Forrester survey, out of the 336
software companies surveyed, nearly all work with third-party
libraries and less than 50% of them test third-party libraries for
security [15], [23]. A 2018 survey from CrowdStrike covering
1,300 IT professionals, found 66% have experienced a software
supply chain attack, and 79% believe software supply chain
attacks will be the largest cyber threat to their organization

within the next three years [10]. The current state of automated
reverse engineering does not have adequate security solutions
due to a lack of software and firmware auditing capabilities.
Identifying common patterns or vulnerabilities between a
firmware is difficult due to differences in the underlying
processor architecture and compilation methods [2]. Prior
attempts to use machine learning to automate common reverse
engineering tasks have not been accurate enough to merit
production use, and often require source code or the software to
be compiled in a specific way. These requirements cannot be
practically met.

This paper describes a novel approach for the identification
of ubiquitous third-party libraries using Annotated and
Translated Disassembled Code (@DisCo) and supervised
machine learning. Our research developed a cross architecture
feature set which can be extracted from compiled software using
the angr disassembler [19], [24], [25]. These engineered feature
sets are then used with supervised machine learning to correctly
identify the name and origin of third-party functions in firmware

II. USE CASES

A. Augmented Reverse Engineering
Static reverse engineering software at the assembly level is

a tedious task where any additional information potentially
decreases the time and cost of the outcome. In most cases where
a reverse engineer’s time is required, the binary has been
stripped of all function names. If this same binary contains
statically linked libraries, then third-party functions are
indistinguishable from program specific functions. The ability
to correctly and timely identify these third-party functions
within disassemblers like IDA Pro, Binary Ninja and Ghidra, is
extremely valuable. The application of @DisCo and a trained
model to this unknown binary, will output the address of the
unknown function and the matched function name of the
identifiable third-party libraries which can then be ingested by
one’s preferred disassembler for more sophisticated reversing.

B. Supply Chain Modification
One of the greatest threats facing computer systems today

is supply chain attacks. As cyber security enhances, it becomesDepartment of Energy–Cybersecurity Energy Systems & Emergency
Response–Cybersecurity of Energy Delivery Systems (DOE-CESER-CEDS)
funded Firmware Indicator Translation (FIT) Project

157

2020 Symposium on Security and Privacy Workshops (SPW)

© 2020, Sage Havens. Under license to IEEE.
DOI 10.1109/SPW50608.2020.00042

harder for attackers to gain a foothold, and the effort of attack
changes focus to upstream from the product [3]. For the sake of
this paper, an attacker then maliciously affects a third-party
library or application the product trusts and uses. A well-known
case of a supply chain attack is NotPetya, where a nation state
hijacked Linkos Group’s computer update server by exploiting
a vulnerability in the content management system. This resulted
in a hidden back door which propagated to thousands of
computers, and was eventually used to introduced NotPetya, the
malicious software which shut down a fifth of the world’s
shipping capacity [4]. Another example is XcodeGhost, when a
backdoored version of Xcode, the IDE used for Apple
application development, was posted as a download across
popular Chinese forums [2]. This backdoored version of Xcode
compiled in an information gathering command and control
server within the mobile applications. At the time of discovery,
over 4,000 apps within the App Store were infected with this
malicious software [2].

A scalable method for storing program binaries in a
database and the ability to recognize vulnerable or changed
third-party libraries over time, aids in identifying system
modification, early detection, and supply chain management.
@DisCo hashes and disassembles each binary it ingests,
allowing for a specific and simple way to see changes in a
binary over time. @DisCo analysis identifies ubiquitous
libraries to enable the defenders to add these libraries to their
vulnerability searches and work to detect when the
vulnerabilities are exploited or include less vulnerable libraries
or functions into their operating environment.

