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Abstract—Supply chain security threats pose new challenges
to security risk modeling techniques for complex ICT systems
such as the IoT. With established techniques drawn from
attack trees and reliability analysis providing needed points
of reference, graph-based analysis can provide a framework
for considering the role of suppliers in such systems. We
present such a framework here while highlighting the need for
a component-centered model. Given resource limitations when
applying this model to existing systems, we study various classes
of uncertainties in model development, including structural
uncertainties and uncertainties in the magnitude of estimated
event probabilities. Using case studies, we find that structural
uncertainties constitute a greater challenge to model utility and
as such should receive particular attention. Best practices in the
face of these uncertainties are proposed.

Index Terms—Supply chain, Internet of things, information
technology, operational technology, risk assessment, security.

I. INTRODUCTION

Information and communications technology (ICT) sys-

tems are becoming increasingly complex, consisting of vari-

ous different components connected together [1]. Often, these

components are manufactured, controlled, or operated by

different entities in different regions of the world. It is almost

impossible to have centralized control over all entities in

the supply chain. Therefore, in addition to the conventional

risks of system failures, there is another layer of risks

emanating from supply chain actors. With the proliferation

of Internet of Things (IoT) devices and networks, these risks

are further amplified due to an unregulated and extremely

heterogeneous ecosystem. Hence, it is becoming critical to

develop methodologies to measure and analyze these supply

chain risks. A more alarming alarming concern is that the IoT

systems directly interact with critical infrastructure systems

leading to the possibility of cascaded failures and other

disastrous consequences.

Supply chain risk analysis in IoT systems is a challenge

due to the lack of direct applicability of traditional method-

ologies in supply chain risk management [2]. This challenge

is primarily due to the structural complexity of the systems
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Fig. 1: A simple system graph depicting three components,

their suppliers, and dependencies between them.

and the various different uncertainties that impact the assess-

ment of systemic risk. Since fundamental design method-

ologies in technical industries rely heavily on modularity

and abstraction, black-box systems that are difficult, if not

impossible, to audit pose a constraint within which critical

infrastructure security must be pursued. Processes to verify

that components have been manufactured without hidden

security vulnerabilities may be strategically important; how-

ever, the evident specialization required to produce complex

ICT systems entails the need for a comparable specialization

to provide credible verification. In general, then, acquirers

or integrators of complex components must be prepared to

assess and manage risks associated with supplier trust [3].

This challenging task calls for ongoing development of risk

assessment methodologies and heuristics for evaluating the

trustworthiness of suppliers [4], [5].

When developing modeling practices suited to assessing

these risks, it is necessary to consider the operational con-

straints within which model development proceeds. Given

the uncertainties inevitably present in model development,

processes should be designed to prioritize the clarification of

uncertainties that pose the greatest threat to model utility. In

this paper we present a brief graph-based model suited for the

assessment of supply chain risks, and develop case studies

that illustrate the kinds of uncertainties that may impede the

application of the modeling process to a given system. We

then propose that structural uncertainties have the potential

to be more significant than uncertainties in the probabilities

of basic events. Similarly, among structural uncertainties,

those pertaining to higher level components are particularly
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critical. Accordingly, the principle is developed that supply

chain security risk assessment should prioritize the accurate

structural assessment of systems in order to improve the

reliability of risk modeling in practice.

The rest of the paper is organised as follows. Section

II provides an overview of the system model, including

an explanation of the risk analysis enabled by the model.

Section III outlines two kinds of uncertainties that may affect

the utility of the model in practice. Section IV develops a

series of case studies based on these uncertainties, illustrat-

ing important aspects of model performance when subject

to uncertainty and pointing to priorities when seeking to

mitigate the effect of these uncertainties. In conclusion we

offer recommendations based on these case studies.

II. SYSTEM MODEL

The model developed here can be introduced by a com-

parison with attack trees [6], [7]. An attack tree is a directed

acyclic graph (DAG) based security analysis technique rely-

ing on the fact that security incident analysis is very similar

to classical reliability analysis [8]–[11]. In an attack tree,

nodes represent events or sub-goals that contribute to the

accomplishing of a central event or goal that is the desired

aim of the attack under analysis. Edges connect nodes so

that resulting paths from leaf nodes to the top event repre-

sent feasible, completed attacks. Given probabilities of these

events, it is possible to compute the likelihood of each path

and so consider optimal detection and mitigation choices.