C. Software Assurance
Older legacy computer systems often do not take cyber

security into consideration, as computer crime was rare during
their development and many developers failed to anticipate a
future where the internet would be pervasive. While many of
these systems have retired, the term legacy system still refers to
any outdated system still in use [1]. When it comes to securing
a legacy system, the first step is to know what the legacy
system’s software contains. Often this is impossible as the
original developers are no longer available, the system came
from a third-party vendor, or the documentation is lacking. A
straightforward method for identifying third-party libraries
within the software is an invaluable starting point. If the legacy
system is without updates to necessary components, there will
inevitably be vulnerabilities which must be either mitigated or
hardened against. Timely identification of vulnerabilities within
critical legacy systems is key.

III. @DISCO

A. Graph Database
Current tools for binary analysis and reverse engineering

have no consistency, no way to capture, preserve, and share
information, and are not scalable solutions. @DisCo is an
answer to this problem. @DisCo captures the hashes of each
binary and then begins disassembling, and breaking the binary
down into functions, blocks, and feature sets. It stores data about
each of these components in an OrientDB graph database [20].
@DisCo then finds each edge, and edge type between these
components, finally storing them to create a complete and

queryable control flow graph. This graph database can then be
used to capture additional information about a binary, preserve
the state of the binary at specific times, and is easily shared.

B. Breaking Down a Binary
The initial disassembly of the binary is done by the open

source tool, angr [19], [24], [25]. angr’s graph analysis plugin,
CFGFast, creates a knowledge base containing control flow
graphs, call graphs, and other valuable information.

To begin, @DisCo creates a base library vertex storing the
hash, architecture, base path and version of the binary. Next, it
stores every function identified by angr. Each function vertex
will consist of the library record id (rid) it belongs to, the
function address, function name. Each function vertex is linked
to its library by an edge. As each function is processed, the
function’s blocks will be iteratively processed. The block vertex
contains the library rid and function rid it belongs to, the starting
address, and label or name for the block and a representation of
the block’s instructions. This same block vertex also contains
the block’s instructions in PyVex [25], angr’s low-level
intermediate language. Each block contains call edges to any
functions called from the block, feature edges to feature vertices
contain features related to the block, and various types of jump
edges which indicate how control flow may move beyond the
block.

Fig. 1 contains the source code of a simplistic hello world
program. For this example, this program is compiled using GNU
Compiler Collection (GCC) with no extra flags. This binary is
processed by @DisCo and entered into the OrientDB database.
Fig. 2 shows the CFG created by a simple query within
OrientDB to display the function main. Fig. 2 begins with the
base vertex for the binary labeled with record identifier #170:0,
and then #229:0 is the function object for main. The main
function consists of a singular block, #164:0, which has a feature
set. This same block makes one call to printf, #217:0. This call
consists of a singular block and feature set.

#include “stdio.h”

int main(){
 printf(“hello world”);
 return 0;
}

Fig. 1. Source code of hello word program

Fig. 2. CFG of hello word program

C. Feature Sets
Each block object stores the low-level intermediate language

of the instructions. This language is an abstraction from the
assembly level and the high-level languages, such as source
code. The use of a low-level language is important as it differs
from assembly by not being architecture dependent. This aspect

158

allows for function identification to be compilation and
architecture independent. Fig. 3 is the x86 assembly of the main
program from Fig. 1. Fig. 4 displays PyVex’s [25] low-level
interpretation of the same block of code. It is this low-level
language that the feature set is extracted from. PyVex is
fundamentally built from statements which are made up of
expressions. These statements and expressions can be tokenized
into 37 distinct token types. @DisCo tokenizes each block’s
PyVex interpretation and counts how many times each distinct
token is used. Fig. 5 demonstrates a subset of the feature set of
the block instructions shown in Fig. 4. This feature set has
omitted the tokens which do not appear within the block for
brevity.

main:
nop edx, edi
push ebp
mov ebp, esp
lea edi,[0x0040115d] {“hello world”}
mov eax, 0x0
call printf
mov eax, 0x0
pop ebp
retn

Fig. 3. X86 disassembly of hello world program

---- IMark(0x401149, 4, 0) ----
---- IMark(0x40114d, 1, 0) ----
t0 = GET:I64(offset=56)
t1 = GET:I64(offset=48)
t2 = Sub64(t1,0x00000008)
PUT(offset=48) = t2"
STle(t2) = t
---- IMark(0x40114e, 3, 0) ----
PUT(offset=56) = t2
---- IMark(0x401151, 7, 0) ----
PUT(offset=72) = 0x00402004
---- IMark(0x401158, 5, 0) ----
PUT(offset=16) = 0x00000000
PUT(offset=184) = 0x0040115d
---- IMark(0x40115d, 5, 0) ----
t3 = Sub64(t2,0x000000008)
PUT(offset=48) = t3
STle(t3) = 0x00401162
t4 = Sub64(t3,0x00000080)
==== AbiHint(0xt4, 128, 0x00401050) ====

Fig. 4. PyVex interpretation of main block

Ist_imark 6
Ist_abihint 1
Ist_rdtmp 9
Ist_wrtmp 5
Ist_store 2
Ist_put 6
Iex_get 2
Iex_const 7
Iex_binop 3

Fig. 5. Feature set of main block

IV. SUPERVISED MACHINE LEARNING

@DisCo can produce different types of corpora for machine
learning tasks which are valuable in supply chain management
such as identification of software components and libraries
included in firmware, change detection and forensics. We focus
here on some common machine learning techniques which can
be useful when analyzing software.

The data set used in this section was created by choosing
seven programs which each use a small set of external libraries:
libc, libpthread, libdl, libkdump and ld-linux. These programs
were statically compiled using GCC 7.4.0 and Clang 6.0.0 with
four levels of optimization flags on Ubuntu 18.04 Linux system.
This procedure resulted in 56 binaries, eight for each program.

@DisCo was then used to analyze the 56 binaries along with
the dynamic versions of the five shared libraries, for a total of
61 binaries loaded into @DisCo’s graph database. Since each of
the 56 binaries use the same five shared libraries and have been
statically linked, each contains copies of all the exported
functions of the five libraries, meaning 57 copies of each shared
library function will be represented in @DisCo. There is some
duplication of functions across these five libraries, resulting in
as many as 61 representations of some functions. For the
purpose of the following experiments we selected all functions
consisting of three or more blocks, resulting in a corpus of
59,543 function representations.

A. Clustering
The function features discussed in Feature Sets can be

examined by the use of clustering algorithms to gain insight into
how well the feature sets may work for classification and
regression machine learning. Ideally the function features can
be made to cluster into distinct clusters representing each
function.

We examined clustering using t-distributed Stochastic
Neighbor Embedding (TSNE) [16], Agglomerative Clustering
with ward and average linkage [14], DBScan [17], and K-
Means [8]. We applied scikit-learn’s StandardScaler [11] to
normalize the data, followed by Principle Component Analysis
(PCA) [13]. Fig. 6 shows a scatter plot of 50 randomly sampled
classes from the corpora, consisting of 2970 functions. The
function representations cluster naturally, the scatter plot does
not appear to show nearly 3000 points since many of them stack
upon one another. Fig 7 shows the results of agglomerative
clustering with ward linkage on the same data. In this plot each
data point of the functions is represented by a number from 1 to
50, indicating which function class the point belongs to. Fig. 8
shows a TSNE plot of all functions which shows there is a
definite structure to the function representations.

B. Classification
To investigate the possibility of using @Disco function

representations to identify the components in software, we
explored several different methods of training a classifier to
recognize individual functions. We separated the corpora into
train and test sets as 80/20 split by random selection.