While recent research has explored the automated construc-

tion of attack graphs on systems by interfacing network

scanning applications and databases of known vulnerabilities,

it remains the case that the most important elements in

attack graphs are essentially discovered through empirical

investigation and expert knowledge of a system [12], [13].

It is the discovery of the causal connection between one

event and another that forms the basis of the utility of an

attack graph. This discovery is a matter of empirical research,

whether formally conducted by researchers or informally

ascertained by observing real attacks.

When applying the technique of attack tree modeling to

the threat of supply chain attacks, it is apparent that the

risk assessment process is limited by the need for empirical

observation of supply chain attack events and how they are

causally related to known vulnerabilities. It seems unlikely,

however, that the threat of a supplier could be captured by

identifying a set of discrete attack events that the supplier

might initiate because the set has no clear principle of con-

struction. Suppliers have extensive discretion and, supposing

the ability to act covertly, it is not feasible to rely on a discrete

set of known attacks that a supplier might cause.

A second way in which supply chain attacks cannot be

easily added to existing attack tree techniques is that suppliers

have the potential to alter underlying system constraints. Tra-

ditional attackers work within the constraints of a system as it

is deployed, finding unanticipated or vulnerable pathways to

cause events that work to their advantage. Yet a supplier may

work at a deeper systemic level, modifying system design

specifications or introducing alien components. One critical

avenue of a supply chain attack is defined by the ability to

alter the system itself, its components and their functionality,

including the addition or suppression of particular functions.

This relatively undefined form for supply chain attacks poses

a significant challenge for modeling and calls for a shift in

perspective.

In the face of these difficulties applying attack tree tech-

niques, we find that a model for supply chain attacks should

be component-centered rather than event-centered. With a

component-centered model it is possible to identify the

suppliers that are the source of the risk under investigation,

without artificially limiting the scope of their activity to some

set of events that a supplier may cause. With components

and suppliers as core elements, a risk model will consider

the probabilities of security failures that propagate through a

system. This kind of model will bear a close resemblance to

classical system reliability analysis, augmented with appro-

priate nodes for suppliers [14], [15].

The most difficult aspect of constructing such a model

for an existing system is ascertaining how component nodes

are related with respect to security attributes. This process

differs from classical fault tree analysis in an important

way. To construct a fault tree, it is possible to begin with

detailed understanding of the component functionalities and

interfaces. Although this is a complex task for a system

of any moderate size, in principle the information about

proper functional constraints is available. In contrast, security

failures may include the emergence of unknown faults that

originate from undefined behavior, software bugs, and over-

looked interface gaps. These issues are difficult to foresee

and information about them is largely reliant on processes of

empirical research. As such it may be difficult to ascertain

how the security of one component affects the security of

another.

When seeking to develop and apply such a model for an

existing system, the possibility of errors is a constraint within

which model development must occur. In some cases the

chief concern will be to develop more reliable estimations

of the trustworthiness of the suppliers in a system. In other

cases, though, the principal challenge in producing a reliable

risk assessment will involve ascertaining the proper structure

for the system in question, i.e., how the security attributes

of components are causally inter-related. After outlining the

necessary elements of a system model suited for supply chain

risk assessment, we then investigate the effects caused by

these various kinds of uncertainties.

A. System Graph

The model presented here is based on a directed graph

consisting of components and suppliers. After defining es-

sential parts of this system graph, we then describe how to

calculate systemic risk given such a graph.
1) Components: The components in a system will be

denoted as the set, C. The set is initialized with a component

that represents the system itself. A key feature of this

analysis is to consider each component as simultaneously
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a component and a system in itself. The set, C, can be

expanded by conducting a recursive decomposition of each

element in the set, until an arbitrary level of depth is reached.