159

Fig. 6. Random sample of 50 classes with 2970 total samples

Fig. 7. Agglomerative clustering with ward linkage

Fig. 8. TSNE Plot of all functions

1) Scikit-learn: First, we compared eight classifiers from
scikit-learn using their default parameters. The classifiers were
K-Neighbors [9], Linear Support Vector Machine (SVM) [7],
Radial Basis Function (RBF) SVM [7], Decision Trees [22],

Random Forest [5], Neural Net, AdaBoost [21], and Naïve
Bayes [18]. We randomly selected 11,482 functions
representing 200 functions for training data, and each classifier
was scored using 5-fold cross validated F1. We noticed the F1
scores varying by a large amount across different random
selections of data, when we tried this test with the full dataset
about half the classifiers would fail to complete. Tuning of each
classifier’s parameters and batching of data would be required.
Table I shows each classifier’s F1 score.

TABLE I. Convolutional Classifier Output

Classifier Cross Value F1
K-Neighbors 0.94 (+/- 0.01)
Linear SVM 0.72 (+/- 0.02)
RBF SVM 0.51 (+/- 0.05)
Decision Trees 0.94 (+/- 0.01)
Random Forest 0.94 (+/- 0.01)
Neural Net 0.94 (+/- 0.01)
AdaBoost 0.04 (+/- 0.02)
Naïve Bayes 0.94 (+/- 0.01)

The second experiment was to tune parameters for Support
Vector Machines. We chose to use GridSearchCV and support
vector classifier (SVC) from sci-kit learn [11]. GridSearchCV
runs several trial runs with a classifier, with varying parameters.
When the search is complete, the best combination of
parameters is selected. The best parameters were RBF kernel,
regularization parameter C=1000.0 and kernel coefficient
gamma=0.0001. With these parameters SVM yielded a
precision score of 0.90, recall 0.92, accuracy and F1 of 0.90
across the full data set, demonstrating that choosing good
parameters is a critical aspect. Fig. 9 outlines the SVM
classification boundaries.

Fig. 9. SVM classification boundaries

2) PyTorch: Looking for better performance we
implemented a neural network classifier in PyTorch [6]. The
sizes of the encoding linear layers were 834x640, 640x512,
512x256, each layer connected by batch normalization, a
rectified linear unit activation function (ReLU) [3] and 20%

160

dropout, then a final classifier linear layer of size 256x834 with
Softmax [12] to choose the final class. All applied sequentially.
We used the Adam optimizer with a learning rate of 0.001 and
used cross entropy loss. Loss was backpropagated after each
batch. This process is demonstrated in Fig. 10.

Fig. 10. Neural Network and CNN Models

The network was trained on a Nvidia Titan RTX with a
batch size of 40,000 for 2,000 epochs. Training took an
average of one minute and 53 seconds. The final results of
training were precision 0.93, recall 0.95, F1 0.94 and accuracy
0.95.

Finally, we implemented a convolutional neural network
consisting of two convolution networks with kernel size 3, a
ReLU activation function, then a maxpool to coalesce the
convolutions. The pooled convolutions go into a fully
connected network of size 128x256, a dropout of 0.25, a fully
connected network of size 256x834, a ReLu and a dropout of
0.5. Softmax used to produce the final classification.

The convolutional network was trained in the same fashion
as the neural network. Training time averaged 4 minutes 50
seconds. Fig. 11 shows the function output and the results were
precision 0.93, recall 0.94, F1 0.93 and accuracy of 0.94.

Fig. 11. Convolutional Classifier Output

C. Analysis
After reviewing these results, we determined several factors

were limiting further improvement of the machine learning
results. The first problem is one of labeling. All the
classification approaches were fully supervised, the accuracy of
the labels is reflected in the training results. When some of the
misclassifications were examined, we found that some
functions had different labels but identical feature sets. Further
analysis found 18,857 such conflicts. In the case of the
functions register_printf_function and register_printf_specifier
the assembler is the same, as seen in Fig. 12. In other cases, the
assembler may be different, but the instruction counts are the
same. It is possible to automate the process of resolving some
of these differences, but further research would be required.