The termination condition for this recursive decomposition

process can be adjusted to provide more accurate analysis at

the expense of greater complexity. A general rule that defines

the maximal complexity that will be useful is to terminate

recursive decomposition when additional iterations will no

longer yield new suppliers. In other words, a component can

be considered a useful unit of analysis when it is produced

entirely or for the most part by a single supplier. When this

rule has been followed, the assumption is warranted that the

supplier of any component in the system bears full responsi-

bility for the component and cannot pass responsibility to one

of its own suppliers. This maximal complexity still entails

extensive decomposition that may yield diminishing returns

as components become simpler and their suppliers possess

less latitude to introduce security risk. As such, the degree

of depth is considered a hyper-parameter for the construction

of this model.

2) Suppliers: Each component in the system must be

assigned a supplier from the set, S, where s is the supplier of

c. To be the supplier of a component will be a general term

for the entity that is responsible for the manufacturing of

a component. While other roles may be considered relevant

to supply chain risk, such as maintenance or logistics, we

consider here a generalized supplier role that may be taken

to represent all aspects of supply chain risk. A rule for

designating a supplier will be that a supplier must have un-

restricted physical access to the component. While it may be

very desirable to implement transparency and accountability

schemes for suppliers, we assume here that the supplier is

able to act covertly if and when it desires.

3) Dependencies: Edges in this graph, E, will be of

two sorts: i) e ∈ C × C and ii) e ∈ S × C. Edges

between components will be added when the security of the

destination node requires the security of the source node.

Security of a component is defined by a security policy,

and may refer to any combination of attributes such as

{confidentiality, availability, integrity}.
Edges from suppliers to components are added when the

supplier is the supplier of the component in question. Here it

is assumed that the supplier is de facto a security dependency

of the component, such that if the supplier were compromised

or malicious, the component could no longer be considered

secure.

4) Node Logic: Similar to attack tree models, nodes in

the system graph here will each possess a logic function

� ∈ {AND,OR}. Input to � will be the set of component

predecessors in the system graph, denoted as N−
n ∩ C, or

the components that are security dependencies of the node

in question. The relationship of the node to its predecessors

will be dependent on �. The function L assigns a component

ci a particular function �.

5) Probability Values: Nodes in the system graph are

assigned probability values, r, that correspond to the like-

lihood of a security failure at the node. These risk values

Fig. 2: The conditions for node security failure involve local

failures of components, failures of component dependencies,

or a supplier failure.

for components are anterior to any consideration of prede-

cessors or suppliers, and are intended to capture the inherent

possibility of a component or supplier being compromised

directly. For example, a particular router may use vulnerable

software and as such possess a higher risk of security failure.

However as noted above, the compromise of predecessors or

the component’s supplier are taken to have the equivalent

effect of node security failure. In the example of the router,

compromising the router’s supplier would be as much of

a security failure as a classic exploitation of its vulnerable

software.

6) System Graph: With the above definitions in mind, a

system graph is defined as a directed graph G = (V,E, L, r)
where V = C ∪ S. A concise example is shown in Figure

1. Here three component nodes are related by edges between

them and each component also possesses a supplier node.

B. Risk Analysis

Systemic risk analysis is conducted on the system graph

by considering the likelihood of security failures at each node

and calculating the risk to the system as a whole. Drawing

on Leveson’s discussion of safety in [16], security can be

considered as an emergent property in a complex system

and so provision must be made to identify indicators of this

property. If the system graph is a tree, the root node is an

illustrative choice for an indicator. However, the system graph

may not have a root node, so it will always be necessary

to specify these indicators. Here we use In as the set of

indicator nodes whose security is critical to the system, and

�I is a logic function used to aggregate the function state

of the indicator nodes. System security is then defined as

�I(In).
1) Node Failure Conditions: There are three ways any

component node cn can fail:

• a direct, local security failure at the node itself, with

probability rn,

• a failure of its dependencies, �(N−
n ),

• a failure of its supplier, sj with probability rj .

These three possible failure conditions are depicted in

Figure 2, with the node Mc representing the root of a sub-

tree indicating the possible failure modes of component c.
By substituting this module for each component node in

the system graph, a complete mapping of each possible

route to system security failure is possible. The root of

the module will be a node with � = OR and r = 0,
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with three predecessors: a component node with r = rn,

a supplier node with r = rj , and a predecessor node with

� = L(n) and r = 0. The predecessor node will receive the

incoming component edges that the original component node

possessed. If the original node had no predecessors, then the

predecessor node receives no incoming edges.