Fig. 12. Visualization of two functions with the same feature vector

 register_printf_specifier register_printf_function

BatchNorm1d +
weight 36
bias 36
running_mean 36
running_var 36
num_batches_tracked = 2000

Dropout +

Linear +
weight 834×36
bias 834

ReLU +

BatchNorm1d +
weight 834
bias 834
running_mean 834
running_var 834
num_batches_tracked = 2000

Dropout +

Linear +
weight 417×834
bias 417

ReLU +

BatchNorm1d +
weight 417
bias 417
running_mean 417
running_var 417
num_batches_tracked = 2000

Dropout +

Linear +
weight 208×417
bias 208

ReLU +

BatchNorm1d +
weight 208
bias 208
running_mean 208
running_var 208
num_batches_tracked = 2000

Dropout +

Linear +
weight 834×208
bias 834

data

layers/12

Conv2d +
weight 36×1×3×3
bias 36
kernel_size = 3, 3
padding_mode = zeros

Conv2d +
weight 128×36×3×3
bias 128
kernel_size = 3, 3
padding_mode = zeros

Dropout2d +
p = 2.6339e-319

Dropout2d +
p = 2.8363e-319

Linear +
weight 256×128
bias 256
in_features = 128
out_features = 256

Linear +
weight 834×256
bias 834
in_features = 256
out_features = 834

data

fc2

161

This initial work uses recent advances in graph learning by
developing a graph representation of each function’s control
flow graph, with each block’s contents represented by the vex
embedding of each function graph by using adjacency matrices
for the edges concatenated with a learned embedding of the
block features. Other approaches to this problem could consist
of:

A richer feature set made from a different LLIL.
Create embeddings of assembler language to improve
the representations of the disassembled code.
Use an LLIL which has been developed to work well
in transformer and recurrent network architectures.

V. CURRENT AND FUTURE RESEARCH

The Firmware Indicator Translation (FIT) project is
ongoing to finish the release of @DisCo and other tools.
Ubiquitous libraries found on FIT partner provided firmware
will be translated into Structured Threat Information
eXpression (STIX) to enable detection and potential
remediation if vulnerabilities exist. Results from these analyses
in structured threats provide better contextual indicators for
malware, sharable and actionable threat intelligence which
enriches a test corpus another DOE project - Geo Threat
Observables (GTO). Grid Modernization Laboratory
Consortium (GMLC) projects focused on cyber security will
take FIT’s machine learning concepts further in the Firmware
Command and Control and Deep Learning Malware projects,
moving beyond static binary analysis. Internal INL research for
Reverse Engineering at Scale (RE@Scale) will be advanced
with new compiler and linked library capabilities. Currently
FIT tools are being used for forensics and supply chain analysis
projects internally at INL and will be available soon on INL’s
GitHub page.

ACKNOWLEDGMENT

 We would like to acknowledge our leadership support at
Idaho National Laboratory for the novel RE@Scale concept and
the key INL researchers, Jared Verba and Gordon Rueff, for
their contributions. We gained knowledge and insight from asset
owners in Southern California Edison and Detroit Edison. FIT
also worked with technology and industry partners New
Context, Eaton, Hitachi, and Siemens. A considerable thank you
is due to the FIT team, Rita Foster, Bryce McClurg, Zachary
Priest, Bryan Beckman, and Justin Cox. Our final appreciation
goes to DOE’s leadership and technical direction to apply
concepts for better cyber analytics to GMLC protections
ensuring these concepts are spread broader in the research
community focused on protecting our nation’s electric grid.

REFERENCES

[1] "Assessing Security Risk in Legacy Systems," 14 Decemeber 2006.
[Online]. Available: https://www.us-cert.gov/bsi/articles/best-
practices/legacy-systems/assessing-security-risk-in-legacy-systems.
[Accessed 18 January 2020].

[2] "Protecting Our Customers from XcodeGhost," 2015 September 22.
[Online]. Available: https://www.fireeye.com/blog/executive-

perspective/2015/09/protecting_our_custo.html. [Accessed 18 January
2020].