2) General System Risk Calculation: Given the above

system graph, the systemic security risk may be approached

with methods taken from reliability analysis. By distilling a

system graph into a set of minimal cutsets, the general risk

in a system is equivalent to the probability that all of the

cutsets are false [14]. Here we have relied on the MOCUS

algorithm to obtain minimal cutsets on a tree with AND/OR

logic [17], while pointing to ongoing research in this area for

algorithmic improvements [18]–[20]. If the minimal cutsets

are W , and �r holds the probabilities of each node’s failure,

then the general risk is computed as:

R(�r) = 1−
∏

w∈W

(
1−

∏
v∈w

rv

)
. (1)

3) System Cutset Metrics: In addition to general system

risk, we note here several other metrics on a system graph

that will be useful in the analysis that follows. First, we note

the number of minimal cutsets, or |W |, which serves not as a

predictor of risk but is correlated with the complexity of the

system graph. While a risky system may have few cutsets that

contain relatively high probability events, in such a system

there are fewer variables to analyze. This factor may play a

role in assessing the confidence that users may reasonably

place in the utility of the results of risk analysis on such a

system.

A second, related metric is the average size of the cutsets:

W̄ =

∑
w∈W |w|
|W | (2)

Where W̄ is low, fewer events must occur for system failure.

While, again, this cannot be predictive of risk in general

without referring to the likelihood of the events in question,

the metric indicates the complexity of the system.

Lastly, we define the Jaccard distance of the cutsets W
and W ′ to be:

J(W,W ′) = 1− |W ∩W ′|
|W ∪W ′| (3)

As a measure of set similarity, the Jaccard distance will

be useful in comparing two systems. Where the distance is

very low, the two systems have very similar security failure

conditions. Analysis and mitigation, then, of one such system

will be transferable to the other with relatively high utility.

Although additions to this system model expand the

model’s ability to analyze risks in multi-layer networks with

suppliers possessing dependencies among themselves that

introduce further complexity, we present here a sufficiently

developed explanation to evaluate the performance of the

model under various realistic uncertainties.

III. UNCERTAINTIES IN MODEL DEVELOPMENT

Although the model we have developed bears a resem-

blance to established methods of system reliability analysis,

the problem domains of reliability and security differ suf-

ficiently to warrant a discussion of limits and challenges

to the use of this model in practice. While certain of

these challenges may be overcome through developments in

methodology, others may point to limits within which the

problem of supply chain security analysis must be conducted.

In the analysis that follows we identify major challenges to

the accurate construction of this model for a real system.

After discussing these challenges in general, we illustrate the

effect of four kinds of uncertainties using a case study.

A. Parametric Uncertainties in Probability Estimates

The first major area of difficulty in the use of such a model

is obtaining accurate probability estimates for basic events

such as component security failures and, more critically,

supplier security failures. Estimating the likelihood of a

supplier being compromised or being covertly malicious is a

problem involving considerable difficulty. On the assumption

that any compromise or malicious act will eventually be

detected and attributed accurately, the accuracy of risk values

will generally increase as this information is incorporated into

assessed likelihoods. We consider the problem of estimating

accurate risk values to be best approached through the

development and use of heuristics and metrics together with

information gathering and regular assessments. If accuracy is

a limitation here then it is one that system design and use

must accommodate.

B. Structural Modeling Uncertainties

A second source of uncertainty lies in the possibility that

sources of risk are simply omitted from the system model,

i.e., that some set of nodes or edges that should be in

the system graph are not included. We call these structural

uncertainties, and define them as a modeling choice that has

some effect on the set of minimal cutsets. Therefore the three

kinds of uncertainties here will include those related to nodes,

edges, and node logic functions. Being uncertain about the

structure of a system could easily be a matter of neglect or

oversight, but may just as well be a result of a complexity

in system design that lies outside the reasonable purview of

those building the model. In the case of both an inaccurate

probability value and a structural modeling divergence, the

calculated systemic risk value does not correspond to the

real system risk. In the case studies that follow, we seek to

illustrate the observation that structural uncertainties pose a

significant challenge to accurate modeling and merit priority

over improvements in accurate probability estimations.

IV. UNCERTAINTY CASE STUDIES

In the case studies that follow, we first present a ground

truth scenario that is intended to represent an ideal system

graph constructed to model the system in question. Following
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TABLE I: Minimal Cutsets for Case 0: Each cell contains

one minimal cutset such that a failure of every node in the

cutset entails a system security failure.

{a} {b} {c}
{g} {h} {i}
{p} {q} {t}
{u} {r,s} {d,e,f}
{d,f,l} {d,f,m} {d,e,n,o}
{d,e,n,x} {d,e,n,y} {d,l,n,o}
{d,l,n,x} {d,l,n,y} {d,m,n,o}
{d,m,n,x} {d,m,n,y} {e,f,j,k}
{f,j,k,l} {f,j,k,m} {d,e,o,v,w}
{d,e,v,w,x} {d,e,v,w,y} {d,l,o,v,w}
{d,l,v,w,x} {d,l,v,w,y} {d,m,o,v,w}
{d,m,v,w,x} {d,m,v,w,y} {e,j,k,n,o}
{e,j,k,n,x} {e,j,k,n,y} {j,k,l,n,o}
{j,k,l,n,x} {j,k,l,n,y} {j,k,m,n,o}
{j,k,m,n,x} {j,k,m,n,y} {e,j,k,o,v,w}
{e,j,k,v,w,x} {e,j,k,v,w,y} {j,k,l,o,v,w}
{j,k,l,v,w,x} {j,k,l,v,w,y} {j,k,m,o,v,w}
{j,k,m,v,w,x} {j,k,m,v,w,y}

TABLE II: Results for Case 0, Ground Truth

|W | 53
avg(|w|)∀w ∈ W 4.018868
J(W,W ′) 0.0
Risk 0.403032
ΔRisk 0

this, we discuss four kinds of uncertainties and illustrate

the possible effect of each by comparing the results of risk

analysis after each error with the ground truth scenario.

A. Case 0: Ground Truth
The system graph for this case study is shown in Fig-

ure 3. It possesses a tree structure with twenty-five nodes

and with roughly equal numbers of AND and OR nodes

distributed throughout the graph. We have chosen the tree

structure to provide the basis of these examples because of its

resemblance to classical fault trees. In practice the structure

could vary widely. However, for the purpose of this study

a tree structure seems likely to provide a suitable basis for

generalization.
The minimal cutsets of this system are shown in Table I.

Each cell contains a set of nodes identified by alphabet letter,

where the security failure of all nodes in the set represents a

security failure of the top node. To compute a risk value for

the system, we provide sample component risk values such

that each component has a risk of failure of 0.05. Essential

metrics for this system are found in Table II.

TABLE III: Results for Case 1, Logic Uncertainty in c

|W | 63
avg(|w|)∀w ∈ W 4.238095
J(W,W ′) 0.366197
Risk 0.144027
ΔRisk -0.259005

B. Case 1: Uncertainty of Single Node Logic
In this first uncertainty scenario, the logic type of a single

node will be modified to represent the misclassification of

a node with regard to its predecessors. A full treatment of

the case of a single logic error suggests investigating the

effect of this error on any given node in the graph. While this

would indeed yield a more thorough understanding, such a

generalized study would be of limited value without operating

on a generalized graph. In lieu of this theoretical exercise,

here we present the result of analysis when various nodes

in the case study are mistaken. We chose nodes c and b,

where the analysis will be conducted on the graph after

each node’s logic function �n ∈ {AND,OR} has been

substituted for the opposite type. Descriptively, this entails

an error in recognizing the way that components g, h, i and

their predecessors affect the security of component c, with an

analogous error for node b. While the ground truth scenario

includes a more risk-amplifying relationship, where any of

g, h, i can cause c to fail, the situation studied in Case 1 is

that the model designer considers c to fail when all of g, h, i
have failed. As such, we expect that this analysis will result

in an erroneously low risk assessment when node c has been

modified, while the opposite will be the case for node b.
Detailed results for Case 1 on node c are shown in Table

III, including a modest rise in the number of cutsets as well

as their average size. The Jaccard distance from the ground

truth is 0.366, indicating a probability of roughly 1/3 that

a cutset in either case is not shared between the two. Risk,

as expected, has dropped by 0.259. To contrast, we present

the results for changing node b in Table IV. This single

node logic error results in a significant Jaccard distance of

0.83, while raising systemic risk by 0.139. Finally, Figure

4 shows the effect of a logic error at each node in the

system. Because many nodes are leaf nodes possessing no

dependencies, the nature of the logic function at the node

is irrelevant to systemic risk. Similarly, we note a general

correlation between the magnitude of the change in risk and

the height of the node in question.