[3] A. F. Agarap, "Deep Learning using Rectified Linear Units (ReLU),"
CoRR, vol. abs/1803.08375, 2018.

[4] A. Greenberg, "The Untold Story of NotPetya, the Most Devastating
Cyberattack in History," 7 December 2018. [Online]. Available:
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-
code-crashed-the-world/. [Accessed 18 January 2020].

[5] A. Liaw and M. Wiener, "Classification and regression by
randomForest," R news, vol. 2, p. 18–22, 2002.

[6] A. Paszke, et al., "PyTorch: An Imperative Style, High-Performance
Deep Learning Library," 3 12 2019.

[7] C. Cortes and V. Vapnik, "Suppor-Vector Networks," September 1995.
[Online]. Available: https://doi.org/10.1007/BF00994018. [Accessed 24
January 2020].

[8] D. Arthur and S. Vassilvitskii, "K-means++: the advantages of careful
seeding," in In Proceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms, 2007.

[9] D. Coomans and D. L. Massart, "Alternative k-nearest neighbour rules
in supervised pattern recognition," Analytica Chimica Acta, vol. 136, p.
15–27, 1982.

[10] D. Larson, "Global Survey Reveals Supply Chain as a Rising and
Critical New Threat Vector," 1 April 2019. [Online]. Available:
https://www.crowdstrike.com/blog/global-survey-reveals-supply-chain-
as-a-rising-and-critical-new-threat-vector. [Accessed 18 January 2020].

[11] F. Pedregosa, et al., "Scikit-learn: Machine Learning in Python," Journal
of Machine Learning Research, vol. 12, p. 2825–2830, 2011.

[12] I. Goodfellow, Y. Bengio and A. Courville, " Softmax Units for
Multinoulli Output Distributions," In Deep Learning, MIT Press, 2016.

[13] I. T. Jolliffe, "Principal Component Analysis and Factor Analysis," in
Principal Component Analysis, Springer New York, 1986, p. 115–128.

[14] J. Ward, "Hierarchical Grouping to Optimize an Objective Function,"
Journal of the American Statistical Association, vol. 58, no. 301, pp.
236-244, 1963.

[15] L. McMinn and J. Butts, "A Firmware Verification Tool for
Programmable Logic Controllers," in ICCIP, Heidelberg, 2012.

[16] L. van der Maaten and G. Hinton, "Visualizing High-Dimensional Data
Using t-SNE," Journal of Machine Learning Research, pp. 9:2579-2605,
2008.

[17] M. Ester, K. Hans-Peter, J. Sander and X. Xiaowei, "A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise," Proceedings of the 2nd International Conference on Knowledge
Discovery and Data Mining, p. 226–231, 1996.

[18] N. Friedman, D. Geiger and M. Goldszmidt, "Bayesian Network
Classifiers," Mach. Learn., vol. 29, p. 131–163, 11 1997.

[19] N. Stephens, et al., "Driller: Augmenting Fuzzing Through Selective
Symbolic Execution.," in NDSS, 2016.

[20] OrientDB, "OrientDB. Hybrid Document-Store and Graph NoSQL
Database," 2017.

[21] R. E. Schapire, "Explaining AdaBoost," in Empirical Inference, Springer
Berlin Heidelberg, 2013, p. 37–52.

[22] R. Quinlan J., Induction of Edecision Etrees, 1986.
[23] S. Raemaekers, A. Van Deursen and J. Visser, "An Analysis of

Dependence on Third-Party Libraries in Open Source and Proprietary
Systems," in Sixth International Workshop of Software Quality and
Maintainability, Amsterdam, 2012.

[24] S. Yan, et al., "Sok:(state of) the art of war: Offensive techniques in
binary analysis," Security & Privacy. IEEE Computer Society, p. 138–
157, 2016.

[25] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel and G. Vigna,
"Firmalice-automatic detection of authentication bypass vulnerabilities
in binary firmware.," in NDSS, 2015.

162