C. Case 2: Uncertainty of Node Omission
When constructing a model, it may easily occur that a com-

ponent is overlooked and omitted from the model. Especially

as complex systems involve many layers of components,

there will be some uncertainty concerning whether important

nodes have been omitted. To capture this uncertainty, we test

here the result of deleting a node from the system graph.

As in Case 1, much of the effect of such an error will

depend on the topography of the system graph as well as

the location of the node omitted. When omitting a node, we

consider it necessary to omit also the children of the node that

become disconnected from the graph as a result. This choice

reflects the likelihood that in overlooking a component, its

subcomponents or dependencies will also be overlooked. We

test here the omission of a mid-level node f and, separately,

a higher-level node c. Figure 5 shows the modified system

graph with node c omitted.
Detailed results are shown in Tables V for the omission of

node f and VI for the omission of node c, while a survey of

the resulting change in risk for each node’s omission is shown

in Figure 6. It is pertinent to note the lack of correlation
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Fig. 3: System Graph for Case 0: Uncertainty scenarios will be examined with reference to this as the ground truth scenario.

System security is represented by the top node, and node failures that constitute minimal cutsets will cause a failure of the

top node.

Fig. 4: Case 1 Results: When node logic is subject to discrete

error, systemic risk values vary widely, but with a magnitude

related to node height.

between the Jaccard distance of the minimal cutsets and

the change in systemic risk. While omitting node f yields

a very significant distance between the cutsets (0.81), the

change in risk is minimal (0.004). By contrast, omitting node

c results in a smaller Jaccard distance (0.17) but a very large

decrease in risk (0.305). This volatility in modeling results

points toward the importance of component level analysis in

understanding supply chain risk. We also note the lack of

correlation here between the change in risk and the height

of the node in question. Omitting node c has a rather large

effect, whereas node b, with the same height, has a very small

effect.

D. Case 3: Uncertainty in Edge Placement
The scenario captured as uncertainty in the placement of a

single edge will be when a component node is successfully

Fig. 5: System Graph for Case 2, illustrating an erroneous

omission of the component at node c as well as its sub-

components.

TABLE IV: Results for Case 1, Logic Uncertainty in b

|W | 23
avg(|w|)∀w ∈ W 1.478261
J(W,W ′) 0.830769
Risk 0.542643
ΔRisk 0.139611

identified but it is mistaken how the node is related to other

nodes in the system. As such, an edge error entails no change

in the number of connected nodes in the graph. There may be

a large number of possibilities that are plausible ways an edge

might be mistakenly placed. As such it will be difficult to

examine all the nodes as was done in the previous two cases.
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TABLE V: Results for Case 2, Node Omission in f

|W | 17
avg(|w|)∀w ∈ W 1.588235
J(W,W ′) 0.813559
Risk 0.407450
ΔRisk 0.004418

TABLE VI: Results for Case 2, Node Omission in c

|W | 44
avg(|w|)∀w ∈ W 4.613636
J(W,W ′) 0.169811
Risk 0.097911
ΔRisk -0.305121

We present detailed results of two different edge errors. First,

we remove edge 〈d, b〉 and substitute it for the edge 〈d, e〉.
The results of this error are shown in Table VII. To contrast,

we also investigate the change of edge 〈h, c〉 to 〈h, g〉, the

results of which are shown in Table VIII

In the first examined edge modification we find a minimal

change in risk despite a large distance between the cutsets.

In contrast, a change in the edge 〈h, c〉 yields the identical

minimal cutsets, owing to the nature of the original parent

node’s logic.

TABLE VII: Results for Case 3, Edge 〈d, b〉 → 〈d, e〉
|W | 46
avg(|w|)∀w ∈ W 2.913043
J(W,W ′) 0.875
Risk 0.409726
ΔRisk 0.006694

E. Case 4: Uncertainty in Probability Values

After having explored the various kinds of structural un-

certainties and illustrated their potential effects in particular

cases, we examine here the contrasting effects of uncertain-

ties in the estimation of probability values. These probability

Fig. 6: Case 2 Results, showing the change in system risk

when a single node and the sub-tree rooted at the node

is omitted. The magnitude of change in risk is not strictly

correlated with node height.

TABLE VIII: Results for Case 3, Edge 〈h, c〉 → 〈h, g〉
|W | 53
avg(|w|)∀w ∈ W 4.018868
J(W,W ′) 0.0
Risk 0.403032
ΔRisk 0.0

TABLE IX: Results for Case 4

e 0.02 0.05 0.10 0.50
Risk 0.409364 0.418751 0.434108 0.544767
ΔRisk 0.006332 0.015719 0.031076 0.141735

values are critical points of data without which a model

cannot approximate the real risk in a system. Yet because

of the difficulty of obtaining these values with accuracy and

confidence, we examine the general effect of various margins

of error. When applying each margin of error, 0 < e ≤ 1,

the adjustment is made by adding eri to element i of vector

�r. With this adjusted vector, the general risk function is

calculated. Because this class of errors involves no change

to the number or identity of cutsets, we only compare the

resulting risk value to the ground truth scenario presented

above. In Table IX, we show the effect on risk analysis of

four margins of error, e: 2%, 5%, 10% and 50%. Figure 7

shows a range of errors and the resulting change in systemic

risk.

We note that errors are calculated with reference to the

ground truth scenario, where the probability of each event is

0.05. As such, the maximum error shown in Figure 7, 100%,

results in an adjusted probability of 0.10. Likewise, we apply

this margin of error to every node in system graph. While

more complex or drastic scenarios can be imagined, these

high error rates are sufficient to illustrate the relative impact

of uncertainties of different kinds.

Fig. 7: Case 4 Results, where the probabilities of all events

are adjusted by increasing margins of error. Elevated prob-

ability values entail a linear increase in risk, but only high

margins of error are comparable to many structural uncer-

tainties.
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V. CONCLUSION AND FUTURE WORK

In this paper we have presented a modification of attack

tree modeling suited for the analysis of supply chain risks

with the primary intention of investigating the practical utility

of such a model when faced with inevitable difficulties in

obtaining accurate data describing complex ICT and IoT

critical infrastructure systems.

The preceding case studies have depicted various possible

error scenarios that may be encountered while applying this

modeling technique to an existing system. Using a particu-

lar system graph, we have illustrated these error scenarios

with the help of several examples. Although caution is

warranted when approaching a problem of this complexity

from particular case studies, we use the results shown here

to highlight the importance of structural errors in comparison

to errors in obtaining accurate probability estimates. If the

security of components and the trustworthiness of suppliers

can be estimated to within 50% accuracy, our results show

a maximum possible error in risk assessment of 14%. This

is a significant change in risk, but equal or far greater

discrepancies are found with a wide variety of discrete

structural errors. Mistaking a single node’s logic function,

if it is a systemically important node, may produce double

the change in assessed risk. Similar discrepancies are found

with single node omissions or mistaken edges. Generally,

the nodes with greater height in the system graph are more

conducive to yielding larger discrepancies in systemic risk.

From these observations certain principles in the practical

development of supply chain risk assessments may be sug-

gested. The following preferences summarize the conclusions

of this study.

• Structure over magnitude: Given the scarcity of re-

sources available to conduct risk assessments, and the

possible impact of errors of various kinds, we sug-

gest significant attention be given to accurate structural

modeling. While efforts to obtain accurate magnitudes

in risk and trust values are certainly important, the

development of accurate structural models for the ways

in which components relate to each other as security

dependencies should usually be prioritized.

• Height over depth: At higher levels of systemic analy-

sis, accuracy in structural modeling should take unam-

biguous priority. Structural errors in the critical window

of 2-3 hops from the top event have the potential to make

extraordinary differences in modeling results. Extensive

and accurate modeling of depth into a system may be

helpful, but it is less important than ensuring accuracy in

this critical window. The difficulty of obtaining accurate

modeling at lower levels is matched by a decrease in the

impact of possible errors. As such, less effort should

be expended on components at these lower levels of a

system.
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